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Abstract: This paper studies the dynamic behavior of a class of fractional-order antisymmetric Lotka–
Volterra systems. The influences of the order of derivative on the boundedness and stability are
characterized by analyzing the first-order and 0 < α < 1-order antisymmetric Lotka–Volterra systems
separately. We show that the order does not affect the boundedness but affects the stability. All
solutions of the first-order system are periodic, while the 0 < α < 1-order system has no non-trivial
periodic solution. Furthermore, the 0 < α < 1-order system can be reduced on a two-dimensional
space and the reduced system is asymptotically stable, regardless of how close to zero the order of the
derivative used is. Some numerical simulations are presented to better verify the theoretical analysis.
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1. Introduction

The classical Lotka–Volterra equations (LVE for short) can be expressed in a compact
form as

dxi(t)
dt

= xi(Ax)i, i = 1, 2, · · · , n,

where A = (aij)n×n is a real matrix, x = (x1, x2, · · · , xn)T ∈ Rn. It was first introduced by
Volterra [1] in the context of predator–prey oscillations in population biology. Under the
background of the predator–prey relationship, LVE is used to study the dynamic change of
an individual population. The different species are labeled by i (or j) with i, j = 1, 2, · · · , n,
xi(t) represents the density of population of species i at the time of t, and the parameter
aij represents the impact of species j on species i: aij > 0 indicates that species i preys on
species j, aij < 0 indicates that species i is the prey of j, and aij = 0 means that species
i and j have no predation relationship. The size of aij is seen as the predatory efficiency.
Nowadays it is also of central importance to many other fields of science (e.g., plasma
physics and chemical kinetics [2]). Mathematically speaking, many important results on
the Lotka–Volterra system have been produced, such as global asymptotic behavior and
bifurcation [3–5]. In particular, the three-dimensional antisymmetric LVE is known as
the replicator equation of the rock–paper–scissors game [6]. Furthermore, the rock–paper–
scissors dynamical system is found to be rather common for biological systems, for example,
polymorphic groups of side-blotched lizards [7], microbial laboratory communities [8].

In recent years, fractional calculus has attracted much attention from researchers [9–14].
The fractional derivative at time t is not defined locally and depends on the total effects
of the classical integer-order derivatives on the interval [0, t], so it can be used to describe
the variation of a system in which the instantaneous change rate depends on the past
state, which is called the memory effect in a visualized manner [15–17]. We refer to [18–23]
for some interpretations of physical and biological significance of fractional operators by
supplying specific examples. Nowadays, many dynamical systems with integer order
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have been extended to the fractional-order systems. This extension allows us to explore
and obtain some new behaviors. From the mathematical viewpoint, many researchers
consider the influence of fractional derivatives on dynamic behavior [24–26]. In [27,28],
the authors discuss that the chaos in integer-order systems disappears in their fractional-
order counterparts with sufficiently small values of fractional order. In [29], the authors
extend the classical model of the prey–predator model to a new model based on the Caputo
fractional derivatives and propose that the new model is very sensitive to varying the
fractional order. Reference [30] considers a three-dimensional fractional-order slow–fast
prey–predator model and reveals that the fractional-order exponent has an impact on the
stability and the existence of Hopf bifurcations in this model.

In this paper, we consider a fractional-order antisymmetric Lotka–Volterra system
composed of three species

0Dα
t xi(t) = xi(Ax)i, i = 1, 2, 3, (1)

with the initial value
x(0) = b, (2)

where 0Dα
t is the Caputo fractional derivative with α ∈ (0, 1], A = (aij)3×3 is an anti-

symmetric matrix (aij = −aji), x = (x1, x2, x3)
T and b = (b1, b2, b3)

T. Considering the
practical significance, we always assume that bi > 0, i = 1, 2, 3. We assume that three
species dominate each other according to the popular rock–paper–scissors game rules,
as illustrated in Figure 1; that is, a12, a23, a31 > 0, which means that each predator has an
effective predation probability.

The model is an extension of the classical antisymmetric Lotka–Volterra model to a
fractional order, but there are essential differences between α = 1 and 0 < α < 1 on the
dynamical behavior. Our aim is to characterize the influences of the order of derivative on
antisymmetric Lotka–Volterra systems (1).

We first prove that for any α ∈ (0, 1], ∑3
i=1 xi(t) is a conserved quantity, and all xi stays

away from zero for all times. Note that in the context of population dynamics, this means
that the total number of individuals for all species is conserved and all species coexist
independently of the predatory efficiency. We further analyze the influences of the order of
derivative on the stability of the system (1). The results show that all solutions of the first-
order system are periodic, while the 0 < α < 1-order system has no non-trivial periodic
solution. Furthermore, for any choice of a12, a23, a31 > 0, all solutions of the 0 < α < 1-order
system starting near equilibrium points go towards a unique equilibrium point on the
plane depending on ∑3

i=1 bi, regardless of how close to zero the order of the derivative
used is. This means that in this model if the equilibrium state is slightly disturbed, as long
as the total number of species remains unchanged, it will always return to the original
equilibrium state after a long time. This may reflect the memory of the fractional-order
system. Finally, we give some numerical simulations.

The paper is organized as follows. In Section 2, some basic concepts and preliminary
results are presented. In Section 3, the conclusions of the boundedness of solutions are
given. In Section 4, the influences of the order of derivative on stability are characterized.
Some numerical simulations are provided in Section 5. Section 6 gives the conclusions.

Figure 1. Illustration of the predation interaction rules among species in the rock–paper–scissors
model. Arrows from j to i indicate aij > 0, i.e., species i preys on species j in a predator–prey relationship.
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2. Preliminaries

This section includes some basic preliminaries. We review some definitions and
preliminary results that will be required for our theorems.

Definition 1 ([16]). The Riemann–Liouville fractional integral 0 Iα
t f of order α > 0 is defined by

(0 Iα
t f )(t) :=

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, t > 0,

where Γ(α) is the Gamma function.
The Riemann–Liouville fractional derivative RL

0 Dα
t y of order α > 0 is defined by

(
RL

0 Dα
t y
)
(t) :=

(
d
dt

)n(
0 In−α

t y
)
(t), n = [α] + 1,

where [α] means the integer part of α.

Definition 2 ([16]). The Caputo fractional derivative 0Dα
t y of order α > 0 is defined by

(0Dα
t y)(t) :=

(
RL

0 Dα
s

[
y(s)−

n−1

∑
k=0

y(k)(0)
k!

sk

])
(t),

where
n = [α] + 1 for α /∈ N0; n = α for α ∈ N0.

Lemma 1 ([16]). Let 0 ≤ α ≤ 1. If y(t) is an absolutely continuous function on [0, c] (c ∈ R+),
then the Caputo fractional derivative (0Dα

t y)(t) exists almost everywhere on [0, c].

(a) If 0 < α < 1, (0Dα
t y)(t) is represented by

(0Dα
t y)(t) =

1
Γ(1− α)

∫ t

0

y′(t)
(t− s)α

ds.

(b) If α = 1, (0Dα
t y)(t) = y′(t).

Definition 3 ([16]). The Mittag–Leffler function is defined as

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C.

Lemma 2 ([16]). The solution to the problem

0Dα
t u(t)− λu(t) = 0, u(0) = c

with 0 < α < 1 and λ, c ∈ R has the form

u(t) = cEα(λtα).

Lemma 3. Assume that 0 < α < 1 and f : [0,+∞)→ R+ is continuously differentiable. Then

0Dα
t ln f (t) ≥ 0Dα

t f (t)
f (t)

, t > 0.

Proof. According to Definition 2, we only need to show that

0Dα
t f (t)− f (t) 0Dα

t ln f (t) =
∫ t

0
(t− s)−α

[
f ′(s)− f (t) f ′(s)

f (s)

]
ds ≤ 0, t > 0. (3)
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By the integration-by-part formula, we conclude that∫ t

0
(t− s)−α

[
f ′(s)− f (t) f ′(s)

f (s)

]
ds

=
∫ t

0
(t− s)−α d

ds

[
f (s)− f (t)− f (t) ln

f (s)
f (t)

]
ds

= lim
s→t

f (s)− f (t)− f (t) ln f (s)
f (t)

(t− s)α
− t−α

(
f (0)− f (t)− f (t) ln

f (0)
f (t)

)
− α

∫ t

0

(
f (s)− f (t)− f (t) ln

f (s)
f (t)

)
(t− s)−α−1ds.

(4)

First, by L’Hôpital’s rule, we can obtain the first term on the right side of Equation (4)
equal to

lim
s→t

f ′(s)− f (t) f ′(s)
f (s)

α(t− s)α−1 = 0. (5)

Next, we estimate the other two items. It is understood that

ξ − ln ξ − 1 ≥ 0, ∀ ξ ∈ R+.

Then, for any fixed t and τ, we have

f (τ)− f (t)− f (t) ln
f (τ)
f (t)

≥ 0.

Therefore, we have that the second term on the right side of Equation (4) is non-positive
when τ = 0. For any s ∈ (0, t), f (s) − f (t) − f (t) ln f (s)

f (t) ≥ 0, which shows that the
last integral item of Equation (4) is non-positive. Therefore, (4) is non-positive; that is,
(3) holds.

Lemma 4 (Fractional Comparison Principle [16]). Let 0Dα
t x(t) ≤ 0Dα

t y(t) and x(0) = y(0),
where 0 < α < 1. Then x(t) ≤ y(t).

Lemma 5. Let L(x) be a differentiable function defined on an open set U containing x∗ in Rn.
Suppose that L(x∗) = 0 and L(x) > 0 if x 6= x∗. Then, if c > 0 is small enough, each connected
component of L(x) = c is a closed surface surrounding x∗.

Proof. Let δ > 0 be small enough that a closed ball centering at x∗ of radius δ lies entirely
in U, that is,

Bδ(x∗) = {x ∈ Rn | ‖x− x∗‖ ≤ δ} ⊂ U.

The boundary of Bδ(x∗) is the sphere Sδ(x∗) of radius δ and center x∗, i.e.,

Sδ(x∗) := {x ∈ Bδ(x∗) | ‖x− x∗‖ = δ}.

By the compactness of Sδ(x∗) and the continuity of L, there is a minimum x∗ ∈ S∗δ of L
restricted on the sphere. Let γ be the minimum value of L on the sphere S∗δ , i.e.,

γ = min
x∈Sδ(x∗)

L(x) = L(x∗).

For any 0 < c < γ, let
Wc = {x ∈ U | L(x) = c} ⊆ Bδ(x∗).

For any continuous curve ξ ⊆ Bδ(x∗) connecting x∗ and any point on Sδ(x∗), there
exists at least one point z ∈ ξ satisfying L(ξ) = c by the intermediate value theorem of the
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continuous function L|ξ and L(x∗) = 0. Then no curve starting from x∗ to Sδ(x∗) meets the
set Wc. Hence, each connected component of Wc is a closed surface. This proves that Wc is
a closed surface or a family of closed surfaces surrounding x∗.

Lemma 6 ([31]). Let n > 0, r > 0, ϕ ∈ [−π, π] and λ = r exp(iϕ). Denote y(t) := En(−λtn).
Then,

(a) lim
x→∞

y(t) = 0 if |ϕ| < nπ/2,

(b) y(t) is unbounded as x → ∞ if |ϕ| > nπ/2.

Let 0 < α < 1. The homogeneous linear system is given by

0Dα
t x(t) = Bx(t), x(t) ∈ Rn (6)

with x(0) = b, where B is an n× n real matrix. The nonlinear system is given by

0Dα
t x(t) = f (x(t)), x(t) ∈ Rn (7)

with x(0) = b, where f (x) is continuous.

Definition 4 ([32]). The system (6) is said to be asymptotically stable if lim
t→+∞

‖x(t)‖ = 0.

Definition 5 ([32]). The point e is an equilibrium point of system (7) if and only if f (e) = 0.

Definition 6 ([32]). Suppose that e is an equilibrium point of system (7) and D f (e) is linearized
matrix of f at e. If all the eigenvalues λ of D f (e) satisfy |λ| 6= 0 and | arg(λ)| 6= πα

2 , then we call
e a hyperbolic equilibrium point.

Lemma 7 ([32]). If e is a hyperbolic equilibrium point of (7), then vector field f (x) is topologically
equivalent with its linearization vector field D f (e)x in the neighborhood of e.

3. Boundedness Results

In this section, we will find the significantly common property between the first-order
and the 0 < 1 < α-order system (1). The boundedness is independent of the order of
derivative. For any choice of a12, a23, a31 > 0, all solutions of the systems are bounded for
all time, and the lower bound is away from zero for each solution.

Lemma 8. For arbitrary solutions x = (x1, x2, x3)
T of system (1) with initial value (2), H(x) :=

3
∑

i=1
xi

is a conserved quantity.

Proof. From the antisymmetry of A, it can be obtained that x satisfies

0Dα
t

(
3

∑
i=1

xi(t)

)
=

3

∑
i=1

0Dα
t xi(t) =

3

∑
i=1

xi(Ax)i = 0, ∀ t > 0. (8)

If 0 < α < 1, from Lemma 2, we have

3

∑
i=1

xi(t) =
3

∑
i=1

xi(0) for t > 0. (9)

If α = 1, it is clear that (8) implies (9). The proof is complete.



Fractal Fract. 2023, 7, 360 6 of 14

We next show that xi(t) remains bounded away from 0. By calculating the Ar = 0, we
can obtain the kernel of A is

ker(A) = {r ∈ R3 | r = s(a23, a31, a12)
T, s ∈ R}.

By assumption a12, a23, a31 > 0, we have ker(A) 6= ∅. On the domain R3
+, we define

a function

V(z) =
3

∑
i=1

(
zi − yi − yi ln

zi
yi

)
(10)

for one fixed y ∈ ker(A) with y = (y1, y2, y3)
T > 0.

Lemma 9. For any solution x(t) = (x1(t), x2(t), x3(t))T of the system (1) with initial value (2),
V(x) has the following properties along x(t).

(i) If α = 1, V(x(t)) ≡ V(b) for all t > 0.
(ii) If 0 < α < 1, V(x(t)) ≤ V(b) for all t > 0.

Proof. For case (i), considering the time derivative of V(x(t)) and employing Equation (1)
yields

d
dt

(
3

∑
i=1

(
xi(t)− yi − yi ln

xi(t)
yi

))

=
d
dt

(
3

∑
i=1

xi(t)

)
−

3

∑
i=1

(
yi

xi(t)
dxi(t)

dt

)

=
d
dt

(
3

∑
i=1

xi(t)

)
−

3

∑
i=1

yi(Ax(t))i.

(11)

From Lemma 8, d
dt

3
∑

i=1
xi(t) = 0. According to the antisymmetry of A and y ∈ ker(A),

we have

−
3

∑
i=1

yi(Ax)i =
3

∑
i=1

xi(Ay)i = 0, ∀x ∈ R3
+.

Then (11) implies d
dt V(x(t)) = 0. Therefore, case (i) holds.

For case (ii), we consider the Caputo fractional derivative of V(x(t)). By (8) and
Lemma 3, we deduce that

0Dα
t V(x(t)) =0Dα

t

(
3

∑
i=1

xi

)
− 0Dα

t

(
∑

i
yi ln xi

)
=−∑

i
yi 0Dα

t (ln xi(t))

≤−∑
i

yi
0Dα

t (xi(t))
xi(t)

=−
3

∑
i=1

yi(Ax)i.

(12)

Then, using the antisymmetry of A and definition of y, we have

−
3

∑
i=1

yi(Ax)i =
3

∑
i=1

xi(Ay)i = 0.

Therefore, (12) leads to
0Dα

t V(x(t)) ≤ 0, ∀ t > 0. (13)
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Let y(t) ≡ V(x(0)), ∀ t > 0. Then, by Definition 2, we have 0Dα
t y(t) = 0. Therefore,

combining (13) with the Fractional Comparison Principle (Lemma 4), we can obtain

V(x(t)) ≤ V(x(0)) for all t > 0. (14)

Case (ii) is complete.

Corollary 1. For 0 < α < 1, for any solution x(t) = (x1(t), x2(t), x3(t))T of the system (1) with
initial value (2), if b /∈ ker(A), then V(x(t)) < V(b) for all t > 0.

Proof. For x(0) = b /∈ ker(A), we can obtain x(t) 6≡ x(0). Then, by the proof of Lemma 3,
we have Dα

t (ln xi(t)) 6=
Dα

t (xi(t))
xi(t)

. Therefore, combining (12), we can derive from (13) that

0Dα
t V(x(t)) < 0 for t > 0, which implies V(x(t)) < V(x(0)) for all t > 0.

Theorem 1. For arbitrary solutions x = (x1, x2, x3)
T of the system (1) with initial value (2), there

exist constants δ, η > 0 such that

δ ≤ xi(t) ≤ η, ∀ t > 0, i = 1, 2, 3. (15)

Proof. By Lemma 8, the existence of η is clear. Next, we will show the existence of δ.
On the contrary, if there is no δ > 0 such that δ ≤ xi(t) for all t > 0 and i = 1, 2, 3, then

there exists sequence {tn} with tn → ∞ as n→ ∞ satifying

lim
n→∞

xi(tn) = 0 for some i ∈ {1, 2, 3}.

Then, lim
n→∞

ln xi(tn) = −∞ and lim
n→∞

V(x(tn)) = +∞ by (10). This is contradictory with

V(x(t)) ≤ V(b) = const. by Lemma 9. Therefore, the assumption is false; that is, there
exists δ > 0 satisfying (15). The proof is complete.

4. Stability Results

In this section, we will characterize the effects of order α on the stability of the sys-
tems (1) by analyzing the long-time dynamical behaviors of first-order and 0 < α < 1-order
systems, respectively.

We will use the conserved quantity H(x), defined in Lemma 8, to reduce the system (1),
so that the dynamics of the original system can be limited to the two-dimensional space.
For any constant c > 0, denote an open and bounded plane in R3

+ as

Sc :=
{

v ∈ R3
+

∣∣v = (v1, v2, v3)
T,

3

∑
i=1

vi = c
}

.

By Lemma 8, the solution to the system (1) with initial value b = (b1, b2, b3) ∈ R3
+ contained

in the plane SH(b). For convenience, we reduce the system (1) on the plane S1. Consider the
reduced system {

0Dα
t x1 = (a12x2 + a13(1− x1 − x2))x1 := f1(x1, x2)

0Dα
t x2 = (−a12x1 + a23(1− x1 − x2))x2 := f2(x1, x2)

(16)

on the domain Z = {x ∈ R2
+ | x = (x1, x2)

T, x1 + x2 < 1}.

Lemma 10. If α = 1, the system (16) has a unique equilibrium point, and all the solution curves
are closed and around the equilibrium point on Z.
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Proof. By assumption a12, a23, a31 > 0, the two-dimensional system (16) has a unique
equilibrium point

p = (p1, p2) =
( a23

a23 + a31 + a12
,

a31

a23 + a31 + a12

)
.

Note that the function V restricted on the plane S can be rewritten as

Ṽ(w) := −p1 ln
w1

p1
− p2 ln

w2

p2
− (1− p1 − p2) ln

1− w1 − w2

1− p1 − p2
.

In addition, Ṽ is differentiable on domain Z. By simple calculation, we can find that
Ṽ satisfies

(a) Ṽ(z) > 0 if z ∈ Z\{p} and Ṽ(p) = 0,
(b) Ṽ(z)→ +∞ as z goes to the boundary of domain Z.

For any x0 ∈ Z, there is a unique solution x(t) = (x1(t), x2(t)) to the system (16) with
x(0) = x0 in domain Z. First, we claim that the level set

Wx0 = {x ∈ Z | Ṽ(x) = Ṽ(x0)}

is actually the orbit x(t) and prove it with two steps.
Step 1. By Theorem 1, there are 0 < δ < η < 1 such that δ < x1(t), x2(t) < η for all

t > 0. We define a domain

Zδ,η =
{

x = (x1, x2) ∈ Z | δ < x1, x2 < η, x1 + x2 < max{1− δ, η}
}

.

Take the minimum value γδ,η of Ṽ on the boundary of domain Zδ,η . According to property
(b), we can choose δ > 0 sufficiently small and η < 1 sufficiently close to 1 such that
γδ,η > Ṽ(x0). Then Wx0 is a family of closed curves around p by Lemma 5.

Step 2. Connect the origin and p with the segment ξ(t) = t(p1, p2), t ∈ [0, 1]. For any
t ∈ (0, 1], by direct calculation, we obtain

d
dt

Ṽ(ξ(t)) < 0.

This means that the function Ṽ is monotonic along the segment ξ from p to the origin.
Hence, segment ξ meets the set Wx0 only one time. In conclusion, Wx0 is one closed curve;
that is, the solution curve starting from x0 is a closed curve. The claim is proved.

By the arbitrariness of the initial value x0 ∈ Z, all the solution curves of the system (16)
are closed curves around the equilibrium point. The proof is complete.

In the following, we describe the entire behavior of the first-order antisymmetric
Lotka–Volterra system (1).

Theorem 2. If α = 1, all solutions of the systems (1) are periodic. Moreover, any solution curve is
around the unique equilibrium point on one plane parallel with S1.

Proof. For any initial value b ∈ R3
+, there is a plane SH(b). By Lemma 8, the solution to the

system (1) with initial value b is on the plane SH(b). By Lemma 10, the solution curve is
closed and around the unique equilibrium point on SH(b). By the arbitrariness of the initial
value b, all solutions of the system (1) are periodic. The proof is complete.

We point out that the behaviors of the fractional system are entirely different from the
first-order antisymmetric Lotka–Volterra around the equilibrium point.

Lemma 11. If 0 < α < 1, the system (16) is locally asymptotically stable on Z.
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Proof. According to Definition 5, p = ( a23
a23+a31+a12

, a31
a23+a31+a12

)T is the only equilibrium
point on Z. The linearization matrix of the vector field f (x) = ( f1(x1, x2), f2(x1, x2))

T at
point p is given by

D f (p) =
(

a31 p1 (a12 + a31)p1
(−a12 − a23)p2 −a23 p2

)
.

The eigenvalues of D f (p) are λ1, λ2 = ±
√

a12a31a23
a12+a31+a23

i. From Lemma 6, p is a hyperbolic

equilibrium point. According to Lemma 7, the vector field f (x) is topologically equivalent
to its linearization vector field D f (p)x in the neighborhood of p. Therefore, it is sufficient
to consider the homogeneous linear system

0Dα
t ε(t) = Jp ε(t), (17)

where Jp = D f (p) and ε = (ε1, ε2)
T. Denote Λ = diag{λ1, λ2}. Then there exists a matrix

Q such that Jp = QΛQ−1, which implies

0Dα
t ε = (QΛQ−1)ε,

and
0Dα

t (Q
−1ε) = Λ(Q−1ε).

Let z = (z1, z2)
T = Q−1ε. Then

0Dα
t zi = λizi, i = 1, 2. (18)

By Lemma 2, the solutions of the equations (18) are given by the Mittag–Leffler function

zi(t) = Eα(λitα)zi(0), i = 1, 2.

Since |arg(λi)| = π
2 > α π

2 , we can derive lim
t→∞

zi(t) = 0 by Lemma 6, and then lim
t→∞

εi(t) = 0.

From Definition 4, the system (17) is asymptotically stable, which implies system (16) is
locally asymptotically stable in the neighborhood of the equilibrium point p by Lemma 7.
The proof is complete.

Theorem 3. If 0 < α < 1, the system (1) has no non-trivial periodic solution and the solution goes
towards a unique equilibrium point on the plane SH(b) provided the initial value b closed to ker(A).

Proof. From Lemma 9 and Corollary 1, if the initial value b /∈ ker(A), then

V(x(T)) 6= V(x(0)) for any T > 0

along the solution x(t) of the system (16) starting from b. If the initial value b ∈ ker(A),
then b is the unique equilibrium point on SH(b). Hence, the system (1) has no periodic
solution except the equilibrium points.

For any b, restrict the system (1) on the plane SH(b). By Lemma 11, the reduced system
has a locally asymptotically stable equilibrium point on SH(b). The proof is complete.

Remark 1. The equilibrium points are degenerated and set up the ray from the origin to infinity in
R3
+. Since the quality H(x) is conserved along the solution of system (1), any solution is towards

the line on the plane SH(b), which is determined by the initial value near the line. Therefore, there
are local asymptotic behaviors. However, it is not a strictly asymptotically stable phenomenon.
Furthermore, we find that there are solutions spiraling towards the ray for some α ∈ (0, 1) and
the initial value b by numerical simulation. In Section 5, we give descriptions of this phenomenon
in detail.
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5. Numerical Simulations

Consider a system 
Dα

t x1 = (x2 − x3)x1

Dα
t x2 = (−x1 + x3)x2

Dα
t x3 = (x1 − x2)x3,

(19)

with the initial value x(0) = (0.35, 0.35, 0.3)T, where the Dα
t is the Caputo fractional

derivative with α ∈ (0, 1], A =

 0 1 −1
−1 0 1
1 −1 0

. By Lemma 8,
3
∑

i=1
xi ≡ 1; then, the

solution to the system (19) with initial value x(0) contained in the plane

S1 :=
{

v ∈ R3
+

∣∣v = (v1, v2, v3)
T,

3

∑
i=1

vi = 1
}

.

Direct calculations yield that the equilibrium points are{
r ∈ R3 | r = (s, s, s)T, s ∈ R

}
and p = ( 1

3 , 1
3 , 1

3 )
T is a unique equilibrium point on plane S1. For α = 1, any solution curve

is closed and around p on S1 by Theorem 2. For 0 < α < 1, the solution goes towards p on
the plane S1 by Theorem 3.

Next, using Matlab, based on the fractional Adams–Bashforth–Moulton Method (see
Appendix C of [31]), numerical simulations are provided to substantiate the theoretical
results established in the previous sections of this paper. Next we will monitor the effect of
varying order α on the dynamical behavior of the model.

Take the time step as 0.01 and draw the change curve of x with time t in the system (19).
Simulations are then run with varying values of α and initial values as in Figures 2–7,
where the grid-like plane is SH(b) and u1 = (2, 3, 5)T, u2 = (4, 3, 3)T, u3 = (2, 4, 4)T,
v1 = (0.5, 0.5, 0.3)T, v2 = (1, 0.5, 0.3)T, v3 = (1, 2, 0.3)T.

We have the following conclusions.

(i) By Figures 2–5, all xi(t) have a positive below bound, and all solution curves are on
the plane S1 for all times, no matter what α.

(ii) By Figures 6, all solution curves are on one plane if the totals of xi(0) are same, no
matter what α.

(iii) By Figures 6a and 7a, all solution curves of the first-order system (19) are closed curves
and around the equilibrium point.

(iv) By Figures 7b, all solution curves of the 0.95-order system (19) go towards the equilib-
rium point.

The numerical simulation results show that the order does not affect the boundedness
but affects the stability.

In addition, an interesting asymptotic behavior can be seen from the Figures 2–5, 6b and 7b.
To be specific, the equilibrium points set up the ray from the origin to infinity in R3

+, and
any solution is towards the line on the plane, which is determined by the initial value near
the line. Furthermore, there are solutions spiraling towards the ray for some α ∈ (0, 1).
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Figure 2. Simulations of system (19) for α = 1 with initial value b = (0.35, 0.35, 0.3).

Figure 3. Simulations of system (19) for α = 0.95 with initial value b = (0.35, 0.35, 0.3).

Figure 4. Simulations of system (19) for α = 0.7 with initial value b = (0.35, 0.35, 0.3).
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Figure 5. Simulations of system (19) for α = 0.5 with initial value b = (0.35, 0.35, 0.3).

(a) α = 1 (b) α = 0.9

Figure 6. Simulations of system (19) for α = 1 and α = 0.9 with initial values u1, u2 and u3 separately.

(a) α = 1 (b) α = 0.95

Figure 7. Simulations of system (19) for α = 1 and α = 0.95 with initial values v1, v2 and v3 separately
(where the rays from the origin are degenerate equilibrium points of system (19)).

6. Conclusions

Since biological systems have memory properties, fractional differential equations
provide an excellent tool in this respect. Thus, this paper studied a class of fractional
antisymmetric Lotka–Volterra equations composed of three species under the rock–paper–
scissors game rules. The first-order and 0 < α < 1-order antisymmetric Lotka–Volterra
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systems are studied separately. The results show that the order does not affect the bound-
edness but affects the stability:

(1) For any α ∈ (0, 1],
3
∑

i=1
xi(t) =

3
∑

i=1
xi(0) for all times t > 0, and all xi bounded away

from zero for all times for any choice of a12, a23, a31 > 0. In the context of population
dynamics, this means that the total number of individuals for all species is conserved
and all species coexist independently of the predatory efficiency.

(2) All the solutions of the first-order system are periodic. However, the 0 < α < 1-
order system can be reduced on a two-dimensional space and the reduced system is
asymptotically stable, regardless of how close to zero the order of the derivative used
is. This implies that if the equilibrium state is slightly disturbed, as long as the total
number of species remains unchanged, it will always return to the original equilibrium
state after a long time. This may reflect the memory of the fractional-order system.
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