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Abstract: This study shows the design of the novel hyperbolic tangent sigmoid function for the
numerical treatment of the Williamson nanofluid model (WNM), which is categorized as velocity,
concentration, and temperature. A process of a deep neural network using fifteen and thirty neurons
is presented to solve the model. The hyperbolic tangent sigmoid transfer function is used in the
process of both hidden layers. The optimization is performed through the Bayesian regularization
approach (BRA) to solve the WNM. A targeted dataset through the Adam scheme is achieved that is
further accomplished using the procedure of training, testing, and verification with ratios of 0.15, 0.13,
and 0.72. The correctness of the deep neural network along with the BRA is performed through the
overlapping of the solutions. The small calculated absolute error values also enhance the accurateness
of the designed procedure. Moreover, the statistical observations are authenticated to reduce the
mean square error for the nonlinear WNM.

Keywords: Williamson nanofluid model; layers; fluid dynamics; chemical reactions; numerical
solutions

1. Introduction

Metal oxides or metal generally represent the nanoparticles (NPs), which show an
outstanding constancy in the surface area. NPs represent the competence of the ther-
mophysical phenomenon and heat transport (HT). The form, shape, and different NPs
designate HT effects. There are various applications of non-Newtonian fluid (NNF) that
have been studied in recent years with the impacts of thermal radiation and chemical reac-
tions [1]. The classification of NNF is presented in two steps, dependent and independent
of time. The Williamson nanofluid (WNF) is a well-known form of NNF, which comprises
pseudo-plastic topographies [2,3]. Krishnamurthy et al. [4] proposed the chemical and heat
properties by applying the WNF with a porous medium. Hayat et al. [5] proposed an HT
system with WNF features. Waqas et al. [6] explored the thermophoresis performance with
Brownian diffusion along with thermal radiation impacts. Bhatti et al. [7] studied radiant
heat conduct by applying NNPs. Goud et al. [8] performed different simulations based
on the radiation of magnetohydrodynamics. Pramod et al. [9] discussed the Soret impacts
with a porous portable plate.

The WNF has a variety of applications such as blood circulation, plasma mechanics,
and ice cream and crude oil processing. WNF conduction represents the pseudoplastic
fluid. The diffusivity ratio and Lewis number have enormous implementations using the
process of HT. Heat transfer along with the effects of the WNF pass over the peristaltic
pumping, and the stretching medium has been examined by Sreenadh et al. [10]. S. Prasad
et al. [11] provided a free WNF convection using the inclined channel with a relevant
pattern of the magnetic field. Ayub et al. [12,13] discussed the heat/mass transport using
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the magnetized orthogonal/inclined magnetic field with the spinning disk. HT impacts and
WNF, together with boundary layer construction, were studied by Nadeem et al. [14]. They
proposed that by improving the parametric Williamson form, the amount of skin friction
was reduced. Venkataramanaiah et al. [15] discussed the heat/mass transfer and the MHD
effects using the WNF. They proposed that the flux of mass/heat transfer improves to
upgrade the Williamson parameter. The inertial features with the microstructure using the
magnetite ferrofluid of thermal conductivity kind of operative system is studied in Ref. [16].
The transfer of heat in with non-magnetic and magnetic NPs is reported in Ref. [17]. The
morphological nanolayer effects on the hybrid nanofluids’ flow are discussed by Qureshi
et al. [18]. The mono/hybrid nanofluids dynamics, subject to magnetic field, activation
energy, and a binary chemical reaction using the porous surfaces, is presented by Raza
et al. [19]. The heat transfer deterioration of supercritical water flowing in a vertical tube
through the suspension of alumina nanoparticles is discussed by Khan et al. [20]. Coriolis
force effects on the dynamics of an MHD rotating fluid are presented by Lou et al. [21]. The
hyperbolic nanofluid flow of irregular thickness across a slender elastic surface is presented
by Ashraf et al. [22]. The Lorentz and buoyancy forces’ importance on bioconvection flow
dynamics is discussed by Ali et al. [23]. Furthermore, a few related studies using the
mass/heat transfer are discussed in Refs. [24–26].

The current study represents the numerical performances of the Williamson nanofluid
model (WNM) using the novel hyperbolic tangent sigmoid function. These investiga-
tions of the WNF model by using the designated stochastic procedure have never been
implemented. In this study, the idea to exploit the hyperbolic tangent sigmoid function is
presented for the first time to solve the WNM. The WNM is classified into two velocities,
concentration and temperature. A targeted dataset through the Adam scheme is achieved
that is further accomplished using the procedure of training, testing, and verification with
ratios 0.15, 0.13, and 0.72. Fifteen and thirty neurons have been used in layer one and
two. Recently, the stochastic process using the neural networks were explored in several
submissions, e.g., the dengue fever model [27], the thermal explosion theory [28], the food
chain model [29], and the HIV model [30]. Some novel topographies of current research are
itemized as:

1. A learning deep neural network process is presented for the first time for the numerical
solutions of the WNF system.

2. A process of deep neural network using the amounts of fifteen and thirty neurons is
presented for solving the model.

3. The hyperbolic tangent sigmoid transfer function is used in the hidden layers.
4. A Bayesian regularization for the optimization procedure is presented for solving the

WNF system.
5. A targeted dataset through the Adam scheme is achieved that is further accomplished

based on training, testing, and verification with ratios of 0.15, 0.13, and 0.72.
6. The accuracy of the scheme is pragmatic through the comparison of the solutions,

whereas the negligible absolute error (AE) enhances the correctness of the technique.

The fluid model is presented into three classes, dimensionless stream, concentration,
and temperature [31], while the parameter performances for the WNF are given in Table 1.
The mathematical form of the WNF is shown as:

(
λ1

d2 f
dv2 + 1

)
d3 f
dv3 −

d f
dv

(
d f
dv + M sin2 ρ

)
= 0,

1
Pr

d2θ
dv2 + f dθ

dv + Nt
(

dθ
dv

)2
+ Nb dθ

dv
dφ
dv = 0,

d2φ

dv2 + Nt
Nb

d2θ
dv2 + Le

(
f dφ

dv

)
= 0.

(1)

The boundary conditions (BCs) of the above model are given as [29–34]:

f (0) = 0, φ(0) = 1,
dθ(0)

du
= −Bi(1− θ(0)),

d f (1)
du

= 0,
d f (0)

du
= 1, θ(1) = 0, and φ(1) = 0.
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Table 1. Parameter performances for the WNF.

Parameters Description

Nt Thermophoresis parameter
M Magnetic parameter
Bi Biot number
ρ Inclination angle

λ1 Williamson parameter
Le Lewis number
Pr Prandtl number
Nb Parameter of Brownian motion
v Input

The remaining sections are presented as follows. The deep neural network procedure
for the WNF system is shown in Section 2. Detailed results of the model using the stochastic
procedure are presented in Section 3, while the conclusions are reported in Section 4.

2. Methodology

The deep neural networking for solving the fluid model is presented with the necessary
deep neural network process along with the execution performances.

2.1. Deep Neural Network Process

The current section presents the layers structure based on the amounts of fifteen and
thirteen neurons in layers 1 and 2. A transfer hyperbolic tangent sigmoid function is
applied as an activation function to solve the WNF model. A three-layer structure with a
feed-forward neural network is mathematically shown as:

u1
u2
u3
.
.
.

u15


= 4





w1,1
w1,2
w1,3

.

.

.
w1,15


[v] +



b1,1
b1,2
b1,3

.

.

.
b1,15




, (2)



s1
s2
s3
.
.
.

s30


= δ





ψ1,1 ψ2,1 ψ3,1 . . . ψ15,1
ψ1,2 ψ2,2 ψ3,2 . . . ψ15,2
ψ1,3 ψ2,3 ψ3,3 . . . ψ15,3

. . . . . . .

. . . . . . .

. . . . . . .
ψ1,30 ψ2,30 ψ3,30 . . . ψ15,30





u1
u2
u3
.
.
.

u15


+



b2,1
b2,2
b2,3

.

.

.
b2,30




, (3)

 f (v)
θ(v)
φ(v)

 = ∆


ω1,1 ω2,1 ω3,1 . . . ω30,1

ω1,2 ω2,2 ω3,2 . . . ω30,2
ω1,3 ω2,3 ω3,3 . . . ω30,3




s1
s2
s3
.
.
.

s30


+

b3,1
b3,2
b3,3




. (4)

In the above equations, w, ψ and ω represent the first, second, and output layer
weights, respectively; b is neuron bias, u and s are the first- and second-layer outputs,
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f (v), θ(v) and φ(v) are the obtained outputs, and ∆ is the activation function based on the
hyperbolic tangent sigmoid function, given as:

∆ =
2

1 + e(−2q)
− 1, where q =

m

∑
i=1

(wisi) + b, (5)

The numbers of neurons are represented by m. Figure 1 shows the three-step structure,
mathematical system, multi-layer neural network, and achieved performances for solving
the WNF system. A targeted dataset through the Adam scheme is achieved that is further
accomplished using the training, testing, and verification by taking 0.15, 0.13, and 0.72.
Figure 2 shows the neural network multi-layer process for solving the WNF system using
the deep neural network procedure. In this figure, in the hidden layers 1 and 2, fifteen and
twenty neurons have been used, while three outputs have been presented.
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Figure 2. Multilayer procedure for solving the WNF using the deep neural network.

Figure 3 shows the deep neural network and hidden layer structure for solving the
WNF system. Figure 3a shows the layer structure based on a single input, hidden layers,
and the hyperbolic tangent sigmoid function with 3 outputs. This figure is performed on
the basis of case 1 of the model, which shows that the maximum 750 Epochs have been
used; time, performance, Mu values, and gradient are also presented. Figure 3b represents
the layers’ structure for solving the WNF nonlinear model. The input, two hidden and
output layers, has been presented in this figure. W shows the weight vectors, b is the bias,
and three outputs have been illustrated.
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2.2. Bayesian Regularization (BR)

Bayesian regularization (BR) is considered one of the robust and efficient back-propagation
net procedures, which is used to reduce or eliminate the lengthy process through cross-
validation. BR represents the mathematical performances, which shift a nonlinear regres-
sion process into a unique statistical model based on ridge regression. BR provides the
numerical performances of various modeling, e.g., robustness, model choice, authentication
size, and optimization of net construction.

3. Simulations and Results

The current section shows the detailed results for three cases of the WNF system using
the process of a deep neural network, mathematically given as:

Case 1: Consider Pr = 1
5 , M = 1

2 , ρ = π
6 , λ1 = 1

5 , Le = 1, Nb = 1
5 , Bi = 1

2 , and Nt = 1
2 ,

given as: 
(

1
5

d2 f
dv2 + 1

)
d3 f
dv3 −

d f
dv

(
d f
dv + 1

2 sin2 π
6

)
= 0,

5 d2θ
dv2 +

1
2

(
dθ
dv

)2
+ f dθ

dv + 1
5

dφ
dv

dθ
dv = 0,

d2φ

dv2 +
(

f dφ
dv

)
+ 5

2
d2θ
dv2 = 0.

(6)

Case 2: Consider Pr = 2, M = 1
2 , ρ = π

6 , λ1 = 1
5 , Le = 1, Nb = 1

5 , Bi = 1
2 , and Nt = 1

2 ,
given as: 

(
1
5

d2 f
dv2 + 1

)
d3 f
dv3 −

d f
dv

(
d f
dv + 1

2 sin2 π
6

)
= 0,

1
2

d2θ
dv2 +

1
2

(
dθ
dv

)2
+ f dθ

dv + 1
5

dφ
dv

dθ
dv = 0,

d2φ

dv2 +
(

f dφ
dv

)
+ 5

2
d2θ
dv2 = 0.

(7)

Case 3: Pr = 7, M = 1
2 , ρ = π

6 , λ1 = 1
5 , Le = 1, Nb = 1

5 , Bi = 1
2 , and Nt = 1

2 , given as:
(

1
5

d2 f
dv2 + 1

)
d3 f
dv3 −

d f
dv

(
d f
dv + 1

2 sin2 π
6

)
= 0,

1
7

d2θ
dv2 +

1
2

(
dθ
dv

)2
+ f dθ

dv + 1
5

dφ
dv

dθ
dv = 0,

d2φ

dv2 +
(

f dφ
dv

)
+ 5

2
d2θ
dv2 = 0.

(8)

The BCs of each case are f (0) = 0, d f (0)
du = 1, dθ(0)

du = − 1
2 (1− θ(0)), d f (1)

du = 0, φ(0) =
1, θ(1) = 0 and φ(1) = 0.

A process of a deep neural network with the hyperbolic tangent sigmoid transfer
function along with the optimization of BR is given for the numerical treatment of the
nonlinear model. The input values are selected as [0, 1], while the step size is 0.01. A
tangent hyperbolic sigmoid transfer function is used in both hidden layers with fifteen
and thirty neurons for solving the model. Figure 4 shows the transition of state (ToS) and
mean square error (MSE) using the nonlinear model. The maximum number of epochs
has been taken as 750. Figure 4 shows the MSE performances, which are calculated as
8.8997 × 10−0.7, 1.0091 × 10−0.63, and 1.1656 × 10−0.6 at epochs 93, 203, and 224. Figure 4
signifies the gradient measures, Mu values, sum squared performances, num parameter,
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and authentication checks. The gradient measures are illustrated in Figure 4, which are
given as 8.827 × 10−0.7, 1.7593 × 10−0.6, and 5.3555 × 10−0.5.
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square error (MSE) using the nonlinear model. The maximum number of epochs has been 
taken as 750. Figure 4 shows the MSE performances, which are calculated as 8.8997 × 10−0.7, 
1.0091 × 10−0.63, and 1.1656 × 10−0.6 at epochs 93, 203, and 224. Figure 4 signifies the gradient 
measures, Mu values, sum squared performances, num parameter, and authentication 
checks. The gradient measures are illustrated in Figure 4, which are given as 8.827 × 10−0.7, 
1.7593 × 10−0.6, and 5.3555 × 10−0.5. 
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Figures 5–7 are the function fitness (Func. Fit) for solving the nonlinear model using
the process of a deep neural network transfer function hyperbolic tangent sigmoid by using
the optimization procedures of BR. Figure 8 authenticates the values of the error histograms
(EHs) for solving the model and these values are calculated as−1.60× 10−0.5, 4.10× 10−0.4,
and −8.30 × 10−0.7. The performances of regression (Reg) for cases 1 to 3 are authenticated
in Figure 9 to solve the model using the process of a deep neural network, which are found
as 1 (perfect modelling). MSE values of train/test statics are presented in Table 2 for solving
the nonlinear model.
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Table 2. Proposed scheme for solving the nonlinear fluid model.

Case
MSE

Performance Gradient Epoch Time
Test Train

1 8.1633 × 10−0.7 3.8997 × 10−0.7 3.90 × 10−0.7 8.83 × 10−0.7 93 5 s
2 1.0091 × 10−0.6 3.8968 × 10−0.6 1.01 × 10−0.6 1.76 × 10−0.6 203 2 s
3 1.1656 × 10−0.6 3.6107 × 10−0.6 1.17 × 10−0.6 5.36 × 10−0.5 224 12 s

Figure 10 represents the results’ comparisons of outputs f (v), θ(v) and φ(v). The
results matching show the performances of the outcomes for each category of the nonlinear
fluid model, which shows the exactness of the nonlinear model.
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The values of AE using the performances f (v), θ(v) and φ(v) are shown in Table 3 for
the numerical solutions of the nonlinear WNF model 1 to 3. These performances have been
reported by taking the 0.1 step size in input 0 and 1. The negligible values of AE for the
parameters f (v), θ(v) and φ(v) are calculated around 10−04 to 10−07 for each class of the
model that represents the correctness of the scheme.

Table 3. AE for the parameters f (v), θ(v) and φ(v) of the model.

v 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f (v)

2 × 10−3 6 × 10−4 2 × 10−3 3 × 10−4 1 × 10−3 3 × 10−4 1 × 10−4 4 × 10−4 2 × 10−3 8 × 10−4 1 × 10−3

1 × 10−3 7 × 10−4 1 × 10−3 1 × 10−3 3 × 10−4 2 × 10−4 9 × 10−4 5 × 10−5 3 × 10−4 1 × 10−4 1 × 10−3

4 × 10−3 1 × 10−3 7 × 10−6 4 × 10−4 1 × 10−3 6 × 10−4 4 × 10−4 8 × 10−5 1 × 10−4 2 × 10−3 2 × 10−3

θ(v)

2 × 10−4 3 × 10−4 4 × 10−4 8 × 10−5 4 × 10−4 7 × 10−5 2 × 10−5 2 × 10−4 7 × 10−4 3 × 10−4 4 × 10−4

2 × 10−4 4 × 10−5 2 × 10−3 2 × 10−3 8 × 10−4 2 × 10−3 9 × 10−4 2 × 10−4 1 × 10−3 1 × 10−3 1 × 10−3

1 × 10−3 3 × 10−4 8 × 10−4 2 × 10−4 4 × 10−4 8 × 10−4 3 × 10−4 4 × 10−4 6 × 10−4 1 × 10−3 2 × 10−3

φ(v)

6 × 10−4 5 × 10−4 7 × 10−4 2 × 10−4 1 × 10−3 2 × 10−4 2 × 10−6 7 × 10−4 2 × 10−3 1 × 10−4 3 × 10−4

2 × 10−3 8 × 10−4 5 × 10−3 5 × 10−3 2 × 10−3 1 × 10−3 2 × 10−4 1 × 10−3 5 × 10−4 7 × 10−4 2 × 10−4

3 × 10−3 4 × 10−4 2 × 10−3 1 × 10−3 2 × 10−3 3 × 10−3 2 × 10−3 2 × 10−4 2 × 10−3 5 × 10−4 3 × 10−3

4. Concluding Remarks

The current study shows the design of the novel hyperbolic tangent sigmoid function
for the numerical treatment of the Williamson nanofluid model (WNM), which is classified
into two velocities, concentration and temperature. Some of the concluding remarks of this
work are as follows.
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A deep neural network procedure using fifteen and thirty neurons is presented through
the hyperbolic tangent sigmoid transfer function in the hidden layers.

1. The optimization is performed through the Bayesian regularization, while the hyper-
bolic tangent sigmoid transfer function in the hidden layers is used.

2. The numerical performances of the results have been proposed using the stochastic
computing schemes along with the process of a deep neural network and Bayesian
regularization.

3. A targeted dataset ‘Adam’ scheme is designed, which is further accomplished based
on the procedure of training, testing, and verification using the ratios of 0.15, 0.13,
and 0.72.

4. The correctness of the deep neural network along with BRA has been performed
through the overlapping of the solutions and small absolute error.

5. The capability of the procedure using the statistical observations is authenticated to
reduce the mean square error for the nonlinear WNM.

In future, the designed novel deep neural network along with BRA can be executed to
present the numerical solutions of various dynamical models [32–34].
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