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Abstract: We present in this paper a generalization of the fractional kinetic equation using the
generalized incomplete Wright hypergeometric function. The pathway-type transform technique
is then used to investigate the solutions to a fractional kinetic equation with specific fractional
transforms. Furthermore, exceptional cases of our outcomes are discussed and graphically illustrated
using MATLAB software. This work provides a thorough overview for further investigation into
these topics in order to gain a better understanding of their implications and applications.

Keywords: incomplete Wright hypergeometric functions; pathway-type transform; fractional
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1. Introduction

Fractional-order differential equations have fractional derivatives instead of integer
derivatives [1-5]. A kinetic equation is one of the essential kinds of fractional-order differen-
tial equations. Its importance is reflected in the fact that it has received increased attention
in electrodynamics, control systems, economics, hydrodynamics, physics, geophysics, and
mathematics. Furthermore, fractional-order kinetic (reaction-type) equations play a sig-
nificant role as tools of mathematics that are frequently employed to describe a variety of
physical and astrophysical phenomena (see [6—10]). For example, reaction-type (kinetic)
equations can explain how nuclei are created and destroyed during chemical (thermonu-
clear) processes. A formal representation of reactions characterized by a time-dependent
quantity E = E(¢) is given by the following Cauchy problem (see, for example, [11]):

dE
2z~ ) +p(E),

E(0) = Eo, 1)
where Ej is the initial data and ¢ and p are the destruction and production rate of E,
respectively. Furthermore, Haubold and Mathai studied a special case of this Cauchy
problem [11] given by

dE
— = —0E, 9 R,
dg
Equation (2) is known as the standard kinetic equation. They also gave a representation
in the form of a fractional equation as follows:

E(0) = E,. @)

E(C) —Ep = _190D§_1E(§)/ 1916 € R+r (3)
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where O]D)gv is the fractional integral operator [1] given by
@) = oo [ (@51 f(s)as, v € BF @
¢ I'(v) Jo ! ’

Many generalizations and solutions of the fractional-order kinetic equation have re-
cently been developed, utilizing a variety of fractional integral transforms including the
fractional Laplace transform [12-16], fractional Sumudu transform [17-19], Hadamard
fractional integrals [20-22], fractional pathway transform [23,24] and Prabhakar-type
operators [25], which have been extensively studied. In particular, Khan et al. [14] pre-
sented solutions for fractional kinetic equations associated with the (p,q)-extended t-
hypergeometric and confluent hypergeometric functions using the Laplace transform,
while Hidan et al. [15] discussed a technique for the Laplace transformation of solutions of
fractional kinetic equations involving extended (k, t)-Gauss hypergeometric matrix func-
tions. In addition, Abubakar [16] derived solutions for fractional kinetic equations using the
(p,q;1)-extended t-Gauss hypergeometric function. Gaining insight from the last recently
mentioned manuscripts, this paper provides an in-depth exploration of fractional kinetic
equations and their solutions by using the generalized incomplete Wright hypergeometric
function and pathway-type transform technique. We provide a comprehensive overview
that is sure to give researchers plenty to think about when it comes to implications and ap-
plications. Overall, this work should be regarded as required reading for anyone interested
in learning more about these themes.

2. Preliminaries

Here, we highlight a few concepts that would be helpful for future discussion.
The Gauss hypergeometric function given by

F(61,60,03;2z) = i (91()é(92)] 7
=0

will be convergent absolutely and uniformly under the condition |z| < 1. Here, 61, 65, and
63 are complex parameters with 63 € C\ Z; , and

(01 +7) _

)= “Fay

{ 61(0+1)--- (61 +j—1), jEN, 6 €C
= (6)

is known to be the Pochhammer symbol of 61, whereas I'(v) is the standard gamma function,
defined as

T(6) = /Om o le vy, 0 eC\Z. @)

Moreover, we define the lower and upper incomplete gamma functions, as shown
in [26], as

X
v(6; x) :/ v 1le vy, 0 C\Zy, (8)
0
and
r(6; ) :/ Wlevdy, g eC\Z7, )
X

respectively. The decomposition formula of I'(6) can be preformed using Equations (8) and (9)
as follows:

v(0;x) +T(0;x) =T(0). (10)
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The incomplete Pochhammer symbols (6; x), and [6; x|, are defined by

] (0 +mx)
(sz)n = W (11)
and
(6] = F(QFJEG';’X) (12)

Similar to Equation (10), a decomposition of (0), can be given by the functions in
Equations (11) and (12) as follows:

(0; )0 + [6; x]n = (0)n, (13)

Wright's (T — Gauss) hypergeometric function was first studied in [27] as follows:

T(93) & (81),T (%2 + 7)) f
F(ﬁZ) j=0 F(193 + T]) j!

2Ry (81, 02,03, T51p) = (teRY, Iyl <1), (14)

where ¢1,%,, and ¢3 are complex parameters such that #(¢;) > 0,R(d,) > 0, and
§R(l93) > 0.

In addition, the incomplete Wright’s hypergeometric function was studied in [28]
as follows:
191, 192 + T]) ;7]
193 +717) !

2]?1(19],192, 193/’1— 77 Z

(tTeRY, |yl <1) (15)

and

191, 192 + T]) ;7]
193 + 77) j!

271(191/ 192/ 193,1' 17 Z

(teRY, [y <1), (16)

where 91,9, and ¥3 are complex parameters such that ®(9;) > 0,R(d) > 0, and
R(03) > 0. Recent developments and expansions of Wright's hypergeometric function
can be found, for example, in [29,30].

The family of the generalized incomplete Wright’s hypergeometric functions of the p
numerator and g denominator is given by [28]

prgr)[ (9;7,9(),‘ Z:| _ pl_.(-r)|: (91,X),92,...,9p; Z:|

Ngs 1 771,172, Mg a7
_1"(771),.. i (01, x]u T(62 + nT)...T(0p +n1) 2"
- T(6y),..., = 1+nr) (12 +n7)...T(15 + nt) n!’
where 9,17, € C,T > 0,p=q+1,p,9 € Ny, |z| < 1, and
0,,x); 01,x),0,,...,0,;
- ]
q q (18)

_TOn),-T(ng) & (61, )n I(62+ nT) ... T(6p +17) 2"
CT(62),...,T(6p) =T (1 +nO)T (72 + 1) ... T (g + n7) n!’

where 9,17, € C,T > 0,p =g+ 1,and p,q € Ny, |z| < 1.
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(1) (1)

The generalized incomplete hypergeometric functions ,I';" and ,7, ’ satisfy the
following decomposition formula:

prgﬂ{ (6, ); Z} N p%gf)[ (6, x); Z} -, Rgr)[ Op; Z] (19)
Mgs Mg; a7

Remark 1. Some special cases of the generalized incomplete Wright’s hypergeometric functions are
as follows:

(i) By setting T =1 in Equations (17) and (18) and employing the relation in Equation (6), we
have the extended incomplete Gauss hypergeometric function (see [31]):

pl_.q|: (Gp,X>,' Z:| _ prq|: (Gl,x),ez,...,(?p; Z]

17‘7’ 771/1721”-177q;
20
_ 5 00 (0 0)n (20)

=0 (Wl)n---(ﬂq)n n!’
where 9,1, € C,T>0,p=q+1,p,q € Ny, |z| <1, and
(9 /x>; (611x)162/'-'/9;
p’yq{ Zq/' T 771,772,-~-,17q;p z

(21)

& (6L X)n (B)ut - (Bp)n 2"
"L i

= iyl)n...(iyq)n n!

where 9,1, € C,T>0,p=q+1,and p,q € Ny, |z| < 1.

As an immediate consequence of Equations (20) and (21), we have the following decomposition
formula:

(6p, x); } { (6p, x); 0p;

I P z| + P z| =, F P7 z|, 22
' ‘7{ o L g P e )
in terms of the generalized hypergeometric function.

(ii) If we put p =2 and q = 1 into Equations (17) and (18), we obtain

ﬂr)[ (62, x); Z] _ prgﬂ[ (61, %), 62; Z]

/i M1,
_ T'(m) i 01, x]n [(62 +nT) 2" (23)
[(62) =, T(m + nt)T (2 + nt) n!’

(t>0,]z] <1),

and
(r)[ (62, x); Z} _ ﬂgr){ (91,;1)‘, 02; Z]

_ I'ln) i (01,%)n T(02 + n7) 2" (24)
[(6) =  T(y+n7) n!’

(t>0,]z] <1).

Equations (23) and (24) contain the following decomposition formula as a direct result:

zrgT)[ (01,x),02; z} n 27;){ (01,x),62; z} - R%T){ 601, 02; z} (25)

1 M1, 1715

for the Wright hypergeometric function in (14).
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The derivative formulas for generalized incomplete Wright’s hypergeometric functions
are as follows (see [28]):

dn ) (91, ) 92/""9!7; :|
dZTl{ P l: n1,M2,-- rﬂq; z }

[(6, +nt)...T(6, + n1)
)l

(12 + nT) (g +n7)

(61 +n,x),0,+nt,. .,6,,—1—711';2
m+nt,n2+nt,..., 15+ 0T,

(e
q
_ (B1)n
F(ﬂ +n 26)

and

d” <>[(9l,x),ez,...,ep; }
dz"{ PYa M,4M2, - Ygs z }
(01)n T(62 +n1)...T(0p +n7)

(i +nt)T (g +nt) ... T(y +n71)

(1) (91+n,x),92+n7,...,8p+nr;Z
Py m+ntm4nt,.. g+t |

(27)

The pathway-type transform (K, transform) is defined in [23,24] as

Kolf(£),s] = F(s) = /Ow[l F(w—1)s|e T f(B)dt w> 1, (28)

with
—t

lim [1+ (w—1)s]eT = e . (29)

w—1t

The Laplace transform (L[.,.]) is generalized by this transformation; which can be
seen from

lim Ko [f(t),s] = L[f(t),s]. (30)

w—1

The two useful properties of the K, transform are as follows:

w-—1
Kw[l, S] = m (31)
and
n w n+1
K“’[E’S] B {ln[l + (w —1)s] } ' (32)

Furthermore, using the convolution theorem of the K, transform [23], we see that
Equation (4) may be represented by
A
Ko[f(t),s] A eC. (33)

Koo [oD; " £ (1), 5] =

[t 9]

3. Statement of Results

In this section, we solve the fractional kinetic equation associated with the T-generalized
incomplete hypergeometric functions using the method of the K, transform.
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Theorem 1. Let A > 0,d > 0,z € C, and T > 0. Then, we conclude that the solution of the
T-generalized incomplete hypergeometric function’s fractional kinetic equation

E(z) — Eo pI\" () = —d" oD, E(2), (34)
is given by
_ r(ﬂl)/"-rr(ﬂq) > [91,X]n F(92+nr)...r(9,,+nr)
E(z) =Eg I'(62),...,T(6p) ngo [(n1 +nt)l (2 +n71)...T (14 + n7) 35)
00 m A Zm)H—n

Proof. By using the K, transform of both sides of Equation (34) and using Equations (32) and (33),
we have

w-—1 A
Ko [E(2)] {1 + dA{ln{l + (w—1)r} } }
L(m),...,T(ng) & [01,x]u T(62+n1)...T(0, +n71)

=0 T(6,), ., T(8,) 2 T(m + n0)T (2 + n7) .- Ty + 17) (36)
" [ln{l + (w— 1)}]7,171
w—1
and
= Tin),-- ©  [0y,x]y T(62 +n7)...T(0, +n7)
Ko [E(2)] =Eo I'(6,),.. ; T(y1 +nt)T(2 +n71) ... 1"517,1 + nT)
In{1+ (w —1) } T (=™ dw—1) mA
{ w—1 ] mZ::o m! {ln{l + (w 1)r}] .
E F(iyl) i 91, (92 + 1’1‘[') 1“(9,, + 1’1T) (37)
OT(6,), .. ) =T+ nr) (112 +n7)...T(15 + n1)

X i (_1)m dm/\(w . 1)n+m/\+1 {ln{l n (w _ 1)}’}} 7(n+mA+1)‘
m=0

Now, when we take the inverse of the K, transform and apply Equation (32), we have
the desired result. [J

Theorem 2. Let A > 0,d > 0,z € C, and T > 0. Then, we conclude that the solution of the
T-generalized incomplete hypergeometric function’s fractional kinetic equation

d ~
E(z) — Bo { - 0} (2)} = —d" oD} "E(2), (38)
is given by
E(Z) _E [91(92-1—’() Qp-f—’l' } 91+1x (92+T)n"'(9P+T)”Zn
° (771+T) (1) 12 A+ Dl + n - (1 + T

d )" (dz)m (39)

XZ m)\—i—n)

m=0
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Proof. By taking the K, transform of both sides of Equation (38) and using Equations (26),
(32), and (33), we find

Ko[B()] 1+ In{1 :)(c_ul— r} }A}

_E [91(62+r)...(9p+r)} 2 (01 4+1,x]n (2 +T)n-.. (0p + T)n

m+7).. (g +7) 12 n+0 a2+ (g +Tn 40
ln{l—l—(W—l)T} —n—1
([t oLy
and
_ 91(92+T)...(9P+T) © 01+ 1,x], (92+T)n...(9p+’1’)n
Ko[B] =B [ 70 ) K O s 0 5 ey 7 e
In{l1+ (w—1)r}1n1 & (-1)" dlw—1) mA
{ w-—1 } mX::O m! {ln{l—&—(w—l)r}} )

_E [91(92+T)...(GP+T)} 2 01+ 1Lx]y (B2 +T)n... (0p +T)n
Uln+0) g+ V2 tn+0nli+ O (g + 0

X i (—=1)™ dmA (@ — 1)mHmA+1 [ln{l +(w— 1)7}} f(n+m/\+1)'
m=0

By taking the inverse of the K, transform of both sides of Equation (41) and applying
Equation (32), we readily obtain the desired result. [

Now, we give the results for the solution of the fractional kinetic equation of the
(1)

p7Yq -generalized incomplete hypergeometric function in Equation (27), which are given in
the following two theorems:

Theorem 3. Let A > 0,d > 0,z € C, and T > 0. Then, the solution of the fractional kinetic
equation of the T-generalized incomplete hypergeometric functions

E(z) - Eo p7y”(2) = —d* D E(2), (42)
is given by
TOn),-- - T(g) & (01,%)n T(02 +n7)...T(0p +n71)
E(z) =Eg I'(62),...,T(6p) ngo [(n1 +nt)l (2 +n71)...T (14 +n7) 3)
00 " A Zm/\+n

Proof. The proof here runs in parallel with that for Theorem 1. The details have been
omitted. [

Theorem 4. Let A > 0,d > 0,z € C, and T > 0. Then, the solution of the fractional kinetic
equation of the T-generalized incomplete hypergeometric functions

E(2) ~ Eo {0 27 (2)} =~ oDy "E(2), (a4)
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is given by
E(z) —E [91(92 +7)...(0p +r)} & (014+1,x)n 2+ T)n... (Op+T)n _,
° (171 +7) g+ V2 A+ Dal+ 0 (g + 0
(45)
)f (=1)"(dz)™
— m/\ + n)

Proof. This proof follows a similar pattern to that of Theorem 2. The specifics have been
left out. [

4. MMustrative Examples

The following are some examples of the special cases of the solution to fractional
kinetic equations, including the T-generalized incomplete hypergeometric functions,

(i) If wehave p =2 and q = 1, then Equation (34) reduces to

E(z) — o oT\" (z) = —d* (D E(2), (46)
whose solution is
91/ 92 + TlT) o m mA Zm/\+n
E —-1)"™(d —_—. 47
(=) ;0 171 + nt) mZ::o( )" (d) (mA +n)! (47)

(ii) When we have p = 2 and q = 1, then Equation (42) reduces to

E(z) — Bo 2117 (2) = —d} (D E(2), (48)
whose solution is
© 61, (0, +nt) & e omy 2T
E(z) =E -1)"(d)™ ————. 4

(iii) When we have p = 2,4 = 1 and 7 = 1, then Equation (34) reduces to
E(z) — Eg o1 (z) = —d* oD; “E(z) (50)

and its solution is

B(z) =Ey ), A O g (qyngym

n=0 (771)” m—0 (m)l + Tl)! '

mA+n
(51)

(iv) Whenwehave p = 2and g = 1, then Equation (38) reduces to a hypergeometric function

E(z) ~ o { o ol (2)} = ~d" oD “E(2), 52)
given by
e (0102 + D)) o [+ L x]n (024 T)n_y
E(z) =E, [ (171 +T) } nZ%) i+ O z -
x mZ=:O m)H— n)!

(v) When we substitute p = 2 and g = 1, then Equation (44) reduces to

E(z) ~ o { o= 211" (2)} =~ oD} E(2) 64
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and its solution is

61 +1, x)n (92 + T)nzn

01(6,+ 1)1 & (
E(z) =Ko | 21712+T) ] ;0
s (—1)"(dz)™

(mA +n)!

m=0

5. Comments on the Graphical Interpretations

(111 + T)n (55)

Figure 1 depicts the plots of solutions to Equation (35) with parametric values
Ey =1, =20,p = 21, and z = 05, - ,5 for various values of A = 0.1,0.2,---,0.9
in Figure 1a and with fixed values of x = 2, d = 0.2, and t = 1. In Figure 1b, we fix the
valuestoT =1, d = 1and A = 0.5 and generate graphs for various values of x = 0.1,- - - , 2.
The valid region of convergence of the solutions is given by the time interval z = 0.5, - - - , 5.
Figure 2 exhibits 2D plots of the solutions to Equation (43) for various values of A and x in
Figure 2a and Figure 2b, respectively, with fixed values of T = 1,d = 1, and Ey = 1. The
graphical findings show that the region of convergence of the solutions was continually de-
pendent on the parameters A and x. As a result, evaluating the behavior of the solutions for
various parameters and time periods revealed that E(z) was always positive. Furthermore,
we could change the values of A, x, T, and d to obtain more accurate results.

x=2,d=0.2and r=1

A= 0.1
9r -
2, =0.26
gl 2, =042
Ay = 0.58
r Ag=0.74
gl 2=0.9
~N
i 5
4t
3k
2t
1t
0 a L =S I 1 L L L
0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time(z)
(a)
A=05,d=1and 7=1
7
X, =2
6 X,=28
x,=36
5 X, = 4.4
x;=52
Xs=6
4
N
w
3
2
1
0 e m——
0.5 5| 1.5 2 25 3 3.5 4 4.5
Time(z)

Figure 1. Graphs of the solution to Equation (35) with various values of A in (a) and various values
of x in (b).
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x=2,d=1and r

=1

A1=0.1

- A, =0.26

0.7

06|

X, =01
X, =0.48
Xy =0.86
X, =124
xg = 1.62
Xg=2

T

2 2.5 3
Time(z)

(b)

Figure 2. Graphs of the solution to Equation (43) with various values of A in (a) and various values

of x in (b).

6. Conclusions

Because of the usefulness and great importance of the kinetic equation in some astro-
physical issues, fractional kinetic equations have been investigated to describe the various
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phenomena governed by anomalous reactions in dynamical systems [6-9]. Several authors
have recently presented solutions to various families of fractional kinetic equations involv-
ing special functions using the Laplace transform, Sumudu transform, Prabhakar-type
operators, Hadamard fractional integrals, and pathway-type transform based on these
principles (see, for example, [10-25]).

Motivated by the above works, the authors developed a new and generalized form
of the fractional kinetic equation involving the generalized incomplete Wright hypergeo-
metric function. This new generalization can be used to compute the change in chemical
composition in stars such as the Sun. The manifold generality of the Mittag-Leffler function
was discussed in terms of the solution to the above fractional kinetic equation by applying
a pathway-type transform. Furthermore, a graphical representation of the solutions was
provided to demonstrate the behavior of these solutions and to analyze special situations
for fractional kinetic equations.
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