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Abstract: We present in this paper a generalization of the fractional kinetic equation using the
generalized incomplete Wright hypergeometric function. The pathway-type transform technique
is then used to investigate the solutions to a fractional kinetic equation with specific fractional
transforms. Furthermore, exceptional cases of our outcomes are discussed and graphically illustrated
using MATLAB software. This work provides a thorough overview for further investigation into
these topics in order to gain a better understanding of their implications and applications.
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1. Introduction

Fractional-order differential equations have fractional derivatives instead of integer
derivatives [1–5]. A kinetic equation is one of the essential kinds of fractional-order differen-
tial equations. Its importance is reflected in the fact that it has received increased attention
in electrodynamics, control systems, economics, hydrodynamics, physics, geophysics, and
mathematics. Furthermore, fractional-order kinetic (reaction-type) equations play a sig-
nificant role as tools of mathematics that are frequently employed to describe a variety of
physical and astrophysical phenomena (see [6–10]). For example, reaction-type (kinetic)
equations can explain how nuclei are created and destroyed during chemical (thermonu-
clear) processes. A formal representation of reactions characterized by a time-dependent
quantity E = E(ξ) is given by the following Cauchy problem (see, for example, [11]):

dE
dξ

= −δ(E) + p(E), E(0) = E0, (1)

where E0 is the initial data and δ and p are the destruction and production rate of E,
respectively. Furthermore, Haubold and Mathai studied a special case of this Cauchy
problem [11] given by

dE
dξ

= −ϑE, ϑ ∈ R+, E(0) = E0. (2)

Equation (2) is known as the standard kinetic equation. They also gave a representation
in the form of a fractional equation as follows:

E(ξ)− E0 = −ϑ 0D−1
ξ E(ξ), ϑ, ξ ∈ R+, (3)
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where 0D−ν
ξ is the fractional integral operator [1] given by

0D−ν
ξ f (ξ) =

1
Γ(ν)

∫ ξ

0
(ξ − s)ν−1 f (s)ds, ν ∈ R+. (4)

Many generalizations and solutions of the fractional-order kinetic equation have re-
cently been developed, utilizing a variety of fractional integral transforms including the
fractional Laplace transform [12–16], fractional Sumudu transform [17–19], Hadamard
fractional integrals [20–22], fractional pathway transform [23,24] and Prabhakar-type
operators [25], which have been extensively studied. In particular, Khan et al. [14] pre-
sented solutions for fractional kinetic equations associated with the (p, q)-extended τ-
hypergeometric and confluent hypergeometric functions using the Laplace transform,
while Hidan et al. [15] discussed a technique for the Laplace transformation of solutions of
fractional kinetic equations involving extended (k, t)-Gauss hypergeometric matrix func-
tions. In addition, Abubakar [16] derived solutions for fractional kinetic equations using the
(p, q; l)-extended τ-Gauss hypergeometric function. Gaining insight from the last recently
mentioned manuscripts, this paper provides an in-depth exploration of fractional kinetic
equations and their solutions by using the generalized incomplete Wright hypergeometric
function and pathway-type transform technique. We provide a comprehensive overview
that is sure to give researchers plenty to think about when it comes to implications and ap-
plications. Overall, this work should be regarded as required reading for anyone interested
in learning more about these themes.

2. Preliminaries

Here, we highlight a few concepts that would be helpful for future discussion.
The Gauss hypergeometric function given by

F(θ1, θ2, θ3; z) =
∞

∑
j=0

(θ1)j (θ2)j

(θ3)j

zj

j!
, z ∈ C, (5)

will be convergent absolutely and uniformly under the condition |z| < 1. Here, θ1, θ2, and
θ3 are complex parameters with θ3 ∈ C \Z−0 , and

(θ1)j =
Γ(θ1 + j)

Γ(θ1)
=


θ1(θ1 + 1) · · · (θ1 + j− 1), j ∈ N, θ1 ∈ C

1, j = 0; θ1 ∈ C \ {0},
(6)

is known to be the Pochhammer symbol of θ1, whereas Γ(v) is the standard gamma function,
defined as

Γ(θ) =
∫ ∞

0
υθ−1e−υdυ, θ ∈ C \Z−0 . (7)

Moreover, we define the lower and upper incomplete gamma functions, as shown
in [26], as

γ(θ; x) =
∫ x

0
υθ−1e−υdυ, θ ∈ C \Z−0 , (8)

and

Γ(θ; x) =
∫ ∞

x
υθ−1e−υdυ, θ ∈ C \Z−0 , (9)

respectively. The decomposition formula of Γ(θ) can be preformed using Equations (8) and (9)
as follows:

γ(θ; x) + Γ(θ; x) = Γ(θ). (10)
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The incomplete Pochhammer symbols (θ; x)n and [θ; x]n are defined by

(θ; x)n =
γ(θ + n; x)

Γ(θ)
(11)

and

[θ; x]n =
Γ(θ + n; x)

Γ(θ)
. (12)

Similar to Equation (10), a decomposition of (θ)n can be given by the functions in
Equations (11) and (12) as follows:

(θ; x)n + [θ; x]n = (θ)n, (13)

Wright’s (τ − Gauss) hypergeometric function was first studied in [27] as follows:

2R1(ϑ1, ϑ2; ϑ3; τ; η) =
Γ(ϑ3)

Γ(ϑ2)

∞

∑
j=0

(ϑ1)jΓ(ϑ2 + τ j)
Γ(ϑ3 + τ j)

η j

j!
(τ ∈ R+, |η| < 1), (14)

where ϑ1, ϑ2, and ϑ3 are complex parameters such that <(ϑ1) > 0,<(ϑ2) > 0, and
<(ϑ3) > 0.

In addition, the incomplete Wright’s hypergeometric function was studied in [28]
as follows:

2Γ1(ϑ1, ϑ2; ϑ3; τ; η) =
Γ(ϑ3)

Γ(ϑ2)

∞

∑
j=0

[ϑ1; x]jΓ(ϑ2 + τ j)
Γ(ϑ3 + τ j)

η j

j!
(τ ∈ R+, |η| < 1) (15)

and

2γ1(ϑ1, ϑ2; ϑ3; τ; η) =
Γ(ϑ3)

Γ(ϑ2)

∞

∑
j=0

(ϑ1; x)jΓ(ϑ2 + τ j)
Γ(ϑ3 + τ j)

η j

j!
(τ ∈ R+, |η| < 1), (16)

where ϑ1, ϑ2, and ϑ3 are complex parameters such that <(ϑ1) > 0,<(ϑ2) > 0, and
<(ϑ3) > 0. Recent developments and expansions of Wright’s hypergeometric function
can be found, for example, in [29,30].

The family of the generalized incomplete Wright’s hypergeometric functions of the p
numerator and q denominator is given by [28]

pΓ(τ)
q

[
(θp, x);

ηq;
z
]
= pΓ(τ)

q

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]

=
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

zn

n!
,

(17)

where ϑp, ηq ∈ C, τ > 0, p = q + 1, p, q ∈ N0, |z| < 1, and

pγ
(τ)
q

[
(θp, x);

ηq;
z
]
= pγ

(τ)
q

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]

=
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

(θ1, x)n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

zn

n!
,

(18)

where ϑp, ηq ∈ C, τ > 0, p = q + 1, and p, q ∈ N0, |z| < 1.
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The generalized incomplete hypergeometric functions pΓ(τ)
q and pγ

(τ)
q satisfy the

following decomposition formula:

pΓ(τ)
q

[
(θp, x);

ηq;
z
]
+ pγ

(τ)
q

[
(θp, x);

ηq;
z
]
=p R(τ)

q

[
θp;
ηq;

z
]

(19)

Remark 1. Some special cases of the generalized incomplete Wright’s hypergeometric functions are
as follows:

(i) By setting τ = 1 in Equations (17) and (18) and employing the relation in Equation (6), we
have the extended incomplete Gauss hypergeometric function (see [31]):

pΓq

[
(θp, x);

ηq;
z
]
= pΓq

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]

=
∞

∑
n=0

[θ1, x]n (θ2)n + . . . (θp)n

(η1)n . . . (ηq)n

zn

n!
,

(20)

where ϑp, ηq ∈ C, τ > 0, p = q + 1, p, q ∈ N0, |z| < 1, and

pγq

[
(θp, x);

ηq;
z
]
= pγq

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]

=
∞

∑
n=0

(θ1, x)n (θ2)n + . . . (θp)n

(η1)n . . . (ηq)n

zn

n!
,

(21)

where ϑp, ηq ∈ C, τ > 0, p = q + 1, and p, q ∈ N0, |z| < 1.

As an immediate consequence of Equations (20) and (21), we have the following decomposition
formula:

pΓq

[
(θp, x);

ηq;
z
]
+ pγq

[
(θp, x);

ηq;
z
]
=p Fq

[
θp;
ηq;

z
]

, (22)

in terms of the generalized hypergeometric function.

(ii) If we put p = 2 and q = 1 into Equations (17) and (18), we obtain

2Γ(τ)
1

[
(θ2, x);

η1;
z
]
= pΓ(τ)

q

[
(θ1, x), θ2;

η1;
z
]

=
Γ(η1)

Γ(θ2)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ)

Γ(η1 + nτ)Γ(η2 + nτ)

zn

n!
,

(τ > 0, |z| < 1),

(23)

and

2γ
(τ)
1

[
(θ2, x);

η1;
z
]
= 2γ

(τ)
1

[
(θ1, x), θ2;

η1;
z
]

=
Γ(η1))

Γ(θ2)

∞

∑
n=0

(θ1, x)n Γ(θ2 + nτ)

Γ(η1 + nτ)

zn

n!
,

(τ > 0, |z| < 1).

(24)

Equations (23) and (24) contain the following decomposition formula as a direct result:

2Γ(τ)
1

[
(θ1, x), θ2;

η1;
z
]
+ 2γ

(τ)
1

[
(θ1, x), θ2;

η1;
z
]
=2 R(τ)

1

[
θ1, θ2;

η1;
z
]

(25)

for the Wright hypergeometric function in (14).
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The derivative formulas for generalized incomplete Wright’s hypergeometric functions
are as follows (see [28]):

dn

dzn

{
pΓ(τ)

q

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]}

=
(θ1)n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

× pΓ(τ)
q

[
(θ1 + n, x), θ2 + nτ, . . . , θp + nτ;

η1 + nτ, η2 + nτ, . . . , ηq + nτ;
z
] (26)

and

dn

dzn

{
pγ

(τ)
q

[
(θ1, x), θ2, . . . , θp;

η1, η2, . . . , ηq;
z
]}

=
(θ1)n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×p γ
(τ)
q

[
(θ1 + n, x), θ2 + nτ, . . . , θp + nτ;

η1 + nτ, η2 + nτ, . . . , ηq + nτ;
z
]

.

(27)

The pathway-type transform (Kω transform) is defined in [23,24] as

Kω [ f (t), s] = F(s) =
∫ ∞

0
[1 + (ω− 1)s]

−t
ω−1 f (t)dt ω > 1, (28)

with

lim
ω→1+

[1 + (ω− 1)s]
−t

ω−1 = e−st. (29)

The Laplace transform (L[., .]) is generalized by this transformation; which can be
seen from

lim
ω→1

Kω [ f (t), s] = L[ f (t), s]. (30)

The two useful properties of the Kω transform are as follows:

Kω [1, s] =
ω− 1

ln[1 + (ω− 1)s]
(31)

and

Kω [
tn

n!
, s] =

{ ω

ln[1 + (ω− 1)s]

}n+1
. (32)

Furthermore, using the convolution theorem of the Kω transform [23], we see that
Equation (4) may be represented by

Kω [0D−λ
t f (t), s] =

[ ω− 1
ln[1 + (ω− 1)s]

]λ
Kω [ f (t), s] λ ∈ C. (33)

3. Statement of Results

In this section, we solve the fractional kinetic equation associated with the τ-generalized
incomplete hypergeometric functions using the method of the Kω transform.
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Theorem 1. Let λ > 0, d > 0, z ∈ C, and τ > 0. Then, we conclude that the solution of the
τ-generalized incomplete hypergeometric function’s fractional kinetic equation

E(z)− E0 pΓ(τ)
q (z) = −dλ

0D−λ
z E(z), (34)

is given by

E(z) =E0
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×
∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
.

(35)

Proof. By using the Kω transform of both sides of Equation (34) and using Equations (32) and (33),
we have

Kω

[
E(z)

][
1 + dλ

{ ω− 1
ln{1 + (ω− 1)r}

}λ]
= E0

Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×
[ ln{1 + (ω− 1)}

ω− 1
]−n−1

(36)

and

Kω

[
E(z)

]
=E0

Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)[ ln{1 + (ω− 1)r}
ω− 1

]−n−1 ∞

∑
m=0

(−1)m

m!

[ d(ω− 1)
ln{1 + (ω− 1)r}

]mλ

= E0
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×
∞

∑
m=0

(−1)m dmλ(ω− 1)n+mλ+1
[

ln{1 + (ω− 1)r}
]−(n+mλ+1)

.

(37)

Now, when we take the inverse of the Kω transform and apply Equation (32), we have
the desired result.

Theorem 2. Let λ > 0, d > 0, z ∈ C, and τ > 0. Then, we conclude that the solution of the
τ-generalized incomplete hypergeometric function’s fractional kinetic equation

E(z)− E0
{ d

dz pΓ(τ)
q (z)

}
= −dλ

0D−λ
t E(z), (38)

is given by

E(z) =E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n
zn

×
∞

∑
m=0

(−1)m(dz)mλ

(mλ + n)!
.

(39)
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Proof. By taking the Kω transform of both sides of Equation (38) and using Equations (26),
(32), and (33), we find

Kω

[
E(z)

][
1 + dλ

{ ω− 1
ln{1 + (ω− 1)r}

}λ]
=E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n

×
[ ln{1 + (ω− 1)r}

ω− 1
]−n−1

(40)

and

Kω

[
E(z)

]
=E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n[ ln{1 + (ω− 1)r}
ω− 1

]−n−1 ∞

∑
m=0

(−1)m

m!

[ d(ω− 1)
ln{1 + (ω− 1)r}

]mλ

=E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n

×
∞

∑
m=0

(−1)m dmλ(ω− 1)n+mλ+1
[

ln{1 + (ω− 1)r}
]−(n+mλ+1)

.

(41)

By taking the inverse of the Kω transform of both sides of Equation (41) and applying
Equation (32), we readily obtain the desired result.

Now, we give the results for the solution of the fractional kinetic equation of the

pγ
(τ)
q -generalized incomplete hypergeometric function in Equation (27), which are given in

the following two theorems:

Theorem 3. Let λ > 0, d > 0, z ∈ C, and τ > 0. Then, the solution of the fractional kinetic
equation of the τ-generalized incomplete hypergeometric functions

E(z)− E0 pγ
(τ)
q (z) = −dλ

0D−λ
z E(z), (42)

is given by

E(z) =E0
Γ(η1), . . . , Γ(ηq)

Γ(θ2), . . . , Γ(θp)

∞

∑
n=0

(θ1, x)n Γ(θ2 + nτ) . . . Γ(θp + nτ)

Γ(η1 + nτ)Γ(η2 + nτ) . . . Γ(ηq + nτ)

×
∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
.

(43)

Proof. The proof here runs in parallel with that for Theorem 1. The details have been
omitted.

Theorem 4. Let λ > 0, d > 0, z ∈ C, and τ > 0. Then, the solution of the fractional kinetic
equation of the τ-generalized incomplete hypergeometric functions

E(z)− E0
{ d

dz pγ
(τ)
q (z)

}
= −dλ

0D−λ
t E(z), (44)
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is given by

E(z) =E0

[ θ1(θ2 + τ) . . . (θp + τ)

(η1 + τ) . . . (ηq + τ)

] ∞

∑
n=0

(θ1 + 1, x)n (θ2 + τ)n . . . (θp + τ)n

(η1 + τ)n(η2 + τ)n . . . (ηq + τ)n
zn

×
∞

∑
m=0

(−1)m(dz)mλ

(mλ + n)!
.

(45)

Proof. This proof follows a similar pattern to that of Theorem 2. The specifics have been
left out.

4. Illustrative Examples

The following are some examples of the special cases of the solution to fractional
kinetic equations, including the τ-generalized incomplete hypergeometric functions,

(i) If we have p = 2 and q = 1, then Equation (34) reduces to

E(z)− E0 2Γ(τ)
1 (z) = −dλ

0D−λ
z E(z), (46)

whose solution is

E(z) =E0
Γ(η1)

Γ(θ2)

∞

∑
n=0

[θ1, x]n Γ(θ2 + nτ)

Γ(η1 + nτ)

∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
. (47)

(ii) When we have p = 2 and q = 1, then Equation (42) reduces to

E(z)− E0 2γ
(τ)
1 (z) = −dλ

0D−λ
z E(z), (48)

whose solution is

E(z) =E0
Γ(η1)

Γ(θ2)

∞

∑
n=0

(θ1, x)n Γ(θ2 + nτ)

Γ(η1 + nτ)

∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
. (49)

(iii) When we have p = 2, q = 1 and τ = 1, then Equation (34) reduces to

E(z)− E0 2Γ1(z) = −dλ
0D−λ

z E(z) (50)

and its solution is

E(z) =E0

∞

∑
n=0

[θ1, x]n (θ2)n

(η1)n

∞

∑
m=0

(−1)m(d)mλ zmλ+n

(mλ + n)!
. (51)

(iv) When we have p = 2 and q = 1, then Equation (38) reduces to a hypergeometric function

E(z)− E0
{ d

dz 2Γ(τ)
1 (z)

}
= −dλ

0D−λ
t E(z), (52)

given by

E(z) =E0

[ θ1(θ2 + τ)

(η1 + τ)

] ∞

∑
n=0

[θ1 + 1, x]n (θ2 + τ)n

(η1 + τ)n
zn

×
∞

∑
m=0

(−1)m(dz)mλ

(mλ + n)!
.

(53)

(v) When we substitute p = 2 and q = 1, then Equation (44) reduces to

E(z)− E0
{ d

dz 2γ
(τ)
1 (z)

}
= −dλ

0D−λ
t E(z) (54)
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and its solution is

E(z) =E0

[ θ1(θ2 + τ)

(η1 + τ)

] ∞

∑
n=0

(θ1 + 1, x)n (θ2 + τ)n

(η1 + τ)n
zn

×
∞

∑
m=0

(−1)m(dz)mλ

(mλ + n)!
.

(55)

5. Comments on the Graphical Interpretations

Figure 1 depicts the plots of solutions to Equation (35) with parametric values
E0 = 1, q = 20, p = 21, and z = 0.5, · · · , 5 for various values of λ = 0.1, 0.2, · · · , 0.9
in Figure 1a and with fixed values of x = 2, d = 0.2, and τ = 1. In Figure 1b, we fix the
values to τ = 1, d = 1 and λ = 0.5 and generate graphs for various values of x = 0.1, · · · , 2.
The valid region of convergence of the solutions is given by the time interval z = 0.5, · · · , 5.
Figure 2 exhibits 2D plots of the solutions to Equation (43) for various values of λ and x in
Figure 2a and Figure 2b, respectively, with fixed values of τ = 1, d = 1, and E0 = 1. The
graphical findings show that the region of convergence of the solutions was continually de-
pendent on the parameters λ and x. As a result, evaluating the behavior of the solutions for
various parameters and time periods revealed that E(z) was always positive. Furthermore,
we could change the values of λ, x, τ, and d to obtain more accurate results.

(a)

(b)

Figure 1. Graphs of the solution to Equation (35) with various values of λ in (a) and various values
of x in (b).
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(a)

(b)

Figure 2. Graphs of the solution to Equation (43) with various values of λ in (a) and various values
of x in (b).

6. Conclusions

Because of the usefulness and great importance of the kinetic equation in some astro-
physical issues, fractional kinetic equations have been investigated to describe the various
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phenomena governed by anomalous reactions in dynamical systems [6–9]. Several authors
have recently presented solutions to various families of fractional kinetic equations involv-
ing special functions using the Laplace transform, Sumudu transform, Prabhakar-type
operators, Hadamard fractional integrals, and pathway-type transform based on these
principles (see, for example, [10–25]).

Motivated by the above works, the authors developed a new and generalized form
of the fractional kinetic equation involving the generalized incomplete Wright hypergeo-
metric function. This new generalization can be used to compute the change in chemical
composition in stars such as the Sun. The manifold generality of the Mittag-Leffler function
was discussed in terms of the solution to the above fractional kinetic equation by applying
a pathway-type transform. Furthermore, a graphical representation of the solutions was
provided to demonstrate the behavior of these solutions and to analyze special situations
for fractional kinetic equations.
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