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Abstract: In organisms’ bodies, the activities of enzymes can be catalyzed or inhibited by some
inorganic and organic compounds. The interaction between enzymes and these compounds is suc-
cessfully described by mathematics. The main purpose of this article is to investigate the dynamics
of the activator–inhibitor system (Gierer–Meinhardt system), which is utilized to describe the in-
teractions of chemical and biological phenomena. The system is considered with a fractional-order
derivative, which is converted to an ordinary derivative using the definition of the conformable
fractional derivative. The obtained differential equations are solved using the separation of variables.
The stability of the obtained positive equilibrium point of this system is analyzed and discussed. We
find that this point can be locally asymptotically stable, a source, a saddle, or non-hyperbolic under
certain conditions. Moreover, this article concentrates on exploring a Neimark–Sacker bifurcation
and a period-doubling bifurcation. Then, we present some numerical computations to verify the
obtained theoretical results. The findings of this work show that the governing system undergoes the
Neimark–Sacker bifurcation and the period-doubling bifurcation under certain conditions. These
types of bifurcation occur in small domains, as shown theoretically and numerically. Some 2D figures
are illustrated to visualize the behavior of the solutions in some domains.

Keywords: stability; activator–inhibitor system; Neimark–Sacker bifurcation; period-doubling
bifurcation; fractional derivatives; numerical computations

1. Introduction

Enzymes (or biocatalysts) are defined as proteinaceous molecules that can catalyze
chemical reactions that occur within a cell. Enzymes act as catalysts for all types of chemi-
cal reactions occurring in human body, such as food digestion, blood coagulation, body
growth, healing processes, reproduction mechanisms, and mechanisms of DNA replica-
tion, protein synthesis, etc. [1]. Normally, enzymes combine with a substrate to create an
enzyme–substrate complex, which is then transformed into a final product. Then, the final
product is disconnected from the original enzyme. The new free enzyme acts to transform
another substrate into a final product [1]. Some inorganic and organic compounds known
as “modifiers” change the catalytic activity of some enzymes. In other words, modifiers
(or moderators) can increase or decrease the rate of an enzymatic reaction. Inhibition is a
process that reduces or totally inhibits the enzyme’s catalytic activity, while activation is a
process that increases the enzyme’s catalytic activity. In particular, compounds that reduce
a chemical reaction (or an enzyme’s catalytic activity) are called inhibitors (negative modi-
fiers), while compounds that help to speed up a chemical reaction and are not consumed
during the chemical reaction are called activators (positive modifiers).

Nowadays, enzyme inhibitors are very beneficial due to their use in the remediation
of many diseases. In many scientific specializations, such as biochemistry, biotechnol-
ogy, and medicinal chemistry, enzyme inhibitors are considered an active area for most
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researchers. Some studies on enzyme inhibition have successfully contributed to provid-
ing useful information about ambiguous biological mechanisms, such as inflammatory
reactions, blood coagulation, blood clot dissolution, etc. Moreover, enzyme inhibitors are
classified into three main categories, namely, reversible enzyme inhibitors, irreversible
enzyme inhibitors, and allosteric enzyme inhibitors. Reversible inhibitors (which can be
divided into three main categories, namely, competitive, non-competitive, or uncompet-
itive) prevent the enzyme’s catalytic activity and noncovalently bind to the enzyme [2].
Hence, a free enzyme is separated from the molecule after a limited time. These types
of inhibitors involve very weak interactions, such as hydrogen bonds and ionic bonds.
However, irreversible inhibitors (which can be divided into two main categories, namely,
suicide inhibitors and time-dependent inhibitors) covalently (strongly) bind to the enzyme
and slowly dissociate from the enzyme [2]. Finally, allosteric inhibitors combine with the
enzyme at an allosteric site and alter the structure of the active site of the enzyme [2].

The activator–inhibitor system (Gierer–Meinhardt system), which was developed
in [3], is used to describe the interactions of chemical and biological phenomena. The dy-
namics of the activator–inhibitor system of an enzyme plays a crucial role in understanding
the behavior of the catalytic activity of the enzyme inside a living organism. Therefore, some
scientists have investigated the dynamical behaviors of this system using mathematics.
For instance, Khan et al. [4] explored the stability of a unique equilibrium point, bifurcations,
and chaos control for the discrete activator–inhibitor system. Pasemann et al. [5] developed
a theory for diffusivity estimation for the activator–inhibitor model. Guo et al. [6] discussed
the Turing patterns of the activator–inhibitor system on regular lattice networks. In ad-
dition, several complex networks were also examined in [6]. Song et al. [7] investigated
the stability and the bifurcation of the activator–inhibitor system with a saturating term.
Furthermore, Chen et al. [8] analyzed the stability of the equilibrium point of a general
reaction–diffusion activator–inhibitor model. In [9], Chen investigated the long-time exis-
tence of solutions of the generalized activator–inhibitor model. Chen [9] also studied the
blowup properties and boundedness of some special cases. The moving mesh method was
used in [9] to approximate some numerical solutions for the generalized activator–inhibitor
model. Ni et al. [10] explored the stability of stationary solutions for the activator–inhibitor
system in higher-dimensional domains. More information about the qualitative behavior
of biological systems can be found in refs. [11,12].

Fractional derivatives were discovered in 1695. Then, researchers developed some
definitions for this type of derivative. For example, Laplace derived a beneficial concept for
fractional derivatives of functions using integrals in 1812. In 1812, Lacroix developed the
n-th fractional derivative of a given power function [13]. The first Liouville definition of the
fractional derivative was presented by Liouville in 1832 [14]. Then, Riemann discovered
his useful definition of fractional derivatives [15]. Furthermore, the Riemann–Liouville
definition of a fractional derivative of a given function was successfully shown in the 19th
century. Unfortunately, some of these definitions do not give accurate results for fractional
derivatives. Therefore, we will use the most recent definition of the fractional derivative,
which is the conformable fractional derivative [16].

Definition 1 ([16]). Let f : (0, ∞)→ R be a function. Then, the conformable fractional derivative
of order 0 < α ≤ 1 of f at t > 0 is defined by

Tα
h f (t) = lim

ε→0

f (t + ε(t− h)1−α)− f (t)
ε

, 0 < α < 1, (1)

where Tα
h is a fractional derivative of the conformable type, and h > 0 is the discretization

parameter. It was shown in [17] that the following fact is evidenced from Equation (1).

Tα
h f (t) = (t− h)1−α f ′(t). (2)

This derivative has been applied by many researchers [18–20].
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It is worth mentioning that the presented studies lack the usage of fractional deriva-
tives. Motivated by the studies presented in the literature review, we investigate the
existence of the equilibrium point and the stability conditions of the following activator–
inhibitor system with fractional order: Tαx(t) = p + x2(t)

y(t) − x(t),

Tαy(t) = x2(t)− cy(t),
(3)

where 0 < α ≤ 1 is the fractional-order parameter, and t > 0. The variables x(t) > 0 and
y(t) > 0 represent the concentrations of the activator and inhibitor, respectively. p > 0 is the
strength of self-activation of the activator with the gross activation of the inhibitor, and c > 0
measures the strength of the production of the activator and that of itself. The conformable
fractional derivative is used to obtain the corresponding ordinary derivatives. Then, we
solve the obtained ordinary differential equations. The discretized version of the considered
system will be analyzed in terms of bifurcations. Moreover, this study aims to discuss
the existence of the Neimark–Sacker bifurcation and the period-doubling bifurcation of
System (4) by selecting a suitable bifurcation parameter. Numerical computations are also
shown to verify the obtained theoretical results. The dynamical properties of the proposed
system will be clearly presented and explained via some figures.

This article is outlined as follows. Section 2 illustrates the discretization process of
System (4). In Section 3, we analyze the stability of the obtained equilibrium point. Section 4
is devoted to discussing the bifurcation analysis of the considered system, while Section 5
presents the numerical computations and highlights the most important results. Finally,
Section 6 concludes this article.

2. Discretization Process

In this section, we discretize System (3) by using the method of the piecewise constant
argument [21]. Since x(t) > 0 and y(t) > 0, System (3) can be written as

Tαx(t)
x(t) = p

x(t) +
x(t)
y(t) − 1,

Tαy(t)
y(t) = x2(t)

y(t) − c.
(4)

Using the method of the piecewise constant argument, System (4) becomes
Tαx(t)

x(t) = p
x([ t

h ]h)
+

x([ t
h ]h)

y([ t
h ]h)
− 1,

Tαy(t)
y(t) =

x2([ t
h ]h)

y([ t
h ]h)

− c,
(5)

with x(t) > 0 and y(t) > 0, where
[ t

h
]

denotes the integer part of t ∈ [0, ∞), α is a fractional
parameter, and h is a discretization parameter. Applying Equations (1) and (2) to the first
equation of System (5), we find

(t− nh)1−α dx(t)
x(t)dt

=
p

x(nh)
+

x(nh)
y(nh)

− 1,

where t ∈ [nh, (n + 1)h). Integrating the previous equation on the interval [nh, t) leads to

x(t) = x(nh) exp
((

p
x(nh)

+
x(nh)
y(nh)

− 1
)

hα

α

)
.
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This solution can be written in the form of difference equations by replacing y(nh)
and x(nh) by yn and xn, respectively, as follows:

xn+1 = xn exp
((

p
xn

+
xn

yn
− 1
)

hα

α

)
.

The second equation of System (5) is similarly solved to end up with

yn+1 = yn exp
((

x2
n

yn
− c
)

hα

α

)
.

Therefore, we obtain the following two-dimensional difference equations:
xn+1 = xne

(
p

xn +
xn
yn −1

)
hα

α ,

yn+1 = yne

(
x2

n
yn −c

)
hα

α .

(6)

3. Stability Analysis

This section investigates the local asymptotic stability of System (6). The unique
positive equilibrium point of System (6) is given by

P+ =

(
p + c,

(p + c)2

c

)
.

The Jacobian matrix of System (6) at the point P+ is given by

J(P+) =


1 +

(c− p)hα

α(p + c)
− c2hα

α(p + c)2

2(p + c)hα

α
1− chα

α

. (7)

Then, the characteristic equation of the matrix J(P+) is shown as

F (µ) = µ2 − T µ +D = 0, (8)

where

T = 2 +
hα

α

(
c− p
p + c

− c
)

,

D = 1 +
hα

α

(
c− p
p + c

− c
)
+

ch2α

α2 .

Hence,

F (−1) = 4 +
2hα

α

(
c− p
p + c

− c
)
+

ch2α

α2 , F (0) = D, F (1) = ch2α

α2 > 0.

Lemma 1 ([22,23]). Let F (µ) = µ2 − T µ +D, where F (1) > 0. Assume that µ and µ′ are the
two roots of F (µ) = 0. Then,

1. If F (−1) > 0 and F (0) < 1, then | µ |< 1 and | µ′ |< 1, which implies that both
eigenvalues have magnitudes less than 1.

2. If F (−1) < 0, then | µ |< 1 and | µ′ |> 1 (or | µ |> 1 and | µ′ |< 1), which implies that
one eigenvalue has a magnitude less than 1, while the other has a magnitude greater than 1.

3. If F (−1) > 0 and F (0) > 1, then | µ |> 1 and | µ′ |> 1, which implies that both
eigenvalues have magnitudes greater than 1.
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4. If |T| < 2 and F (0) = 1, then µ and µ′ are complex numbers, and | µ |=| µ′ |= 1, which
implies that both eigenvalues are on the unit circle.

5. F (−1) = 0 and F (0) 6= 0, 1 if and only if µ = −1 and |µ| 6= 1.

Given that c > 0, it follows that F (1) > 0, and we can use Lemma (1) to state the
following theorem.

Theorem 1. For the fixed point P+ of System (6), let

h∓ =

(
α
(
(p−c)+c(p+c)∓

√
((p−c)+c(p+c))2−4c(p+c)2

)
c(p+c)

) 1
α

, h′ =
(

α + α(p−c)
c(p+c)

) 1
α .

Then, the following statements are true:

1. If one set of the following conditions is true, then P+ is locally asymptotically stable (sink):

i- ((p− c) + c(p + c))2 − 4c(p + c)2 < 0 and 0 < h < h′.
ii- ((p− c) + c(p + c))2 − 4c(p + c)2 ≥ 0 and 0 < h < h−.

2. If one set of the following conditions is true, then P+ is unstable (source):

i- ((p− c) + c(p + c))2 − 4c(p + c)2 < 0 and h > h′.
ii- ((p− c) + c(p + c))2 − 4c(p + c)2 ≥ 0 and h > h−.

3. The fixed point P+ is unstable (saddle) if

((p− c) + c(p + c))2 − 4c(p + c)2 < 0, and h− < h < h+.

4. The point P+ is non-hyperbolic and the roots of Equation (8) are µ = −1 and |µ′| 6= 1 if

((p− c) + c(p + c))2 − 4c(p + c)2 ≥ 0, and h = h∓.

5. The point P+ is non-hyperbolic and the roots of Equation (8) are complex numbers with
modulus one if

((p− c) + c(p + c))2 − 4c(p + c)2 < 0, and h = h′.

4. Bifurcation Analysis

In this section, we discuss the existence of a Neimark–Sacker bifurcation and a period-
doubling bifurcation [4,22,24–30] for System (6) by taking h as a bifurcation parameter.

4.1. Neimark–Sacker Bifurcation

This subsection is devoted to analyzing the Neimark–Sacker bifurcation for System (6)
at the equilibrium point P+ when the bifurcation parameter varies in a small neighborhood
of the set

BNS =


(c, p, h, α) ∈ R4

∣∣∣((p− c) + c(p + c))2 < 4c(p + c)2,

h = h′ =
(

α +
α(p− c)
c(p + c)

) 1
α

, α ∈ (0, 1]

.

Assume that (c, p, h, α) ∈ BNS. Then, System (6) can be written as
xn+1 = xne

(
p

xn +
xn
yn −1

)
(h′+h̄)α

α = H1(xn, yn, h̄),

yn+1 = yne

(
x2

n
yn −c

)
(h′+h̄)α

α
= H2(xn, yn, h̄),

(9)
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where h̄ is a small perturbation from h′, and h̄ � 1. By using changes in the variables

zn = xn − (p + c) and wn = yn −
(
(p+c)2

c

)
, we can shift the equilibrium point P+ to

the origin. Then, we expand H1 and H2 at the origin by using the Taylor series. Hence,
System (9) becomes

zn+1 = a11zn + a12wn + a13z2
n + a14znwn + a15w2

n+

a16z3
n + a17z2

nwn + a18znw2
n + a19w3

n +O2(|zn|, |wn|)4,

wn+1 = a21zn + a22wn + a23z2
n + a24znwn + a25w2

n+

a26z3
n + a27z2

nwn + a28znw2
n + a29w3

n +O2(|zn|, |wn|)4,

(10)

where

a11 = 1 + (c−p)(h′+h̄)α

(p+c)α , a12 = −c2(h′+h̄)α

α , a21 = 2(p+c)(h′+h̄)α

α , a22 = 1− c(h′+h̄)α

α .

Note that the values of a13, a14, · · · , a19, a23, a24, · · · , a29 are given in Appendix A,
with h = (h′ + h̄). The characteristic equation of the Jacobian matrix of System (10), which
is evaluated at the new shifted point, is given by

µ2 − T (h̄)µ +D(h̄) = 0, (11)

where

T (h̄) = 2 +
(h′ + h̄)α

α

(
c− p
p + c

− c
)

,

D(h̄) = 1 +
(h′ + h̄)α

α

(
c− p
p + c

− c
)
+

c(h′ + h̄)2α

α2 .

Since (c, p, h, α) ∈ BNS and since Equation (11) has a pair of complex conjugate roots
with a unit modulus, given by

µ(h̄), µ′(h̄) =
T (h̄)

2
± i

2

√(
4D(h̄)− T (h̄)2

)
,

it follows that |µ(h̄)| = |µ′(h̄)| =
√
D(h̄), and

d|µ(h̄)|
dh̄

∣∣∣∣
h̄=0

=
d|µ′(h̄)|

dh̄

∣∣∣∣
h̄=0

=
1

2
√
D(0)

(
α +

α(p− c)
c(p + c)

) α−1
α
(

c +
p− c
p + c

)
> 0.

The condition T (0) 6= 0, 1 leads to

h 6=
(

2(p + c)
p− c + c(p + c)

)
,
(

(p + c)
p− c + c(p + c)

)
, (12)

which is equivalent to (µ′)k, µk 6= 1 for k = 1, 2, 3, 4. In order to obtain the normal form of
System (10) at h̄ = 0, we use the following transformation:(

zn

wn

)
=

(
a12 0

δ− a11 −ε

)(
x̄n

ȳn

)
,

with δ = <(µ) = T (0)
2 and ε = =(µ) = 1

2

√
(4D(0)− T (0)2). Using this transformation,

System (10) reads as  x̄n+1 = δx̄n − εȳn + H̃1(x̄, ȳ, h′),

ȳn+1 = εx̄n + δȳn + H̃2(x̄, ȳ, h′),
(13)



Fractal Fract. 2023, 7, 344 7 of 18

where

H̃1(x̄n, ȳn, h′) =
a13

a12
z2

n +
a14

a12
znwn +

a15

a12
w2

n +
a16

a12
z3

n +
a17

a12
z2

nwn +
a18

a12
znw2

n+

a19

a12
w3

n + Õ1(|zn|, |wn|)4,

H̃2(x̄n, ȳn, h′) =

(
a13(δ− a11)

εa12
− a23

ε

)
z2

n +

(
a14(δ− a11)

εa12
− a24

ε

)
znwn+(

a15(δ− a11)

εa12
− a25

ε

)
w2

n +

(
a16(δ− a11)

εa12
− a26

ε

)
z3

n+(
a17(δ− a11)

εa12
− a27

ε

)
z2

nwn +

(
a18(δ− a11)

εa12
− a28

ε

)
znw2

n+(
a19(δ− a11)

εa12
− a29

ε

)
w3

n + Õ2(|zn|, |wn|)4,

and
zn = a12 x̄n, wn = (δ− a11)x̄n − εȳn.

Finally, in order to determine the conditions under which the Neimark–Sacker bifurca-
tion exists, we consider the following nonzero expression:

L = <(µ′t21)−<
(
(1− 2µ)(µ′)2

1− µ
t20t11

)
− 1

2
|t11|2 − |t02|2 , (14)

where

t20 =
1
8

[
∂2H̃1
∂x̄2 −

∂2H̃1
∂ȳ2 + 2

∂2H̃2
∂x̄∂ȳ

+ i
(

∂2H̃2

∂x̄2 −
∂2H̃2

∂ȳ2 − 2
∂2H̃1
∂x̄∂ȳ

)]∣∣∣∣
h̄=0

,

t11 =
1
4

[
∂2H̃1
∂x̄2 +

∂2H̃1
∂ȳ2 + i

(
∂2H̃2

∂x̄2 +
∂2H̃2

∂ȳ2

)]∣∣∣∣
h̄=0

,

t02 =
1
8

[
∂2H̃1
∂x̄2 −

∂2H̃1
∂ȳ2 − 2

∂2H̃2
∂x̄∂ȳ

+ i
(

∂2H̃2

∂x̄2 −
∂2H̃2

∂ȳ2 + 2
∂2H̃1
∂x̄∂ȳ

)]∣∣∣∣
h̄=0

,

t21 =
1

16

[
∂3H̃1
∂x̄3 +

∂3H̃1
∂x̄∂ȳ2 +

∂3H̃2

∂x̄2∂ȳ
+

∂3H̃2

∂ȳ3 + i
(

∂3H̃2

∂x̄3 +
∂3H̃2

∂x̄∂ȳ2 −
∂3H̃1
∂x̄2∂ȳ

− ∂3H̃1
∂ȳ3

)]∣∣∣∣
h̄=0

.

Theorem 2. Assume that Condition (12) is satisfied, and let (c, p, h, α) ∈ BNS with L 6= 0.
Then, System (10) undergoes a Neimark–Sacker bifurcation at the equilibrium point P+ =(

p + c, (p+c)2

c

)
when the bifurcation parameter h varies in a small neighborhood of

h′ =
(

α +
α(p− c)
c(p + c)

) 1
α

.

Moreover, if L < 0 (L > 0), then an attracting (respectively, repelling) closed invariant curve

bifurcates from the equilibrium point P+ =
(

p + c, (p+c)2

c

)
for h > h′ (respectively, h < h′).

4.2. Period-Doubling Bifurcation
In this subsection, the period-doubling bifurcation [28] is studied at the equilibrium

point P+ when the bifurcation parameter varies in a small neighborhood of the set

BPB =



(c, p, h, α) ∈ R4
∣∣∣∣α ∈ (0, 1], ((p− c) + c(p + c))2 ≥ 4c(p + c)2, h 6=

(
α +

α(p−c)
c(p+c)

) 1
α

h = h− =

α
(
(p− c) + c(p + c)−

√
((p− c) + c(p + c))2 − 4c(p + c)2

)
c(p + c)


1
α


.
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It is worth noting that one can similarly use the bifurcation parameter h = h+ when
it varies in a small neighborhood of the set BPB. Suppose that (c, p, h, α) ∈ BPD. Then,
System (6) can be written as

xn+1 = xne
(

p
xn +

xn
yn −1

)
(h−+h̄)α

α = H1(xn, yn, h̄),

yn+1 = yne

(
x2

n
yn −c

)
(h−+h̄)α

α
= H2(xn, yn, h̄),

(15)

where h̄ is a small perturbation from h−, and h̄� 1. By utilizing changes in the variables

zn = xn − (p + c) and wn = yn −
(
(p+c)2

c

)
, we can translate the equilibrium point P+ to

the origin. Then, we expand H1 and H2 at the origin using the Taylor series. Achieving this,
System (15) becomes

zn+1 = a11zn + a12wn + a13z2
n + a14znwn + a15w2

n + b11zn h̄ + b12wn h̄ + a16z3
n+

b13h̄2 + b14z2
n h̄ + b15w2

n h̄ + a17z2
nwn + a18znw2

n + b16znwn h̄ + b17h̄3+

b18zn h̄2 + b19wn h̄2 + a19w3
n +O2(|zn|, |wn|, |h̄|)4,

wn+1 = a21zn + a22wn + a23z2
n + a24znwn + a25w2

n + b21zn h̄ + b22wn h̄ + a26z3
n+

b23h̄2 + b24z2
n h̄ + b25w2

n h̄ ++a27z2
nwn + a28znw2

n + b26znwn h̄ + b27h̄3+

b28zn h̄2 + b29wn h̄2 + a29w3
n +O2(|zn|, |wn|, |h̄|)4,

(16)

where

a11 = 1 + (c−p)(h−+h̄)α

(p+c)α , a12 = −c2(h−+h̄)α

α , a21 = 2(p+c)(h−+h̄)α

α , a22 = 1− c(h−+h̄)α

α .

It is worth noting that the values of a13, a14, · · · , a19, a23, a24, · · · , a29, b11, b12, · · · , b19,
b21, b22, · · · , b29 are given in Appendix A with h = (h− + h̄). Now, we determine the
normal form of System (16) at h̄ by using the transformation:(

zn

wn

)
=

(
a12 a12

−1− a11 µ′ − a11

)(
x̄n

ȳn

)
.

Hence, System (16) becomes x̄n+1 = δx̄n − εȳn + H̃1(x̄, ȳ, h−),

ȳn+1 = εx̄n + δȳn + H̃2(x̄, ȳ, h−).
(17)

where

H̃1(x̄, ȳ, h̄) =
(

a13(µ′−a11)−a12a23
a12(1+µ′)

)
z2

n +
(

a14(µ′−a11)−a12a24
a12(1+µ′)

)
znwn +

(
a−15(µ′−a11)−a12a25

a12(1+µ′)

)
w2

n

+
(

b11(µ′−a11)−a12b21
a12(1+µ′)

)
zn h̄ +

(
b12(µ′−a11)−a12b22

a12(1+µ)

)
wn h̄ +

(
a16(µ′−a11)−a12a26

a12(1+µ′)

)
z3

n

+
(

b13(µ′−a11)−a12b23
a12(1+µ′)

)
h̄2 +

(
b14(µ′−a11)−a12b24

a12(1+µ′)

)
z2

n h̄ +
(

b15(µ′−a11)−a12b25
a12(1+µ′)

)
w2

n h̄

+
(

a17(µ′−a11)−a12a27
a12(1+µ′)

)
z2

nwn +
(

a18(µ′−a11)−a12a28
a12(1+µ′)

)
znw2

n +
(

b16(µ′−a11)−a12b26
a12(1+µ′)

)
znwn h̄

+
(

b17(µ′−a11)−a12b27
a12(1+µ′)

)
h̄3 +

(
b18(µ′−a11)−a12b28

a12(1+µ′)

)
zn h̄2 +

(
b19(µ′−a11)−a12b29

a12(1+µ′)

)
wn h̄2

+
(

a19(µ′−a11)−a12a29
a12(1+µ′)

)
w3

n +O1(|zn|, |wn|, |h̄|)4,
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and

H̃2(x̄, ȳ, h̄) =
(

a13(1−a11)+a12a23
a12(1+µ′)

)
z2

n +
(

a14(1−a11)+a12a24
a12(1+µ′)

)
znwn +

(
a−15(1−a11)+a12a25

a12(1+µ′)

)
w2

n

+
(

b11(1−a11)+a12b21
a12(1+µ′)

)
zn h̄ +

(
b12(1−a11)+a12b22

a12(1+µ)

)
wn h̄ +

(
a16(1−a11)+a12a26

a12(1+µ′)

)
z3

n

+
(

b13(1−a11)+a12b23
a12(1+µ′)

)
h̄2 +

(
b14(1−a11)+a12b24

a12(1+µ′)

)
z2

n h̄ +
(

b15(1−a11)+a12b25
a12(1+µ′)

)
w2

n h̄

+
(

a17(1−a11)+a12a27
a12(1+µ′)

)
z2

nwn +
(

a18(1−a11)+a12a28
a12(1+µ′)

)
znw2

n

(
b16(1−a11)+a12b26

a12(1+µ′)

)
znwn h̄(

b17(1−a11)+a12b27
a12(1+µ′)

)
h̄3
(

b18(1−a11)+a12b28
a12(1+µ′)

)
zn h̄2

(
b19(1−a11)+a12b29

a12(1+µ′)

)
wn h̄2

+
(

a19(1−a11)+a12a29
a12(1+µ′)

)
w3

n +O2(|zn|, |wn|, |h̄|)4,

with
zn = a12(x̄ + ȳ) and wn = −(1 + a11)x̄ + (µ′ − a11)ȳ.

Thus, the approximation of the center manifold Mc(0, 0, 0) of System (17) within the
neighborhood of h̄ = 0 is evaluated at the origin to obtain

Mc(0, 0, 0) =
{
(x̄, ȳ) ∈ R2 : ȳ = m1 x̄2 + m2 x̄h̄ + m3h̄2 +O(x̄, h̄)3

}
,

where

m1 =

(
(a13a12 − a12a24)(1 + a11)− a2

12a23 − (a14 − a26)(1 + a11)
2

(1− (µ′)2)
+

a16(1 + a11)
3

a12(1− (µ′)2)

)
,

m2 =

(
(b11 − b22)(1 + a11)− a12b12

(1− (µ′)2)
+

b12(1 + a11)
2

a12(1− (µ′)2)

)
,

and

m3 =
b13(1− a11)− a12b23

a12(1− (µ′)2)
.

Thus, System (17) is restricted to the center manifold Mc(0, 0, 0) as follows:

φ : x̄ → −x̄ + s1 x̄2 + s2 x̄h̄ + s3 x̄2h̄ + s4 x̄h̄2 + s5 x̄3 +O(x̄, h̄)4,

where

s1 =
(µ′ − a11)(a13a12 − a14(1 + a11)) + a12(a24(1 + a11)− a23a12)

(1 + µ′)

+
(1 + a11)

2(a15(µ
′ − a11)− a24a12)

a12(1 + µ′)
,

s2 =
(µ′ + a11)(a12b11 − b12(1 + a11)) + a12(b22(1 + a11)− b21a12)

a12(1 + µ′)
,

s3 =
(µ′ + a11)(a12b14 − b16(1 + a11))− a12(a12b24 + (1 + a11)b26)− b25(1 + a11)

2

(1µ′)

+
b15(µ

′ + a11)(1 + a11)
2

a12(1 + µ′)
,

s4 =
b18(µ

′ + a11)− b28a12 + b29(1 + a11)

(1 + µ′)
− b19(µ

′ + a11)
2

a12(1 + µ′)
,

s5 =
(µ′ − a11)(a14a2

12 + a16(1 + a11)
2 − a15a12(1 + a11))− a24a3

12 + a25a2
12(1 + g11)

(1 + µ′)
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+
a27a12(1 + a11)

3 − a26a2
12(1 + a11)

2 − a17(µ
′ − a11)(1 + a11)

3

a12(1 + µ′)
.

Suppose that

X1 =

(
∂2φ

∂x̄∂h̄
+

1
2

∂φ

∂h̄
∂2φ

∂x̄2

)∣∣∣∣
(0,0)

= s2,

and

X2 =

(
1
6

∂3φ

∂x̄3 +

(
1
2

∂2φ

∂x̄2

)2)∣∣∣∣∣
(0,0)

= s5 + s2
1.

Theorem 3. If X1 6= 0 and X2 6= 0, then System (6) experiences a period-doubling bifurcation

at the positive fixed point P+ =
(

p + c, (p+c)2

c

)
when the parameter h changes within a small

neighborhood of BPD. If X2 > 0, then System (6) bifurcates from the fixed point P to a stable
two-periodic orbit. If X2 < 0, then System (6) bifurcates from the fixed point P+ to an unstable
two-periodic orbit.

5. Numerical Computations and Discussion

This section presents the numerical computations of the obtained theoretical results.
We also discuss the most important results obtained in this article.

Example 1. In this example, we take p = 0.26, c = 0.3, α = 0.5, h ∈ [0, 1.4], and the initial
conditions M0 = (0.6, 1.06), M1 = (0.56, 1.045). Then, System (6) undergoes a supercritical
Neimark–Sacker bifurcation as h varies in a small neighborhood of

h′ =
(

α +
α(p− c)
c(p + c)

) 1
α

= 0.1451.

The bifurcation diagrams for xn and yn are shown in Figure 1a,b, respectively. Moreover,
the maximum Lyapunov exponent (MLE) is plotted in Figure 1c. It is easy to observe that the
equilibrium point of System (6) is locally asymptotically stable for 0 < h < 0.1451. At h = 0.1451,
the equilibrium point P+ loses its property of local asymptotic stability. As a result, a closed invariant
curve appears around the equilibrium point P+ and inside the interval h ∈ [0.1451, 0.7901] due to
the Neimark–Sacker bifurcation (see Figure 1d). Furthermore, when h ∈ [0.7901, 1.4], it is easy to
observe the appearance of 10-, 20-, and 40-period orbits, quasi-periodic orbits, and attracting chaotic
sets. In addition, the Jacobian matrix of System (6) under the above-mentioned values is given by

J(P+) =

(
1.0544 −0.2187

0.8533 0.7714

)
,

whose eigenvalues are µ = 0.9129 − 0.4081i and µ′ = 0.9129 + 0.4081i. These eigenvalues
definitely confirm that System (6) undergoes the Neimark–Sacker bifurcation at the point P+. In
Figure 2a–c, we present local magnifications of Figure 1a–c, respectively, whereas h changes in
[0.7901, 1.013]. It is easy to see that 10-, 20-, 40-period cycles appear when h passes through the
value h = 0.7903 in the chaotic region. Figure 3 is presented to illustrate the phase portraits of
System (6) for different fixed values of h and the initial conditions M0, M1. When h < h′ = 0.1451,
System (6) has a positive equilibrium point that is locally asymptotically stable, as demonstrated
in Figure 3a,b. Moreover, when the value of the bifurcation parameter h reaches h′ = 0.1451,
the stability of the system is lost, resulting in an attracting closed invariant curve Λs encircling
the fixed point P+ (see Figure 3c–e). All the orbits starting from the initial conditions both inside
and outside of the invariant curve, with the exception of the equilibrium point P+, approach Λs
asymptotically (see Figure 3d,e). Some 10-, 20-, 40-period orbits are also plotted in Figure 4a–e.
Finally, chaotic attractors are produced for h = 1.4, as illustrated in Figure 4f.
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Example 2. We assume that p = 3.5, c = 0.1, α = 0.25, h ∈ [0, 0.245], and the initial
condition M0 = (3.2, 129). Then, System (6) undergoes a period-doubling bifurcation when the
bifurcation parameter h− = 0.0808. System (6) has a unique positive point P+ at (c, p, α, h−) =
(0.1, 3.5, 0.25, 0.0808). The Jacobian matrix of System (6) is given by

J(P+) =

(
−1.0141 −0.0016
15.3549 0.7867

)
,

where its eigenvalues are µ = −1 and µ′ = 0.7726, with |µ′| 6= 1. Hence, (c, p, α, h−) =
(0.1, 3.5, 0.25, 0.0808) ∈ BPD. The bifurcation diagrams of System (6) are shown in Figure 5a,b,
while the maximum Lyapunov exponent (MLE) is plotted in Figure 5c. In Figure 5a,b, we observe
that the fixed point P+ of System (6) is asymptotically stable for h < h− = 0.0808. This local
stability can be also observed in Figure 5c, in which the system also loses its stability when h = h−

via a period-doubling bifurcation. Further, when h > h−, there is a period-doubling cascade in orbits
of 2, 4, 8, 16, and 32 periods (see Figure 6a,b). The maximum Lyapunov exponents are computed,
and the existence of chaotic regions in the parameter space is clearly depicted in Figure 5c.

(a) (b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

h

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

M
a

x
im

a
l 
L

E

(c) (d)

Figure 1. Bifurcation diagram and the maximum Lyapunov exponent for System (6) versus h ∈ [0, 1.4]
with the initial condition M0 and bifurcation diagram in (h − xn − yn) space for h ∈ [0, 0.1451].
(a) Bifurcation diagram for xn, (b) bifurcation diagram for yn, (c) maximum Lyapunov exponent
(MLE), (d) bifurcation diagram in (h− xn − yn) space for h ∈ [0, 0.1451].
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(a) (b)

0.7901 0.85 0.9 0.95 1.013 1.05

h

-0.2

-0.15

-0.1

-0.05

0

0.05

M
a
x
im

a
l 
L
E

(c)

Figure 2. Bifurcation diagram and the maximum Lyapunov exponent for System (6) versus
h ∈ [0.7901, 1.013] with the initial condition M0. (a) Bifurcation diagram for xn, (b) bifurcation
diagram for yn, (c) maximum Lyapunov exponent (MLE).
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0.559985 0.55999 0.559995 0.56 0.560005 0.56001 0.560015 0.56002

x
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1.0453

1.04531

1.04532

1.04533

1.04534

1.04535

1.04536

y
n

P
+

M
0

(a)

0.55998 0.55999 0.56 0.56001 0.56002

x
n

1.0453

1.04531

1.04532

1.04533

1.04534

1.04535

1.04536

y
n

M
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P
+

(b)

(c) (d)

(e) (f)

Figure 3. Phase portraits for h ∈ [0, 0.7901] of System (4). (a) Phase portrait for h = 0.049, (b) phase
portrait for h = 0.13, (c) phase portrait for h = h′ = 0.1451, (d) phase portrait for h = 0.148, (e) phase
portrait for h = 0.151, (f) phase portrait for h = 0.23.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Phase portraits for h ∈ [0.7901, 1.4] of System (4). (a) Phase portrait for h = 0.84, (b) phase
portrait for h = 0.94, (c) phase portrait for h = 1.009, (d) phase portrait for h = 1.1, (e) phase portrait
for h = 1.15, (f) phase portrait for h = 1.4.
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(a) (b)

0 0.05 0.0808 0.15 0.2 0.25 0.3

h
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Figure 5. Bifurcation diagrams and the maximum Lyapunov exponent for System (6) with the initial
condition M0. (a) Bifurcation diagram for xn with h ∈ [0, 0.245], (b) bifurcation diagram for yn with
h ∈ [0, 0.245], (c) maximum Lyapunov exponent (MLE) with h ∈ [0, 0.3].

(a) (b)

Figure 6. Bifurcation diagrams for System (6) with h ∈ [0.081, 0, 22]. (b) Bifurcation diagram for xn,
(a) bifurcation diagram for yn.
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6. Conclusions

This work has successfully investigated the qualitative behavior of System (3). In par-
ticular, System (3) has been discretized using the method of the piecewise constant argu-
ment and has been converted to a system of difference equations, as shown in System (6).
Theorem 1 has shown that the equilibrium point P+ becomes a sink, a source, a saddle,
or non-hyperbolic under certain types of conditions. In Theorem 2, we have proved that
System (10) undergoes a Neimark–Sacker bifurcation at the equilibrium point P+ when
the bifurcation parameter h varies in a small neighborhood of h′. This can be clearly seen
in Figure 1a,b, which have been plotted with the values p = 0.26, c = 0.3, α = 0.5,
h ∈ [0, 1.4], and h′ = 0.1451. In Figure 1c, we illustrate the maximum Lyapunov exponent
(MLE). Furthermore, the first Lyapunov exponent for these parametric values is given by
L = −0.000456 < 0, which proves the correctness of Theorem 2. Our findings in Section 4.2
indicate that System (6) encounters a period-doubling bifurcation at the equilibrium point
P+ when the parameter h changes within a small neighborhood of BPD. Moreover, Sys-
tem (6) bifurcates from the fixed point P+ to a two-periodic stable orbit if X2 > 0, while this
system bifurcates from the fixed point P+ to a two-periodic unstable orbit when X2 < 0.
The bifurcation diagrams of this system are plotted in Figure 5a,b with the parameter values
p = 3.5, c = 0.1, α = 0.25, and h ∈ [0, 0.245] and the initial condition M0 = (3.2, 129). We
can conclude that the proposed techniques are reliable and powerful and can be utilized to
deal with other biological systems.
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Appendix A
This part gives the values of some coefficients of System (16).

a13 =
1
2

(
2hα

αy∗
+

x∗h2α

α2

(
1
y∗
− p

x∗

)2
)

, a14 = 2
(
− 2x∗hα

α(y∗)2 −
h2α

(y∗)2α2

(
(x∗)2

y∗
− p

))
,

a15 =
1
2

(
2(x∗)2hα

α(y∗)3 +
(x∗)3h2α

α2(y∗)4

)
, a16 =

h2α

6α2

(
1
y∗
− p

(x∗)2

)
(

1
y∗
− p

(x∗)2 −
4

(x∗)2 +
hα

αy∗
+

x∗hα

α

(
1
y∗
− p

(x∗)2

)2
)

,

a17 =
1
2

(
6x∗hα

α(y∗)3 −
2ph2α

α2(y∗)3 +
5(x∗)2h2α

α2(y∗)2 +
(x∗)3h3α

α3(y∗)4

(
1
y∗
− p

(x∗)2

))
,

a18 =
1
2

(
4x∗hα

α(y∗)3 +
5(x∗)2h2α

α2(y∗)4 −
2h2α

α2(y∗)4 +
(x∗)3h3α

α3(y∗)4

(
1
y∗
− p

(x∗)2

))
,

a19 =
1
6

−6(x∗)2hα

α(y∗)4 −
6(x∗)3h2α

α2(y∗)5 − (x∗)4h3α

α3(y∗)6

, b11 =
2∂2H1(x∗, y∗, h)

∂x∂h̄
, b12 =

2∂2H1(x∗, y∗, h)
∂y∂h̄

,

b13 =
∂2H1(x∗, y∗, h)

2∂h̄2 , b14 =
∂3H1(x∗, y∗, h)

2∂x2∂h̄
, b15 =

∂3H1(x∗, y∗, h)
2∂y2∂h̄

, b16 =
∂3H1(x∗, y∗, h)

2∂x∂y∂h̄
,

b17 =
∂3H1(x∗, y∗, h)

6∂h̄3 , b18 =
∂3H1(x∗, y∗, h)

∂x∂h̄2 , b19 =
∂3H1(x∗, y∗, h)

2∂y∂h̄2 , a23 =
hα

α

(
1 +

2chα

α

)
,
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a24 =
4c2h2α

(p + c)α2 , a25 =
c3h2α

2(p + c)2α2 , a26 =
2ch2α

3(p + c)α2

(
3 +

2chα

α

)
,

a27 =
−c2h2α

(p + c)2α2

(
3 +

2chα

α

)
, a28 =

c3h2α

(p + c)3α2

(
2 +

chα

α

)
, a29 =

−c4h2α

6(p + c)4α2

(
3 +

chα

α

)
,

b11 = 4x∗hα−1

(
1 +

hα

α

(
(x∗)2

y∗
− c
))

, b22 = 2hα

(
− (x∗)2

y∗
+

(
1− (x∗)2hα

y∗α

)(
(x∗)2

y∗
− c
))

,

b23 =
hα

2

(
(x∗)2 − cy∗

)(
(α− 1) + hα

(
(x∗)2

y∗
− c
))

,

b24 =
hα−1

2

((
1 +

4(x∗)2hα

y∗α

)
+

hα

α

(
1 +

2(x∗)2hα

y∗α

)(
(x∗)2

y∗
− c
))

,

b25 =
(x∗)4h2α−1
2(y∗)3α2

(
2α + hα

(
(x∗)2

y∗
− c
))

, b26 =
4(x∗)3h2α−1
(y∗)2α2

(
2α + hα

(
(x∗)2

y∗
− c
))

,

b27 = ((x∗)2−cy2)hα−3

6

(
(α− 1)

(
(α− 2) + 2hα

(
(x∗)2

y∗ − c
))

+ hα
(
(α− 1) + 2hα

(
(x∗)2

y∗ − c
))

(
(x∗)2

y∗ − c
))

, b28 = x∗hα−2
(
(α− 1) + (2α−1)hα

α

(
(x∗)2

y∗ − c
)
+
(

1 + hα

α

(
(x∗)2

y∗ − c
))

(
(x∗)2

y∗ − c
))

, b29 = h2α−1
2

(
− (x∗)2

y∗ +
(

1− (x∗)2hα

y∗α

)(
(x∗)2

y∗ − c
))(

(x∗)2

y∗ − c
)
+

hα−2
(
−(α−1)(x∗)2

y∗ +
(
(α− 1)− (2α−1)(x∗)2hα

α

)(
(x∗)2

y∗ − c
))

.
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