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Abstract: From the initial development of probability theory to the present days, the convergence
of various discrete processes to simpler continuous distributions remains at the heart of stochastic
analysis. Many efforts have been devoted to functional central limit theorems (also referred to
as the invariance principle), dealing with the convergence of random walks to Brownian motion.
Though quite a lot of work has been conducted on the rates of convergence of the weighted sums of
independent and identically distributed random variables to stable laws, the present paper is the
first to supply the rates of convergence in the functional limit theorem for stable subordinators. On
the other hand, there is a lot of activity on the convergence of CTRWs (continuous time random
walks) to processes with memory (subordinated Markov process) described by fractional PDEs. Our
second main result is the first one yielding rates of convergence in such a setting. Since CTRW
approximations may be used for numeric solutions of fractional equations, we obtain, as a direct
consequence of our results, the estimates for error terms in such numeric schemes.

Keywords: rates of convergence; functional limit theorem with stable processes; fractional equations;
smooth Wasserstein distances; Kolmogorov’s distance; continuous time random walks (CTRW);
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1. Introduction

From the initial development of probability theory to the present days, the convergence
of various discrete processes to simpler continuous distributions remain at the heart of
stochastic analysis. Many efforts have been devoted to functional central limit theorems
(also referred to as the invariance principle), dealing with the convergence of random walks
to Brownian motion. For the first results on the rates of convergence in the functional
CLT, we can refer to [1,2], with explicit numeric constants provided in [3]. For recent
development in the convergence rates for functional CLT and its generalizations, see, for
example, refs. [4,5] and references therein.

There are many papers devoted to the rates of convergence of random sequences to
stable laws; see, for example, refs. [6–9], and the references therein. However, though there
is a serious interest in the function limit theorems with convergence to stable process, see,
for example, refs. [10,11] and references therein, there seems to be yet no results on the
rates of convergence in this setting. To the best knowledge of the author, the present paper
is the first one supplying the rates of convergence in the functional limit theorem for stable
subordinators. Moreover, we give explicit numeric constants, which seems to be new, even
for the convergence to stable laws. As a technical novelty, we introduce and use effectively
the smooth Wasserstein–Kantorovich metrics for measures based on the functional spaces
of Hölder continuous functions. This approach makes our estimates rather flexible for
adjusting to various stability indexes and various levels of regularity.
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Let us notice that the results on the rates of weak convergence of processes are often
formulated in terms of certain topologies on path spaces (such as Skorokhod topologies
J1 and M1) and related metrics. Our convergence rates are formulated in simpler terms
of the uniform convergence of marginal (in time) distributions. Alternative measures of
convergence could be also various pseudo-distances νr between distribution functions, say
F, G, defined, for instance, by the inequalities of type |F(s)− G(s)| ≤ A|s|rνr (that have to
hold for small s); see [12] and the numerous references therein.

Another popular topic deals with the convergence of CTRWs (continuous random
walks) to processes with memory described by fractional PDEs. The CTRWs were in-
troduced in [13]. They found numerous applications in physics. The scaling limits of
these CTRWs were analyzed by many authors; see for example, [14–16]. The crucial point
(realized initially by physicists, see [17] or [13]) is the fact that the limits of scaled CTRW
yield Markov processes, time changed by inverse stable subordinators that solve fractional
in time PDEs. The scaling limit for the position dependent CTRW was developed in [18].
Refs. [12,19] present convergence rates for a particular case of convergence to fractional
distributions, including double-array schemes, but there seem to be no results available for
the rates of convergence for a functional limit to fractional evolutions. Our final result is the
first one providing the rates in this setting, and it deals with a rather general model of gen-
eralized (position depending) CTRWs. The methods used for proofs are based essentially
on the theory of operator semigroups in the spirit of ideas, proposed initially in [18,20] and
developed further in [21].

Since CTRW approximations may be used for numeric solutions of fractional equations
(see [22]), we get, as a direct consequence of our results, the estimates for error terms in
such numeric schemes. Numeric solutions to fractional PDEs is currently a rather hot
topic. We refer to papers [23,24] for the probabilistic (Monte Carlo type) approach to
numeric solutions of fractional equations and to [25] and references therein for (much more
abundant) work on deterministic approaches.

The paper is organized as follows. In the next section, we formulate carefully our main
results, discuss some links with related popular research topics and present the most basic
examples. Section 3 is devoted to a review of some auxiliary facts playing a crucial role
in our arguments. Though they are mostly known, we present them for handy references,
stressing also some particular points and consequences related to our purposes. The rest
of the paper is devoted to the proof of the main results, together with some intermediate
steps that may be of independent interest.

We conclude the introduction with certain basic notations that will be used in the
paper without further reminder.

Letters P and E will be used to denote probability and expectation. The indicator
function of a set M will be denoted by 1(M).

As usual, let C(Rd) denote the space of bounded continuous functions on Rd equipped
with the standard sup-norm ‖.‖. For k ∈ N, let Ck = Ck(Rd) denote the space of k times
continuously differentiable functions on Rd with bounded derivatives equipped with the
standard norm

‖ f ‖Ck = max{‖ f ‖, k
max
m=1
‖ f (m)‖},

where ‖ f (k)‖ denotes the maximum of sup-norms of all partial derivatives of f of order
k. Let C∞(Rd) denote the closed subspace of C(Rd) consisting of functions vanishing at
infinity, Ck

∞(Rd) the closed subspace of Ck(Rd) consisting of functions such that all its
derivatives, up to order k, belong to C∞(Rd).

For α ∈ (0, 1], let Hα = Hα(Rd) denote the space of bounded α-Hölder continuous
functions equipped with the norm

‖ f ‖α = max{‖ f ‖, sup
0<|x−y|≤1

| f (x)− f (y)|
|x− y|α }, (1)
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and for k ∈ N, let Hk,α = Hk,α(Rd) denote the subspace of Ck(Rd) of functions with
α-Hölder continuous derivatives of order k equipped with the norm

‖ f ‖k,α = max{‖ f ‖Ck , ‖ f (k)‖α}, (2)

where ‖ f (k)‖α is the maximum of the Hα- norms of all partial derivatives of f of order k.

2. Formulation of the Main Results

In this section, we formulate our main results. In the first subsection, we shall deal
with the convergence of random walks to stable subordinators in three senses: in smooth
Wasserstein distances (based on the functional spaces of Hölder continuous functions), in
Kolmogorov’s distance and in various versions of convergence that are uniform in time.
In the second subsection, we formulate our result on the rates of convergence for CTRW
approximations. Finally, we supply some basic examples and recall the main link with the
fractional PDEs.

2.1. Convergence of Random Walks to Stable Subordinators

Everywhere in this paper, we assume that τi, i ∈ N, is a sequence of positive inde-
pendent and identically distributed random variables having probability density p(y) on
R+ such that p(0) = 0, p(x) is continuously differentiable, and p(y) = y−1−β for y ≥ B
with some β ∈ (0, 1) and B > 0 such that βBβ > 1. The latter condition comes from the
requirement that

∫ ∞
B p(y)dy ≤ 1. Let

Φh
t =

[t/h]

∑
i=1

h1/βτi,

be the corresponding scaled random walk (where we set Φh
t = 0 for t < h). We shall denote

by V[t/h]
h the transition operators of the discrete Markov chain Φh

t .

Remark 1. (i) The exact power law dependence of the density p(x) for large x is the standard sim-
plifying assumption for the analysis of the central limit theorem for stable laws, see, for example, [7].
However, for convergence to stable distributions, more weaker assumptions can also be found in the
literature; see, for example, [8]. We decided to stick here to the simplest assumption to show the
idea of our framework for the calculations of the rates of convergence in the most transparent way.
(ii) Requirements that p(0) = 0 and p(x) are continuously differentiable are not needed for the
validity of Theorems 1 and 2.

Let Tt
β be the Feller semigroup of the β-stable Lévy subordinator Σ̂β

t in R generated by
the operator

L̂β f (x) =
∫ ∞

0

f (x + y)− f (x)
y1+β

dy.

For convenience, we chose L̂ to differ from the case of the standard stable subordinators
(see (34)) by a multiplier. Therefore, if Σβ

t is the standard β-subordinator, then

Σ̂β
t = Σβ

tΓ(1−β)/β
. (3)

It is well known that the operators V[t/h]
h converge to the Feller semigroup Tt

β of the
stable subordinator; see, for example, [15] or [18]. The next three theorems specify the rates
of convergence in three different senses.

Theorem 1. (i) If
β < (1− β)/β, (4)
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then for any α ∈ (β, min{1, (1− β)/β}],

sup
s≤t
‖(V[s/h]

h − Ts
β) f ‖ ≤ hmin(1,(1−β)/β)t

(
2B

1− β
+

4α

β2(1− β)(α− β)

)
‖ f ‖1,α. (5)

For instance, if β ≤ 1/2 and thus 1− β ≥ β, choosing α = 1 yields the estimate

sup
s≤t
‖(V[s/h]

h − Ts
β) f ‖ ≤ ht

(
2B

1− β
+

4
β2(1− β)2

)
‖ f ‖1,1, (6)

and if β < (1− β)/β ≤ 1, then, choosing α = (1− β)/β yields the estimate

sup
s≤t
‖(V[s/h]

h − Ts
β) f ‖ ≤ h(1−β)/βt

(
2B

1− β
+

4
β2(1− β− β2)

)
‖ f ‖1,(1−β)/β. (7)

(ii) If β ≥ (1− β)/β, then

sup
s≤t
‖(V[s/h]

h − Ts
β) f ‖ ≤ h1−βt

(
2B

1− β
+

10
β2(1− β)2

)
‖ f ‖1,(1−β)/β. (8)

These results can be more elegantly written using certain popular norms, which we
shall review now.

For a subspace B of C(R), which is itself a Banach space equipped with the norm ‖.‖B,
one can introduce a metric on the set of real random variables by the equation

dB(X, Y) = sup{|E f (X)− E f (Y)| : ‖ f ‖B ≤ 1}. (9)

For instance, if B = Ck, k ∈ N, the corresponding metrics dCk are often referred to
as the smooth Wasserstein metrics (see, for example, [8]). Intermediate metrics can be
defined by using the spaces of Hölder functions Hα as the subspace B. For the space H1,
the corresponding metric is referred to as the bounded Lipschitz metric.

For instance, with these notations, the inequality (5) can be equivalently written

sup
s≤t

dH1,α(Φ
h
s , Σ̂β

s ) ≤ hmin(1,(1−β)/β)t
(

2B
1− β

+
4α

β2(1− β)(α− β)

)
. (10)

Similarly, the other statements of Theorem 1 can be rewritten.
Notice that estimates (5) with flexible α may require less regularity than estimates (6)

and (7), which are more transparent but less powerful than (5).

Remark 2. The rates of convergence studied in the literature relate the convergence of weighted
sums of τi to stable distributions. For instance, in our notations, the results of [8] represent the
estimates for dC2(Φh

1, Σ̂β
1 ) (where h = 1/n in [8]). Our estimates, apart from being functional

(giving uniform estimates for s ≤ t), are based on more general spaces Hα, thus requiring less
regularity. We also supply the exact values for the constants involved.

The convergence of a sequence of random variables in smooth Wasserstein metrics
implies its weak convergence. Now, we shall enhance the convergence with respect
to smooth Wasserstein metrics (as given by Theorem 1) to a stronger convergence in
Kolmogorov’s metric.

Theorem 2. (i) If β < (1− β)/β any α ∈ (β, min{1, (1− β)/β}], then

sup
K>0

sup
s∈[t0,t]

|P(Φh
s ≤ K)− P(Σ̂β

s < K)|
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≤ 1
2
(t−1/β

0 + 3)
(

2B
1− β

+
4α

β2(1− β)(α− β)

)1/(α+2)
(hmin(1,(1−β)/β)t)1/(α+2), (11)

for any 0 < t0 ≤ t and
sup
K>k

sup
s≤t
|P(Φh

s ≤ K)− P(Σ̂β
s < K)|

≤ [k−1(Γ(1− β)/β)1/β + 3/2]
(

2B
1− β

+
4α

β2(1− β)(α− β)

)1/(α+2)
(hmin(1,(1−β)/β)t)1/(α+2), (12)

for any t > 0, k > 0.
(ii) If β ≥ (1− β)/β, then

sup
K>0

sup
s∈[t0,t]

|P(Φh
s ≤ K)− P(Σ̂β

s < K)|

≤ 1
2
(t−1/β

0 + 3)
(

2B
1− β

+
10

β2(1− β)2

)β/(β+1)
(h1−βt)β/(β+1), (13)

for any 0 < t0 ≤ t and
sup
K>k

sup
s≤t
|P(Φh

s ≤ K)− P(Σ̂β
s < K)|

≤ [k−1(Γ(1− β)/β)1/β + 3/2]
(

2B
1− β

+
10

β2(1− β)2

)β/(β+1)
(h1−βt)β/(β+1), (14)

for any t > 0, k > 0.

It is seen that the difference between the distribution functions of the random variables
Φh

s and Σ̂β
s may not be easy to control for both s and K small. This effect can be expected,

as Φh
s is discrete in s and Σ̂β

s has a density function that increases to infinity, as s→ 0.
Recall that the Kolmogorov distance between random variables X and Y is defined by

the formula
dKol(X, Y) = sup

z
|P(X ≤ z)− P(Y ≤ z)|. (15)

Thus, inequality (13) rewrites as

sup
t0<s≤t

dKol(Φ
h
s , Σ̂β

s ) ≤
1
2
(t−1/β

0 + 3)
(

2B
1− β

+
10

β2(1− β)2

)β/(β+1)
(h1−βt)β/(β+1). (16)

If β ≤ 1/2, then from (11) one derives the estimate

sup
t0≤s≤t

dKol(Φ
h
s , Σ̂β

s ) ≤
1
2
(t−1/β

0 + 3)
(

2B
1− β

+
4

β2(1− β)2

)1/3
(ht)1/3, (17)

and if β2 < 1− β ≤ β, then from (11) one derives the estimate

sup
t0≤s≤t

dKol(Φ
h
s , Σ̂β

s ) ≤
1
2
(t−1/β

0 + 3)
(

2B
1− β

+
4

β2(1− β− β2)

)β/(β+1)
h(1−β)/(1+β)tβ/(β+1). (18)

In Theorem 2, we estimated |P(Φh
s ≤ K)− P(Σ̂β

s < K)| uniformly in K for bounded s.
Now we shall estimate |P(Φh

s ≤ K)− P(Σ̂β
s < K)| uniformly in s for bounded K, which is

crucial for the proof of our last theorem.
Below, we shall use the constant t0 (depending only on β), which is given explicitly in

Proposition 6.
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Theorem 3. If β ≤ 1/2, then

sup
K≤K0

sup
s≥1
|P(Φh

s ≤ K)− P(Σ̂β
s < K)|

≤ 2h1/(3+β)

[(
2B

1− β
+

4
β2(1− β)2

)1/3
+ 22/βK0

]
(19)

for any K0 and small enough h, namely whenever hβ/(β+3) ≤ 1/t0.
If β2 < 1− β ≤ β, then

sup
K≤K0

sup
s≥1
|P(Φh

s ≤ K)− P(Σ̂β
s < K)|

≤ 2h(1−β)/(1+β+β2)

[(
2B

1− β
+

4
β2(1− β− β2)

)β/(β+1)
+ 22/βK0

]
(20)

for any K0 and small enough h, namely whenever hβ(1−β)/(1+β+β2) ≤ 1/t0.
If β ≥ (1− β)/β, then

sup
K≤K0

sup
s≥1
|P(Φh

s ≤ K)− P(Σ̂β
s < K)|

≤ 2hβ(1−β)/(1+β+β2)

[(
2B

1− β
+

10
β2(1− β)2

)β/(β+1)
+ 22/βK0

]
(21)

for any K0 and small enough h, namely whenever hβ2(1−β)/(1+β+β2) ≤ 1/t0.
Moreover, one has similar estimates for

sup
k≤K≤K0

sup
s>0
|P(Φh

s ≤ K)− P(Σ̂β
s < K)| (22)

with the same power dependence of h but with different constants (depending on k, K0, β, B).
Finally, ∫ ∞

0
|P(Φh

s ≤ K)− P(Σ̂β
s < K)| ds ≤ (1 + K + K−1)C(β)hκ(β) (23)

with some constants C(β) > 0 and κ(β) ∈ (0, 1) (that can be written explicitly). For instance,
if β ≥ (1− β)/β, then

κ(β) =
β(1− β)2

1 + β + β2 .

2.2. Convergence of Position-Dependent CTRWs to Fractional Evolutions

In this subsection, we formulate our second main result concerning the rates of con-
vergence of generalized (position dependent) CTRWs to Markov processes with memory
described by fractional PDEs.

The inverse process to the scaled random walk Φh
t is defined by the equation

Nh
K = sup{t : Φh

t < K}.

In renewal theory, this process is also referred to as the number of renewals. It can be
defined by several other equivalent ways. They are insightful, and we provide them for
the convenience of the readers in our less standard (scaled) version. Namely, Nh

K can be
equivalently defined by (i) the requirement that the events (Nh

K > t) and (Φh
t < K) coincide

(for all t, K), (ii) by the requirement that
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Φh
Nh

K−h < K ≤ Φh
Nh

K
,

or (iii) by the counting-number-of-events formula

Nh
K/h = 1 +

∞

∑
n=1

1(Φh
nh < K) = 1 +

∞

∑
n=1

1

(
n

∑
i=1

h1/βτi < K

)
.

In particular, the key relation is

P(Nh
K > t) = P(Φh

t < K).

Suppose Xh
1 , Xh

2 , · · · is a sequence of independent and identically distributed random
variables in Rd such that the distribution of each Xh

i is given by a probability measure
µh

space(dx) that depends on h. The standard (scaled) continuous time random walk (CTRW)
is a random process given by the random sum

Nh
t /h

∑
j=1

Xh
i .

In position-dependent CTRW, the jumps Xh
i are not independent, but each Xh

i depends
on the position of the process before this jump. The natural general formulation can be
given in terms of discrete Markov chains as follows.

Let On
h (x) be a family (depending on a parameter h > 0) of discrete-time Markov

chains in Rd, independent of the sequence {τi}. Let Uh be a transition operator of O1
h(x)

so that
Uh f (x) = EO1

h(x) =
∫

f (y)µh
space(x, dy), (24)

with some family of stochastic kernels µh
space(x, dy).

The discrete-time process

ONh
t /h

h (x), (25)

with the transition operators UNh
t /h

h , is a generalized scaled (position dependent) continu-
ous time random walk (CTRW) arising from transitions µh

space(x, dy) and the sequence of
waiting times {τi}. Thus, it is a Markov chain, time changed by the inverse process to the
scaled random walk built on the sequence {τi}.

Let us denote by
σy = max{t : Σ̂β

t ≤ y}

the inverse process to the stable subordinator Σ̂β
t .

As was already mentioned, it has been proved by many authors under various as-
sumptions that if (Uh − 1)/h converges to an operator L, which generates a Feller process
Xt(x) (here, as in (25), x stands for the initial point of the process) with a Feller semigroup

Ft, then the processes of CTRW ONh
t /h

h (x) converges in distribution to the time-changed
Markov process Xt(x), that is, to the process Xσt(x). Our final result supplies the rates of
convergence for this scaling limit in terms of marginal distributions.

Theorem 4. Let the Feller semigroup Ft = etL of a Feller process Xt(x) and the family of contrac-
tions Uh satisfy the assumptions of Proposition 1 (given below) with κh + εh = hω with some
ω > 0. Then, if m > 0, then

sup
x
|E f (ONh

t /h
h (x))− E f (Xσt(x))| = ‖EUNh

t /h
h f − EFσt f ‖

≤ 4(1 + max(1, m/ω))(1 + t + t−1) ln(1/h)−1‖ f ‖D, (26)
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for all t > 0, f ∈ D, and h ≤ h0 with sufficiently small h0 (depending on β, B).
If m = 0, then the convergence rates on the right-hand side of (26) can be improved to the

power-type estimate

sup
x
|E f (ONh

t /h
h (x))− E f (Xσt(x))| ≤ C(β)(1 + t + t−1)hκ(β)‖ f ‖D, (27)

with some C(β) and κ(β) ∈ (0, 1). For instance, if β ≥ (1− β)/β, then

κ(β) = min
{

ω

β + 1
,

β(1− β)2

1 + β + β2

}
.

A numeric estimate for h0 is easy to derive for given β, B, but a general formula is
lengthy and not very revealing; hence, it is omitted.

2.3. Link with Fractional Equations and Fractional Distributions; Examples

It is well known, see, for example, monographs [16,20,26], that the subordinated
limiting evolution described by the operators E f (Xσt(x)) = EFσt f (x) solves fractional
in time-differential equations. Namely, under the conditions of Theorem 4, the function
ft(x) = E(Fσt f )(x) satisfies the equation

Dβ
0+? ft(x) = L ft(x), f0(x) = f (x), (28)

where Dβ
0+? is the Caputo–Dzherbashian derivative of order β acting on the variable t,

and the operator L acts on the variable x. Thus, Theorem 4 provides the rates of convergence
for the CTRW approximations of the solutions to fractional equations.

Recall that the Caputo–Dzherbashian derivative of order β ∈ (0, 1) is given by the formula

Dβ
0+? f (s) =

1
Γ(1− β)

∫ x

0
(s− r)−β f ′(r) dr,

see, for example, [27].
The most basic examples are supplied by operators L that are diffusion operators

Ldi f f (x) =
1
2

tr
(

G(x)
∂2 f
∂x2 (x)

)
=

1
2 ∑

ij
Gij(x)

∂2 f
∂xi∂xj

(x), x ∈ Rd, (29)

with G(x), a positive d× d-matrix, or the generators of stable-like processes

Lβ
st f (x) =

∫
Sd−1
|(s,∇ f (x))|βµ(x, s) ds, x ∈ Rd, (30)

with β ∈ (0, 2), µ(x, s) and even in s positive functions on Rd × Sd−1 and ds Lebesgue
measures on the unit sphere Sd−1. In particular, if µ(x, s) = 1 (that is, the spectral measure
µ(x, s) ds is uniform), then Lβ

st = σ|∆|β/2 (with σ a constant depending on d) becomes a
standard fractional Laplacian. Standard CTRW approximations to these operators are well
presented in the literature, see [16,20,26].

In both cases, if the coefficients are sufficiently smooth, one can take the space
D = C∞(Rd) ∩ C4(Rd), for which the assumptions of Proposition 1 (and thus of Theorem 4)
hold with κh = εh = h. In fact, the second required condition (42) usually holds trivially
for the standard constructions of CTRW approximation (as mentioned above), and the first
required condition (41) holds trivially with κh = h whenever D is a subspace such that
L2 is a bounded operator D → C∞(Rd). Estimates with κh = hω with some ω > 0 can be
obtained for larger space D = H1,α in the same way, as it is done for the stable subordinator
in Section 4 below.
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If the coefficients of these operators are constant (they specify a spatially homogeneous
process), then the assumptions of Proposition 1 hold with m = 0, thus allowing for better
power law rates of convergence (rather than our general logarithmic rates).

Let us present the simplest possible example. Namely, the operator L = ∆/2 in Rd is
known to generate a standard Brownian motion Bt with the standard heat equation semi-
group Ft. Let us approximate it by the standard random walk with the transition operator

Uh f (x) =
d

∑
i=1

f (x + hei) + f (x− hei)− 2 f (x)
2h2 ,

where ei is the standard basis in Rd. Choosing D = C∞(Rd) ∩ C4(Rd), we find ourselves
under the assumptions of Proposition 1 with κh = εh = h, m = 0 and l = 1. Choosing β
such that β ≥ (1− β)/β and applying Theorem 4, we obtain the rates of convergence of the

corresponding CTRW ONh
t /h

h to the subordinated Brownian motion (fractional diffusion):

sup
x
|E f (ONh

t /h
h (x))− E f (Bσt(x))| = ‖EUNh

t /h
h f − EFσt f ‖

≤ C(β)(1 + t + t−1)hβ(1−β)2/(1+β+β2)‖ f ‖C4 , (31)

for sufficiently small h. This can be also rewritten in terms of the smooth Wasserstein
distances (9):

dC4(O
Nh

t /h
h , Bσt) ≤ C(β)(1 + t + t−1)hβ(1−β)2/(1+β+β2)‖ f ‖C4 . (32)

The same estimate holds if instead of the Brownian motion, one takes the stable process
Yα

t in Rd generated by the fractional Laplacian |∆|α/2, α ∈ (1, 2), and the corresponding
standard CTRW approximation. The distribution of the subordinated process Yα

σt , where

σt is the inverse to the stable subordinator Σβ
t , was called fractional stable in [14] because,

as it was found, it could be obtained as the distribution of the ratio of two independent
stable random variables (the denominator taken in power β/α). For completeness, let us
write down the marginal probability density qt(y) of the process Yα

σt (started at y0 = 0):

qt(y) =
∫ ∞

0
Sα

(
1, (z/t)β/αy

)
(z/t)dβ/αSβ(1, z) dz, (33)

where Sα and Sβ are the densities of the symmetric α-stable distribution in Rd and of the
β-stable subordinator (with the unit scaling coefficient). Density (33) was obtained in [14],
as the limit of CTRWs, for the case of t = d = 1. A noteworthy observation is that density
function (33) is the same as for the distribution of the ratio Yα

1 (Σ
β
1 /t)−β/α.

Since the limiting distribution of Yα
σt has a smooth density, the convergence in the

smooth Wasserstein metric (32) can be further enhanced to a stronger convergence in
Kolmogorov’s or Prokhorov’s metric. Notice also that, for fixed t, we find ourselves in
another extremely popular field of research concerning the rates of convergence of the
random sums of independent and identically distributed random variables, see [28] and
numerous references therein.

Let us stress finally again that, as it follows from the discussion above, CTRW ap-
proximations can be used for numeric solutions of fractional equations. This numeric
approximation was seemingly first proposed in [22]. Our results supply the rates of conver-
gence to these numeric schemes.

3. Auxiliary Results

In this section, we collect some mostly known results, stressing some particular points
and consequences, which are crucial for our purposes.
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3.1. Estimates of One-Sided Stable Laws Near the Origin

Stable subordinators Σβ
t are increasing Lévy processes generated by the inverted

fractional derivative operator

− dβ

d(−x)β
f (x) =

β

Γ(1− β)

∫ ∞

0

f (x + y)− f (x)
y1+β

dy. (34)

The characteristic functions φt(q) of the transition probability densities Sβ(t, x) of
these processes are known to equal

φt(q) = exp{−t|q|βe−iπβsgn q/2} dq,

so that the densities themselves have the integral representation

Sβ(t, x) =
1

2π

∫
R

exp{−iqx− t|q|βe−iπβsgnq/2} dq. (35)

Notice that the function Gβ(t, x) = Sβ(t,−x) is the Green function for the Cauchy
problem to the operator (34) so that it solves the Cauchy problem

∂Gβ

∂t
(t, x) = − dβ

d(−x)β
Gβ(t, x), G(0, x) = δ(x).

It is clear that Sβ(t, x) are infinitely smooth in x and satisfy the scaling relation

Sβ(t, x) = t−1/βS(1, t−1/βx).

Therefore, a study of the density Sβ can be effectively reduced to the study of Sβ(1, x).
From (34), it follows that stable subordinators move only in one direction, implying

that Sβ(t, x) = 0 for x ≤ 0.
From (35), it follows that

Sβ(1, x) ≤ 1
π

∫ ∞

0
exp{−tqβ cos(πβ/2)} dq

for any x and therefore

max
x

Sβ(1, x) ≤ 1
πβ

Γ(1/β)[cos(πβ/2)]−1/β. (36)

In this paper, we are working with the re-scaled subordinator Σ̂β
t , given by (3) and

having the transition density Ŝ(t, x) = S(tΓ(1− β)/β, x). It follows that

max
x

Ŝ(t, x) = max
x

S(tΓ(1− β)/β, x) = (tΓ(1− β)/β)−1/β max
x

S(1, x)

≤ t−1/β(Γ(1− β)/β)−1/β Γ(1/β)

πβ
[1− β]−1/β,

where in the last inequality, we took into account the simple estimate cos(πβ/2) > 1− β,
valid of all β ∈ (0, 1). Thus, using also that Γ(2− β) = Γ(1− β)(1− β), we conclude that

max
x

Ŝ(t, x) ≤ t−1/β M, M = sup
β∈(0,1)

[(Γ(2− β)/β)−1/β Γ(1/β)

πβ
].

Performing elementary manipulations (which we omit) with the Stirling formula (with
explicit estimates, see, for example, [29]) allows one to prove a uniform bound for the
multiplier M:



Fractal Fract. 2023, 7, 335 11 of 23

Lemma 1.

M = sup
β∈(0,1)

[Γ(2− β)/β]−1/β Γ(1/β)

πβ
≤ 1/2. (37)

Consequently,

P(Σ̂β
t ≤ K) =

∫ K

0
Ŝβ(t, x) dx =

1
2

Kt−1/β. (38)

We shall need also the estimates for Sβ(1, x) for large x. These estimates can be derived
from the standard expansion (see, for example, [30,31])

Sβ(1, x) = − 1
πx

∞

∑
k=1

Γ(1 + kβ)

Γ(1 + k)
sin(kπβ)(−x−β)k,

which is convergent for all x > 0. Making a very rough estimate of the terms, we obtain

Sβ(1, x) ≤ πβ

πx

∞

∑
k=1

kx−βk =
β

x
x−β

1− x−β
.

Thus, for x ≥ 2,

Sβ(1, x) ≤ x−1−β β

1− 2−β
.

Since 1− e−β ln 2 ≥ β ln 2(1− β ln 2/2) ≥ β ln 2(1− ln 2/2), it follows that

Sβ(1, x) ≤ 3x−1−β, x ≥ 2. (39)

3.2. Convergence of Markov Chains to Continuous-Time Processes

It is well known that the convergence of the generators of contraction semigroups on
the core of the limiting generator implies the convergence of semigroups. We shall need a
version of this fact with explicit rates, namely the following result, given in Theorem 8.1.1
of [20].

Proposition 1. Let Ft = etL be a Feller semigroup in the Banach space B = C∞(Rd), generated by
an operator L, having a core D, which is itself a Banach space with a norm ‖.‖D ≥ ‖.‖B such that
‖L f ‖B ≤ l‖ f ‖D for a constant l and all f ∈ D. Let Ft be also a bounded semigroup in D such that

max
s∈[0,t]

‖Ft‖D→D ≤ emt,

with a constant m ≥ 0 (the growth rate of the semigroup).
Let Uh be a family of contractions in B, and let

‖
(

Uh − 1
h
− L

)
f ‖B ≤ εh‖ f ‖D, (40)

‖
(

Fh − 1
h
− L

)
f ‖B ≤ κh‖ f ‖D, (41)

with εh → 0 and κh → 0, as h→ 0. Then the scaled discrete semigroups (Uh)
[t/h] converge to the

semigroup Ft and moreover

sup
s≤t
‖(Uh)

[s/h] − Fs f ‖B ≤ (κh + εh)‖ f ‖D

∫ t

0
ems ds. (42)

As a key illustration to when (40) holds, we shall look at the convergence of random
walks to stable subordinators, as described by the following result.



Fractal Fract. 2023, 7, 335 12 of 23

Lemma 2. Let p(y) be a probability density on R+ such that p(y) = y−1−β for y ≥ B with some
β ∈ (0, 1) and B > 0 such that βBβ > 1 (the latter condition comes from the requirement that∫ ∞

B p(y)dy ≤ 1). Then, we have the following:
(i) For any bounded measurable f having support on [Bh1/β, ∞),

h−1
∫ ∞

0
f (h1/βy)p(y)dy =

∫ ∞

0

f (y)dy
y1+β

, (43)

(ii) For any bounded measurable f on R+ such that | f (y)| ≤ Ly for y ∈ [0, Bh1/α] and some
constant L, it follows that∣∣∣∣h−1

∫ ∞

0
f (h1/βy)p(y)dy−

∫ ∞

0

f (y)dy
y1+β

∣∣∣∣ ≤ CB,βLh−1+1/β, (44)

with

CB,β =
B1−β

1− β
+
∫ B

0
yp(y)dy ≤ B1−β

1− β
+ B ≤ 2B

1− β
.

Proof. (i) From the condition on the support of f , one can change p(y) to y1−β. Changing
the variable of integration to y′ = h1/βy completes the proof.

(ii) Let f have support on [0, Bh1/β]. Then∣∣∣∣h−1
∫ ∞

0
f (h1/βy)p(dy)

∣∣∣∣ = ∣∣∣∣h−1
∫ B

0
f (h1/βy)p(y)dy

∣∣∣∣ ≤ h−1+1/βL
∫ B

0
yp(y)dy,

and ∣∣∣∣∫ ∞

0

f (y)dy
y1+β

∣∣∣∣ =
∣∣∣∣∣
∫ Bh1/β

0

f (y)dy
y1+β

∣∣∣∣∣ ≤ L
∫ Bh1/β

0

dy
yβ

=
B1−β

1− β
Lh−1+1/β,

implying (44). From βBβ > 1, it follows that B > 1, which implies the last estimate for
CB,β.

In particular, it follows that, for f ∈ C1

∣∣∣∣h−1
∫ ∞

0
( f (x± h1/βy)− f (x))p(y)dy−

∫ ∞

0

( f (x± y)− f (x))dy
y1+β

∣∣∣∣ ≤ 2B
1− β

‖ f ′‖h(1/β)−1. (45)

3.3. Estimates for Characteristic Functions for Distributions with a Density

It is well known (and easy to see) that if the support of a probability law µ on R is
not contained in a lattice, then the characteristic function φµ(q) is everywhere less than
one in magnitude, apart from the value φµ(0) = 1. One can give various estimates for the
magnitude of φµ(q) away from zero. Here, we derive a simple estimate that is handy for
heavy tailed distributions.

Proposition 2. Let a distribution µ on R+ have a bounded density p(x) and there exist B > 0
such that p(x) is monotonically decreasing and strictly positive for x ≥ B. Then for any q0 > 0,
there exists a κq0 ∈ (0, 1) such that

|φµ(q)| ≤ κq0 whenever |q| > q0.

Concretely, one can take

κq0 = 1− 1
2

∫ ∞

B+π/q0

p(x) dx. (46)
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Proof. Let q ≥ q0 > 0. We have∣∣∣∣∫ ∞

B
eiqx p(x) dx

∣∣∣∣2 =
∫ ∞

B

∫ ∞

B
cos[q(x− y)]p(x)p(y)dxdy.

Due to the monotonicity of p(x) and the oscillations of cos[q(x− y)] with period 2π/q,∣∣∣∣∫ ∞

B
cos[q(x− y)]p(x)dx

∣∣∣∣ ≤ ∫ B+π/q

B
p(x) dx ≤

∫ B+π/q0

B
p(x) dx.

Hence,

|
∫ ∞

B
eiqx p(x) dx|2 ≤

∫ B+π/q0

B
p(x) dx

∫ ∞

B
p(y) dy.

Therefore,

|φµ(q)| ≤
∣∣∣∣∫ B

0
eiqx p(x) dx

∣∣∣∣+ ∣∣∣∣∫ ∞

B
eiqx p(x) dx

∣∣∣∣
≤
∫ B

0
p(x) dx +

√∫ B+π/q0

B
p(x) dx

√∫ ∞

B
p(y) dy

= 1−
∫ ∞

B
p(x) dx +

√∫ B+π/q0

B
p(x) dx

√∫ ∞

B
p(x) dx,

which is easily seen to be bound by Cκq0 from (46).

3.4. From Weak to Strong Convergence of Distributions

Convergence of a sequence in the smooth Wasserstein metrics (9) implies the weak
convergence of this sequence. Here, we present a quantitative result, which is a generaliza-
tion of Corollary 1.6 from [8], showing that if a limiting distribution has a density, then the
convergence with respect to any of the smooth Wasserstein metrics implies the convergence
in Kolmogorov’s metric (15). Moreover, one is able to relate the rates of convergence in
Wasserstein’s and Kolmogorov’s distances.

Proposition 3. Let X, Y be two random variables such that the distribution of Y has a bounded
probability density p(x) with M = supx p(x). Then, for any k ∈ N,

dKol(X, Y) ≤ (M +κk)[dCk (X, Y)]1/(k+1), (47)

with a constant κk ≥ 1 depending only on k. For instance, κ1 ≤ 3/2 and κ2 ≤ 6. Moreover,
for any α ∈ (0, 1],

dKol(X, Y) ≤ (M + 1)[dHα(X, Y)]1/(α+1), (48)

dKol(X, Y) ≤ (M + 3/2)[dH1,α(X, Y)]1/(α+2), (49)

Proof. Sinceκk ≥ 1 and dKol(X, Y) ≤ 1, inequality (47) holds trivially whenever dCk (X, Y) ≥ 1.
Let us now assume that dCk (X, Y) < 1.

By the assumptions on Y,

P(Y ∈ [a, b]) ≤ (b− a)M

for any interval [a, b].
Let φ be a smooth function R→ [0, 1] such that φ(x) = 0 for x ≥ 1 and φ = 1 for x ≤ 0,

and let ρ ≥ 1 be a constant. Let φρ,z(s) = φ(ρ(s− z)), so that φρ,z(s) = 0 for s > z + 1/ρ.
Then

P(X ≤ z) ≤ Eφρ,z(X) ≤ Eφρ,z(Y) + dCk (X, Y)ρk‖φ‖Ck
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≤ P(Y ≤ z + 1/ρ) + dCk (X, Y)ρk‖φ‖Ck ≤ P(Y ≤ z) + M/ρ + dCk (X, Y)ρk‖φ‖Ck .

Let us choose ρ = [dCk (X, Y)]−1/(k+1). Then

P(X ≤ z)− P(Y ≤ z) ≤ [dCk (X, Y)]1/(k+1)(M + ‖φ‖Ck ).

Similarly, the opposite inequality is obtained, implying (47) with κk = ‖φ‖Ck . For k = 1,
one can choose φ(x) = 1− 3x2 + 2x3 for x ∈ [0, 1] so that κ1 = maxx∈[0,1](6x− 6x2) = 3/2.
For k = 2, one can choose φ(x) = 1− 10x3 + 15x4 − 6x5 yielding κ2 < 6.

Inequalities (48) and (49) are proved analogously, choosing the linear function as φ
on [0, 1] for the first case (so φ becomes Lipschitz with the Lipschitz constant 1) and the
function 1− 3x2 + 2x3 for the second case.

We will need this result for the distributions of stable processes Y = Σβ
t . By (36)

and the scaling property of the stable densities, we derive that for the standard β-stable
subordinator Y = Σβ

t , the constant M in Proposition 3 can be estimated as

M = max
x

Sβ(t, x) ≤ Γ(1/β)

πβ
[t cos(πβ/2)]−1/β ≤ Γ(1/β)

πβ
[t(1− β)]−1/β, (50)

and for the distribution of Y = Σ̂β
t generated by L̂β, this constant modifies to

M = max
x

Ŝβ(t, x) =≤ [tΓ(2− β)/β]−1/β Γ(1/β)

πβ
≤ 1/2t−1/β, (51)

where Lemma 1 was used.

4. Regularity of Stable Semigroups in Hölder Spaces

We are planning to derive Theorem 1 by an application of Proposition 1 with d = 1.
For this application, we need estimates (40) and (41). The former is supplied for our setting
by Lemma 2. The latter estimate is the subject of the present section.

Proposition 4. Let Tt
β be the Feller semigroup of the β-stable Lévy subordinator in R generated by

the operator

Lβ f (x) =
∫ ∞

0

f (x + y)− f (x)
y1+β

dy.

Then, for any α ∈ (β, 1],

‖Tt
β f − f ‖ ≤ 2α

β(α− β)
t‖ f ‖α, (52)

and for any α ∈ (0, β],

‖Tt
β f − f ‖ ≤ 5

β(1− β)
tα/(1+α)‖ f ‖α, (53)

Proof. If α ∈ (β, 1], then

‖Lβ f ‖ ≤ ‖ f ‖α

(∫ 1

0

yαdy
y1+β

+ 2
∫ ∞

1

dy
y1+β

)
≤ 2

(
1

α− β
+

1
β

)
‖ f ‖α =

2α

β(α− β)
‖ f ‖α.

In particular,

‖Lβ f ‖ ≤ 2
β(1− β)

‖ f ‖C1 . (54)

Hence

‖Tt
β f − f ‖ ≤

∫ t

0
‖TsLβ f ds‖ ≤ t‖Lβ f ‖ ≤ 2α

β(α− β)
t‖ f ‖α,
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yielding (52).
Next, let φ be an even nonnegative smooth function on R with support in [−1, 1] such

that φ(0) = 1 and
∫

φ(x) dx = 1. For δ ∈ (0, 1], let φδ(x) = δ−1φ(x/δ). Let us approximate
an arbitrary continuous function on R by its convolutions

( f ? φδ)(x) =
∫

f (y)φδ(x− y) dy =
∫

f (x− y)φδ(y) dy.

If f ∈ Hα, then

‖ f − f ? φδ‖ ≤ sup
x

∫
| f (x)− f (y)|φ((x− y)/δ)

dy
δ
≤ ‖ f ‖α sup

x

∫
|x− y|αφ((x− y)/δ)

dy
δ

= ‖ f ‖αδα
∫
|z|αφ(z) dz ≤ ‖ f ‖αδα.

On the other hand,

‖( f ? φδ)
′‖ ≤ 1

δ
‖ f ‖

∫
|φ′(y)| dy ≤ 2

δ
‖ f ‖.

Hence,

‖ f ? φδ‖C1 ≤ ‖ f ‖max{1,
2
δ
} ≤ 2

δ
‖ f ‖.

Therefore (using (54) in the last step),

‖(Tt
β− 1) f ‖ ≤ ‖(Tt

β− 1)( f − f ?φδ)‖+ ‖(Tt
β− 1)( f ?φδ)‖ ≤ 2‖ f − f ?φδ‖+ t‖Lβ( f ?φδ)‖

≤ ‖ f ‖α

(
2δα +

2
β(1− β)

2t
δ

)
.

Choosing δ = (2t)1/(1+α) and estimating β(1− β) ≤ 1/4 yields (53).

Lemma 3. If f ∈ H1,α, then Lβ ∈ Hα and

‖Lβ f ‖α ≤
2

β(1− β)
‖ f ‖1,α. (55)

Proof. Writing
Lβ f (x) = L1

β f (x) + L2
β f (x)

with

L1
β f (x) =

∫ 1

0

f (x + z)− f (x)
z1+β

dz =
∫ 1

0

∫ z
0 f ′(x + w)dw

z1+β
dz,

L2
β f (x) =

∫ ∞

1

f (x + z)− f (x)
z1+β

dz,

we have
|L1

β f (x)− L1
β f (y)|

|x− y|α ≤ ‖ f ‖1,α

∫ 1

0

z
z1+β

dz =
1

1− β
‖ f ‖1,α,

and
|L2

β f (x)− L2
β f (y)|

|x− y|α ≤
∫ ∞

1

| f (x + z)− f (y + z)|+ | f (x)− f (y)|
|x− y|αz1+β

dz

≤ 2‖ f ′‖ |x− y|1−α
∫ ∞

1

dz
z1+β

≤ 2
β
‖ f ′‖.
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Therefore (and using (54)),

‖Lβ f ‖α ≤ ‖ f ‖1,α

(
2

1− β
+

2
β

)
yielding (55).

Proposition 5. Under assumptions of Proposition 4, if α ∈ (0, β], then

‖
(

Tt
β − 1

t
− Lβ

)
f ‖ ≤ 10

β2(1− β)2 tα/(1+α)‖ f ‖1,α, (56)

and if α ∈ (β, 1], then

‖
(

Tt
β − 1

t
− Lβ

)
f ‖ ≤ 4α

β2(1− β)(α− β)
t‖ f ‖1,α. (57)

In particular,

‖
(

Tt
β − 1

t
− Lβ

)
f ‖ ≤ 4

β2(1− β)2 t‖ f ‖C2 . (58)

Proof. We have (
Tt

β − 1

t
− Lβ

)
f =

1
t

∫ t

0
(Ts

β − 1)L f ds.

Hence, if α ∈ (0, β], then by (53) and (55), the left-hand side of (56) is bounded by

5
β(1− β)

tα/(1+α)‖Lβ f ‖α ≤
5

β(1− β)
tα/(1+α) 2

β(1− β)
‖ f ‖1,α,

yielding (56). Similarly, the case α ∈ (β, 1] is dealt with.

5. Proof of Theorems 1 and 2

As a direct consequence of Proposition 1, estimates (45) and (56), and the observation
that, because the Feller semigroup of the stable has a spatially homogeneous integral
kernel, this Feller semigroup is a contraction in all spaces Ck, the spaces Hα and H1,α (so
Proposition 1 holds with m = 0), we can conclude that, for α ∈ (β, 1],

sup
s≤t
‖(U[s/h]

h − Ts
β) f ‖ ≤ t

(
2B

1− β
h(1−β)/β +

4αh
β2(1− β)(α− β)

)
‖ f ‖1,α. (59)

Consequently, under (4), choosing any α ∈ (β, min{1, (1− β)/β}] yields (5).
If (4) does not hold, then, choosing α = (1− β)/β, we obtain

sup
s≤t
‖(U[s/h]

h − Ts
β) f ‖ ≤ t

(
2B

1− β
h(1−β)/β +

10
β2(1− β)2 h1−β

)
‖ f ‖1,(1−β)/β. (60)

Since (1− β)/β > 1− β, it implies (8), completing the proof of Theorem 1.
Next, by (49),

sup
s≤t

dKol(Φ
h
s , Σ̂β

s ) ≤ (M + 3/2)[dH1,α(Φ
h
s , Σ̂β

s )]
1/(α+2),

with M ≤ 1/2 by (51). Therefore, estimates (11) and (13) follow from Theorem 1.
In view of these results, in order to prove (12) and (14) it is sufficient to consider only

the case of t = 1. To complete the proof, one has to look first at the proof of Proposition 3
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and to note that in order to estimate |P(X ≤ z)− P(Y ≤ z)|, it is sufficient to choose M to
be the maximum of the density p(x) only in a neighborhood of K (and not necessarily the
global maximum). Then for any s ∈ (0, 1), we can use inequality (49) with

M = M(s) = Ŝβ(s, K) = (sΓ(1− β)/β)−1/βSβ(1, K(sΓ(1− β)/β)−1/β).

Let us decompose the domain of variables K into two parts: K ≥ K0 and K ∈ [k, K0), where

K0 = 2[sΓ(1− β)/β]1/β.

In the first part, K(sΓ(1− β)/β)−1/β ≥ 2, and we can use estimate (39) to conclude
that M ≤ 3K−1 ≤ 3k−1. In the second part, we use estimate (51) yielding

M ≤ 1
2

s−1/β ≤ (Γ(1− β)/β)1/βk−1.

Since (Γ(1− β)/β)1/β ≥ 3, this completes the proof of 2.

6. Tails of Scaled CTRW

Recall that τi, i ∈ N, is a sequence of positive independent and identically distributed
random variables having probability density p(y) on R+ such that p(y) = y−1−β for y ≥ B
with some β ∈ (0, 1) and B > 0 such that βBβ > 1, and

Φh
t =

[t/h]

∑
i=1

h1/βτi. (61)

is the corresponding scaled random walk.

Proposition 6. Assume additionally that p(0) = 0 and p(x) is continuously differentiable. Then,
for any K > 0 and t ≥ 2,

P(Φh
t < K) ≤ 3

2
K(t− 1)−1/β21/β + ω(t− 1), (62)

where ω(t− 1) is exponentially small for large t uniformly for h ≤ 1 and all K. In particular,
for t > t0 with some t0 (which is explicitly given by condition (71)),

ω(t− 1) ≤ 1
2

K(t− 1)−1/β21/β,

and
P(Φh

t < K) ≤ 21+2/βKt−1/β (63)

for all h ≤ 1 and K ≥ 1.

Proof. The characteristic function of Φh
t equals

φΦh
t
(q) = [φT(qh1/β)][t/h] = [1 +

∫
(eiqh1/βx − 1)p(x) dx][t/h].

We need an estimate for its magnitude.
Consider separately three domains of the values of q:

I : |q| ≤ C1h−1/β, I I : C1h−1/β ≤ |q| ≤ C2h−1/β, I I I : |q| > C2h−1/β,

with constants C1, C2 chosen later. Then we can write

P(Φh
t < K) =

1
2π

∫ K

0

[∫
e−iqxφΦh

t
(q)dq

]
dx
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=
1

2π

∫ 1− e−iqK

iq
φΦh

t
(q) dq =

∫
I
+
∫

I I
+
∫

I I I
.

In domain I,

|φΦh
t
(q)| ≤ |1 +

∫ ∞

0
(eiqh1/βx − 1)p(x) dx|(t−1)/h.

By (5),
1
h

∫ ∞

0
(eiqh1/βx − 1)p(x) dx =

∫ ∞

0

(eiqy − 1)dy
y1+β

+ ω,

where
|ω| ≤ CB,β|q|h−1+1/β.

The value of the integral on the right-hand side is well known:

∫ ∞

0

(eiqy − 1)dy
y1+β

= −Γ(1− β)

β
e−iπβsgn q/2|q|β

= −Γ(1− β)

β
|q|β(cos(πβ/2)∓ i sin(πβ/2)),

where ∓ corresponds to positive and negative q, respectively. If

h
Γ(1− β)

β
|q|β ≤ 1

2
cos(πβ/2), (64)

then
|φΦh

t
(q)| ≤ |1 +

∫
(eiqh1/βx − 1)p(x) dx|

≤ |1− h
Γ(1− β)

β
|q|β(cos(πβ/2)∓ i sin(πβ/2))|+ h|ω|

=

√
1− h

Γ(1− β)

β
|q|β

(
2 cos(πβ/2)− h

Γ(1− β)

β
|q|β

)
+ h|ω|

≤ 1− h
2

Γ(1− β)

β
|q|β

(
2 cos(πβ/2)− h

Γ(1− β)

β
|q|β

)
+ h|ω|

≤ 1− h
2

Γ(1− β)

β
|q|β(3/2) cos(πβ/2) + h|ω|.

If, additionally,

CB,β|q|h1/β ≤ h
4

Γ(1− β)

β
|q|β(cos(πβ/2), (65)

then

|φΦh
t
(q)| ≤ |1 +

∫
(eiqh1/βx − 1)p(x) dx| ≤ 1− h

2
Γ(1− β)

β
|q|β(cos(πβ/2),

and

|φΦh
t
(q)| ≤

(
1− h

2
Γ(1− β)

β
|q|β cos(πβ/2)

)(t−1)/h
≤ exp{−1

2
(t− 1)|q|β Γ(1− β)

β
cos(πβ/2)}.

Conditions (64) and (65) are satisfied if

|q| ≤ C1h−1/β (66)
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with

C1 = min

[ β

2Γ(1− β)
cos(πβ/2)

]1/β

,

[
Γ(1− β)

4CB,ββ
cos(πβ/2)

]1/(1−β)
, (67)

which we assume from now on.
Then

|
∫

I
| ≤ K

π

∫ ∞

0
exp{−1

2
(t− 1)qβ Γ(1− β)

β
cos(πβ/2)} dq.

Changing the variable of integration yields

|
∫

I
| ≤ K

π
(t− 1)−1/β

∫ ∞

0
exp{−1

2
qβ Γ(1− β)

β
cos(πβ/2)} dq,

and therefore

|
∫

I
| ≤ KΓ(1/β)

πβ
(t− 1)−1/β

(
1
2

Γ(1− β)

β
cos(πβ/2)

)−1/β

.

Using the inequality cos(πβ/2) > 1− β and Lemma 1 yields the estimate

|
∫

I
| ≤ 3

2
K(t− 1)−1/β21/β. (68)

We assume that p(x) is continuously differentiable and p(0) = 0. Then in domain III,

|φT(q)| ≤
1
|q|

∫ ∞

0
|p′(y)| dy

and

|
∫

I I I
| ≤

∫
q≥C2h−1/β

2
πq

(
1

qh1/β

∫ ∞

0
|p′(y)| dy

)(t−1)/h
dq

=
2h

π(t− 1)
(h1/β)−(t−1)/h(h1/β)(t−1)/h

(∫ ∞

0
|p′(y)| dy/C2

)(t−1)/h
.

Thus,

|
∫

I I I
| ≤ 2h

π(t− 1)

(∫ ∞

0
|p′(y)| dy/C2

)(t−1)/h
.

Choosing

C2 = max
(

C1, 2
∫ ∞

0
|p′(y)| dy

)
,

we obtain
|
∫

I I I
| ≤ 2h

π(t− 1)
2−(t−1)/h. (69)

Thus, for t ≥ 3, any h ≤ 1 and K ≥ 1,

|
∫

I I I
| ≤ 1

8
K(t− 1)−1/β21/β,

which is bounded by 1/12 of the estimate of the main term |
∫

I |.
Finally, to work with II, we use Proposition 2 to conclude that |φT(q)| ≤ κC1 < 1 for

|q| ≥ C1. In our case,

κC1 = 1− 1
2

∫ ∞

B+π/C1

p(x) dx = 1− 1
2

∫ ∞

B+π/C1

x−1−β dx = 1− 1
2β

(B + π/C1)
−β.
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Then in II,
|φΦh

t
(q)| = |φT(qh1/β)|[t/h] ≤ κ(t−1)/h

C1
.

Therefore,

|
∫

I I
| ≤ 2

π
κ(t−1)/h

C1

∫ C2h−1/β

C1h−1/β

dq
q

=
2
π
κ(t−1)/h

C1
ln

C2

C1
. (70)

Thus, the second and the third integrals are exponentially small for large t uniformly
for h ≤ 1. Moreover, if t0 ≥ 3 is such that

2
π
κ(t0−1)

C1
ln

C2

C1
≤ 1

8
(t0 − 1)−1/β21/β, (71)

then |
∫

I I |+ |
∫

I I I | is bounded by 1/6 of the estimate of the main term |
∫

I | yielding the
required estimate for the exponentially small remainder ω(t − 1). Finally, estimating
t/(t− 1) ≤ 2, yields (63).

7. Proof of Theorem 3

Let us prove (19), as other estimates are proved quite analogously. If t ≥ 1 and
β ≥ (1− β)/β, then by (13),

sup
K>0

sup
1≤s≤t

|P(Φh
s ≤ K)− P(Σ̂β

s < K)| ≤ C(β)(h1−βt)β/(β+1), (72)

with a constant C(β) given explicitly in (13). We shall use this estimate for t ≤ Ω with
some large Ω > 0 to be chosen later. For t > Ω, we shall estimate the probabilities on the
left-hand side of (72) via tail estimates.

Namely, by (63), for t ≥ t0,

P(Φh
t < K) ≤ 21+2/βKt−1/β

and by (38)
P(Σ̂β

t ≤ K) ≤ 1.5Kt−1/β.

Thus,
sup
k≤K

sup
t≥Ω
|P(Φh

t ≤ K)− P(Σ̂β
t < K)| ≤ 21+2/βKΩ−1/β.

Consequently,

sup
k≤K

sup
s≥1
|P(Φh

s ≤ K)− P(Σ̂β
s < K)| ≤ C(β)(h1−βΩ))β/(β+1) + 2× 22/βKΩ−1/β.

Choosing now

Ω = h−ε, ε =
β(1− β)

1 + β + β2 ,

we obtain
sup
k≤K

sup
s≥1
|P(Φh

s ≤ K)− P(Σ̂β
s < K)| ≤ C̃(β, K)hε/β,

with
C̃(β, K) = C(β) + 2× 22/βK,

whenever hε ≤ 1/t0. This implies (19).
To obtain similar estimates for (22), one uses estimates (12) and (14).
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Finally, to prove (23), let us again consider the case β ≥ (1− β)/β for definiteness. Let
us decompose the integral

I =
∫ ∞

0
|P(Φh

s ≤ K)− P(Σ̂β
s < K)| ds

into the two parts I + I I, over the domains {s ≤ Ω = h−ε} and {s > Ω} with some ε > 0.
Then the integrand is bound (up to a constant) by

(1 + K−1)(h1−βs)β/(β+1)

in the first domain and by Ks−1/β in the second domain. Integrating, we obtain the estimate

I ≤ (1 + K−1)h(1−β)β/(β+1)h−ε[1+β/(β+1)] + Khε(1−β)/β.

Choosing

ε =
β2(1− β)

1 + β + β2 ,

we obtain the estimate
I ≤ C(β)hβ(1−β)2/(1+β+β2)

implying (23).

8. Proof of Theorem 4

For definiteness, let us consider the case with β ≤ 1/2, other cases being quite analogous.
We have

‖EUNh
t /h

h f − EFσt f ‖ ≤ I + I I,

with
I = ‖EUNh

t /h
h f − EFNh

t
f ‖, I I = ‖EFNh

t
f − EFσt f ‖.

To estimate I, we write

I =
∫ ∞

0
(U[s/h]

h f − Fs f )µh
t (ds) =

∫ z

0
(U[s/h]

h f − Fs f )µh
t (ds) +

∫ ∞

z
(U[s/h]

h f − Fs f )µh
t (ds),

where µh
t is the distribution of Nh

t .
By Proposition 1, the first term here is bounded in magnitude by

hω‖ f ‖Demz/z,

and, by Proposition 6, the second term is bounded by

2‖ f ‖P(Nh
t > z) = 2‖ f ‖P(Φh

z < t) ≤ 22+2/βtz−1/β‖ f ‖.

Thus,
|I| ≤ [hωemz/z + 22+2/βtz−1/β]‖ f ‖D.

Choosing z = min(1, ω/m) ln(1/h) yields

|I| ≤ ‖ f ‖D[hω−ω max(1, m/ω) ln(1/h)−1 + 22+2/βt ln(1/h)−1/β(max(1, m/ω))1/β]

≤ 4(t + 1) ln(1/h)−1‖ f ‖D(4 max(1, m/ω))1/β.

Integrating by parts in II, we obtain the following:

I I = ‖EeNh
t L f − Eeσt L f ‖
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= ‖
∫ ∞

0

∂

∂s
(esL f )(P(σt ≤ s)− P(Nh

t ≤ s)) ds‖

= ‖
∫ ∞

0
LesL f (P(Σ̂β

s > t)− P(Φh
s > t)) ds‖

≤ ‖L f ‖
∫ ∞

0
|P(Σ̂β

s ≤ t)− P(Φh
s ≤ t)| ds.

Consequently, by (23),

I I ≤ l‖ f ‖D(1 + t + t−1)C(β)hκ(β).

Since the logarithmic decay of integral I is more rough than the power decay of II,
estimate (26) follows.

Finally, if m = 0, then

|I| ≤ [hωz + 22+2/βtz−1/β]‖ f ‖D,

which is of order hω/(β+1) (obtained by choosing z = h−ωβ/(β+1)). Choosing further the
worst power estimate from I and I I, completes the proof.
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