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Abstract: Fractional derivatives and regime-switching models are widely used in various fields of
finance because they can describe the nonlocal properties of the solutions and the changes in the
market status, respectively. The regime-switching time-fractional diffusion equations that combine
both advantages are also used in European option pricing; however, to our knowledge, American
option pricing based on such models and their numerical methods is yet to be studied. Hence,
a fast algorithm for solving the multi-state time-fractional linear complementary problem arising
from the regime-switching time-fractional American option pricing models is developed in this
paper. To construct the solution strategy, the original problem has been converted into a Hamilton–
Jacobi–Bellman equation, and a nonlinear finite difference scheme has been proposed to discretize
the problem with stability analysis. A policy-Krylov subspace method is developed to solve the
nonlinear scheme. Further, to accelerate the convergence rate of the Krylov method, a tri-diagonal
preconditioner is proposed with condition number analysis. Numerical experiments are presented
to demonstrate the validity of the proposed nonlinear scheme and the efficiency of the proposed
preconditioned policy-Krylov subspace method.

Keywords: preconditioner; nonlinear finite difference scheme; linear complementary problem; time-
fractional derivative; policy iteration method

MSC: 91G60; 65M06; 65F08; 26A33; 65H10

1. Introduction

Option pricing has been a popular research topic in finance, as option instruments are
important derivatives in financial markets. The Black–Scholes model [1] is the most famous
model for option pricing problems and has been widely used; however, this model has
suffered many shortcomings because it is based on geometric Brownian motion and cannot
model jumps in the assets’ prices. New models have been proposed to deal with these
problems, such as stochastic volatility models [2,3], jump diffusion models [4], variance
gamma models [5], tempered stable models [6], self-exciting jump models [7], and Hawkes
jump diffusion models [8]. With the Levy processes used in option pricing, new pricing
models involving fractional derivatives have emerged.

Option valuation involving fractional derivatives is widely discussed. Cartea and
del-Castillo-Negrete find that the barrier option price can be obtained by solving fractional
partial differential equations for some particular Levy processes [9], such as finite mo-
ment log stable process [10], CGMY process [11], and KoBoL process [6]. Further, spatial
fractional derivatives have been used in American options pricing [12], European options
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pricing [13], and double barrier options pricing [14]; however, these models cannot describe
the long-term memory effects of the option value. Hence, the time-fractional derivative
started to be used in the option pricing problem, which was introduced by Wyss [15].
After that, two new families of fractional derivatives based on fractional Taylor’s series
and modified Riemann–Liouville derivatives were proposed to replace the standard time
derivatives to price the options [16]. Additionally, a partial differential equation containing
a Caputo fractional derivative was developed to price the European-style options [17]. Sub-
sequently, an option pricing model containing both time and spatial fractional derivatives
was proposed in [18].

Although the fractional derivative can describe the nonlocal properties of the assets’
prices and the time-independence properties of the option value, it cannot describe changes
in market states, such as bull and bear market transitions. Hence, regime-switching models
have been proposed and applied in options pricing [19], time series [20], and credit de-
fault swaps [21]. Additionally, the regime-switching option pricing involving fractional
derivatives has been developed in [22–24], which combines the advantages of both regime-
switching and fractional derivatives. For European option pricing, a system of space
fractional diffusion equations coupled by Markov terms from the regime-switching finite
moment log stable model has been developed in [23,25]. Furthermore, a coupled tem-
pered fractional diffusion equation has been used to value the European options [26,27].
In [28], a system of linear complementary problems (LCPs) involving tempered fractional
derivatives generated from the regime-switching CGMY model and KoBoL model has
been utilized to price the American options. The above models belong to the regime-
switching models with spatial fractional derivatives, and there are relatively few studies
of option pricing based on the regime-switching model involving time-fractional deriva-
tives. A regime-switching model containing time-fractional derivatives has been developed
in [24] to price the European options, and a fast positivity preserving numerical method
has been proposed in [22] to solve it. To the best of our knowledge, no numerical results
exist for such a model for pricing the American options. Hence, developing a fast solution
strategy for the multi-state time-fractional LCP arising from the regime-switching model
with a time-fractional derivative is the main aim of this paper.

As noted above, no study in the literature considers the numerical method for the
multi-state time-fractional LCP arising from American option pricing. The development of
the fast solution strategy can only refer to the numerical methods for the general American
options pricing. The methods for pricing American options can be broadly classified into
four categories. The first type of approach focuses on solving the problems via estimat-
ing the optimal execution boundary, such as the method proposed in [29]. The second
type of approach is mainly converting the problem into a linear problem via design-
ing a semi-implicit scheme or implicit–explicit scheme to solve the problem, such as the
L-stable method [19], the linearly implicit predictor–corrector scheme [30], or the IMEX-
BDF method [31]. The third type of approach is mainly transforming the problem into a
nonlinear equation to solve with iterative methods, such as the preconditioned penalty
method [28], the fix-point method [32], the fitted finite volume iterative method [33], the
modulus-based matrix splitting iteration method [34], and the modified modulus-based
matrix splitting iteration method [35]. The fourth type of approach is designing a iterative
method to solve the LCP directly, such as the projected SOR method [36] and the pro-
jected algebraic multigrid method [37]. In this paper, we design the fast numerical method
following the third type of method because this kind of method can be extended easily
to handle other related option pricing problems. However, it needs to solve a nonlinear
equation, which requires quite a lot of computational cost. In [38], the authors compare
several iterative procedures for solving the nonlinear scheme and find that the performance
of the fix-point policy iteration with direct control formulation is a reliable general-purpose
method. Inspired by [38], the fast numerical method designed in this paper is based on
the policy iteration and Krylov subspace method, which can be expected to be reliable
and efficient.
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The rest of this article is as follows. In Section 2, a nonlinear finite difference scheme
is proposed to discretize the considered problem with stability analysis. In Section 3,
a preconditioned policy-Krylov subspace method has been developed with convergence
analysis. Numerical experiments are given in Section 4, and conclusions are provided in
Section 5.

2. Numerical Scheme and Theoretical Analysis

In this paper, the multi-state time-fractional LCP generated from a regime-switching
modified Black–Scholes model with a time-fractional derivative [24,39] for the non-dividend
American put option pricing problem is considered. The considered problem can be written
as an optimization problem containing Ns LCPs coupled with a Markov generator matrix.
For j = 1, 2, . . . , Ns, the j-th LCP can be written as follows:

LjVj(S, t)−
∂β j Vj(S, t)

∂tβ j
≥ 0, Vj(S, t) ≥ V∗(S),(

LjVj(S, t)−
∂β j Vj(S, t)

∂tβ j

)(
Vj(S, t)−V∗(S)

)
= 0,

Vj(Smin, t) = max{K− Smin, 0}, t ∈ [0, T),

Vj(Smax, t) = max{K− Smax, 0}, t ∈ [0, T),

Vj(S, T) = max{K− S, 0}, S ∈ (Smin, Smax),

V∗(S) = max{K− S, 0}, S ∈ (Smin, Smax),

(1)

where

LjVj(S, t) := −1
2

σ2
j S2 ∂2Vj(S, t)

∂S2 − rS
∂Vj(S, t)

∂S
+ rVj(S, t)−

Ns

∑
i=1

qj,iVi(S, t),

and
∂

βj Vj(S,t)

∂tβj
is the modified right Riemann–Liouville fractional derivative [16] and de-

fined by
∂β j Vj(S, t)

∂tβ j
=

1
Γ(1− β j)

∂

∂t

∫ T

t

Vj(S, ξ)−Vj(S, T)

(ξ − t)β j
dξ. (2)

In the above model, K is the strike price of the options, and r is the risk-free interest
rate. β j is the order of the time-fractional derivative of the j-th state and satisfies 0 < β j < 1.
σj denotes the volatility when the underlying price is in the j-th regime. S is the asset’s
price, and its lower and upper truncated boundaries are Smin and Smax, respectively. The
entry qj,i is the transition rate of the Markov chain.

Inspired by [38], we attempted to devise a fast solution strategy based on policy
iteration and direct control formulation. Therefore, the considered LCPs (1) are solved by
transforming them into the Hamilton–Jacobi–Bellman (HJB) equations. By defining a new
variable Uj(S, t) = Vj(S, T − t), the considered LCP (1) can be converted into the following
HJB equation:

min{Uj(S, t)−V∗(S), C
0 D

β j
t Uj(S, t) + LjUj(S, t)} = 0, (3)

where C
0 D

β j
t Uj(S, t) is the Caputo fractional derivative [40], which is defined by

C
0 D

β j
t Uj(S, t) =

1
Γ(1− β j)

∫ t

0

U
′
j(S, ξ)

(t− ξ)β j
dξ.
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Remark that the transformation between the right-modified Riemann–Liouville frac-
tional derivatives and the Caputo fractional derivatives has been given in [18]. The bound-
ary conditions of HJB Equation (3) are listed by{

Uj(Smin, t) = max{K− Smin, 0},
Uj(Smax, t) = max{K− Smax, 0}.

2.1. Finite Difference Method

A nonlinear finite difference scheme is developed to solve the coupled HJB equation
given in (3). As the time-fractional derivative has been transferred into the Caputo fractional
derivative, we can use the L1 approximate [41] to discretize it, which is given by

C
0 D

β j
t Uj(S, tm) =

τ−β j

Γ(2− β j)
[a

(β j)

0 Uj(S, tm)−
m−1

∑
s=1

(a
(β j)

m−s−1 − a
(β j)
m−s)Uk(S, ts)

−a
(β j)

m−1Uj(S, t0)] +O(τ2−β j),

(4)

where
a
(β j)

l = (l + 1)1−β j − l1−β j , for l ≥ 0.

Furthermore, the central difference method and backward finite difference method
are used to discretize the second-order derivative and first-order derivative, respectively,
which can be written by

∂2Uj(S, t)
∂S2 =

Uj(S + h, t)− 2Uj(S, t) + Uj(S− h, t)
h2 + O(h2), (5)

and
∂Uj(S, t)

∂S
=

Uj(S + h, t)−Uj(S, t)
h

+ O(h). (6)

Let N and M be the positive integers. The intervals [Smin, Smax] and [0, T] can be
divided into N + 1 and M sub-intervals, respectively. Then, the numerical mesh can be
defined by

Si = Smin + ih, for i = 0, 1, . . . , N+1,

tm = mτ, for m = 0, 1, . . . , M,

where h = Smax−Smin
N+1 , τ = T/M.

With the finite difference approximate given in (4), (5), and (6), by denoting u(m)
j,i as

the numerical solution of Uj(Si, tm), the HJB equation can be discretized. For Uj(S, t) ∈
C(4,2)([Smin, Smax]× [0, T]), and j = 1, 2, . . . , Ns, the numerical scheme for HJB Equation (3)
can be written by

min

{
u(m)

j,i − v∗i ,
τ−β j

Γ(2− β j)
[a

(β j)

0 u(m)
j,i −

m−1

∑
s=1

(a
(β j)

m−s−1 − a
(β j)
m−s)u

(s)
j,i − a

(β j)

m−1u(0)
j,i ] + L̃u(m)

j,i

}
= 0, (7)

where

L̃u(m)
j,i = −1

2
σ2

j S2
i

u(m)
j,i+1 − 2u(m)

j,i + u(m)
j,i−1

h2 − rSi
u(m)

j,i+1 − u(m)
j,i

h
+ ru(m)

j,i −
Ns

∑
s=1

qj,su(m)
j,s ,

and v∗i = V∗(Si).
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2.2. Matrix Form

To simplify the notation of the matrix form, we define Tn(a, b, c) as an n-by-n tri-
diagonal matrix, which is given by

Tn(a, b, c) =


b c

a b
. . .

. . . . . . c
a b

.

Then, define the vectors u(m) = [u(m)
1,1 , u(m)

1,2 , . . . , u(m)
1,N , u(m)

2,1 , u(m)
2,2 , . . . , u(m)

Ns ,N ]
T , ṽ∗ = L̂⊗ v∗,

where v∗ = [v∗1 , v∗2 , . . . , v∗N ]
T and L̂ is an Ns-by-1 column vector with all entries of 1.

With the above notations, the finite difference scheme (7) can be written by the follow-
ing matrix form:

min{u(m) − ṽ∗, Wu(m) − h(m) + D1 ⊗ IN f } = 0, (8)

where
W = W̃ − D1Q⊗ IN ,

W̃ = INS N + rD1 ⊗ IN −
r
h

D1 ⊗ Ds1 A1 + D2 ⊗ Ds2 A2.
(9)

The entry of Q is qj,i, which is the generator of the Markov chain. Satisfy (1) qj,i ≥ 0,
if i 6= j and (2) qj,j = −∑j 6=i qj,i for each j = 1, 2, . . . , Ns. The other matrices in (9) are listed
by

Ds1 = diag{S1, S2, . . . , SN},
Ds2 = diag{S2

1, S2
2, . . . , S2

N},
D1 = diag{τβ1 Γ(2− β1), τβ2 Γ(2− β2), . . . , τβNs Γ(2− βNs)},

D2 = diag{
−τβ1 σ2

1 Γ(2− β1)

2h2 ,
−τβ2 σ2

2 Γ(2− β2)

2h2 , . . . ,
−τβNs σ2

Ns
Γ(2− βNs)

2h2 },

A1 = TN(0,−1, 1),

A2 = TN(1,−2, 1).

Additionally, vectors h(m) and f in (8) are defined as follows. Vector h(m) = [h(m)
1,1 , h(m)

1,2 , . . . ,

h(m)
1,N , h(m)

2,1 , h(m)
2,2 , . . . , h(m)

Ns ,N ]
T, whose entries are given by

h(m)
j,i =

m−1

∑
s=1

(a
(β j)

m−s−1 − a
(β j)
m−s)u

(s)
j,i + a

(β j)

m−1u(0)
j,i ,

and f = [ f1,1, f1,2, . . . , f1,N , f2,1, f2,2, . . . , fNs ,N ]
T with entries

f j,i =


0, i 6= 1, N

−
σ2

j S2
1

2h2 Uj(Smin, tm), i = 1,

−
σ2

j S2
N

2h2 Uj(Smax, tm)− rSN
h Uj(Smax, tm), i = N.

2.3. Stability Analysis

Although the finite difference method has been developed, its stability property is
necessary. With the matrix form of the discrete HJB equation in (8), one lemma can be
derived first.
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Lemma 1. For 0 < τ < 1, the matrix W = [wp,q] in (9) is an M-matrix with

|wp,p| ≥
NNs

∑
s=1,s 6=p

|wp,s|+ 1 + τβmax Γ(2− β̂)r,

where β̂ = arg minβ j∈{β1,β2,...,βNs}{Γ(2− β j)}.

Proof. By the definition of matrix Q, we know that the row sum of it equals to zero. With the
definition of matrix W in (9), and the properties of the Kronnecker product, the matrix
− r

h D1 ⊗ Ds1 A1 + D2 ⊗ Ds2 A2 − D1Q⊗ IN is a weakly diagonal dominant matrix with the
positive main diagonal and negative off diagonals. The remaining part of the coefficient
matrix W is a positive diagonal matrix INNs + rD1 ⊗ IN . Hence, the matrix W has the
positive main diagonal and negative off diagonal with the following property: |wp,p| −
∑NNs

s=1,s 6=p |wp,s| ≥ 1 + τβmin Γ(2− β̂)r, where β̂ = arg minβ j∈{β1,β2,...,βNs}{Γ(2− β j)}.

With Lemma 1, we have the following theorem, which ensures the unconditional
stability of the nonlinear numerical scheme (7).

Theorem 1. The nonlinear scheme (7) is unconditionally stable, i.e.,

‖u(m)‖∞ ≤ ‖u(0)‖∞ + T β̃Γ(1− βmax)‖ f ‖∞,

where β̃ = arg maxβ j∈{β1,β2,...,βNs}{T
β j}.

Proof. Let u(m) be the solution of the discrete HJB Equation (8) on the m-th time level.
Assume that u(m)

ĵ(m),î(m)
is an entry of the vector u(m) and satisfies

∣∣∣u(m)

ĵ(m),î(m)

∣∣∣ = max
1≤j≤Ns ,1≤i≤N

|u(m)
j,i | = ‖u

(m)‖∞.

Then, we discuss ‖u(m)‖∞ in two cases when the solution of (7) exists.
Case i: For u(m)

ĵ(m),î(m)
> v∗

î(m)
, we know that u(m)

ĵ(m),î(m)
is determined by (Wu(m) − h(m) +

D1 ⊗ IN f )( ĵ(m)−1)N+î(m) = 0, where (v)( ĵ(m)−1)N+î(m)) denotes the
(
( ĵ(m)− 1)N + î(m)

)
-

th entry of any given vector v. Hence, with Lemma 1, we obtain the following inequalities:

‖u(m)‖∞ =|u(m)

ĵ(m),î(m)
| ≤

∣∣∣w( ĵ(m)−1)N+î(m),( ĵ(m)−1)N+î(m)u
(m)

ĵ(m),î(m)

∣∣∣
−

∣∣∣∣∣∣ ∑
s 6=( ĵ(m)−1)N+î(m)

w( ĵ(m)−1)N+î(m),su(m)

ĵ(m),î(m)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣w( ĵ(m)−1)N+î(m),( ĵ(m)−1)N+î(m)u
(m)

ĵ(m),î(m)
+ ∑

s 6=( ĵ(m)−1)N+î(m)

w( ĵ(m)−1)N+î(m),su(m)
s

∣∣∣∣∣∣
=
∣∣∣h(m)

ĵ(m),î(m)
− τ

β ĵ(m)Γ(2− β ĵ(m)) f ĵ(m),î(m)

∣∣∣
≤

m−1

∑
s=1

(a
(β ĵ(m))

m−s−1 − a
(β ĵ(m))

m−s )
∣∣∣u(s)

ĵ(m),î(m)

∣∣∣+ a
(β ĵ(m))

m−1

∣∣∣u(0)
ĵ(m),î(m)

∣∣∣+ τ
β ĵ(m)Γ(2− β ĵ(m))

∣∣∣ f ĵ(m),î(m)

∣∣∣
≤

m−1

∑
s=1

(a
(β ĵ(m))

m−s−1 − a
(β ĵ(m))

m−s )‖u(s)‖∞ + a
(β ĵ(m))

m−1 ‖u
(0)‖∞ + τ

β ĵ(m)Γ(2− β ĵ(m))‖ f ‖∞.

Case ii: For u(m)

ĵ(m),î(m)
= v∗

î(m)
, it is straightforward to know that ‖u(m)‖∞ ≤ ‖ṽ∗‖∞.

Combining two cases yields the following inequality:
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‖u(m)‖∞ = |u(m)

ĵ(m),î(m)
| ≤ max

{
‖ṽ∗‖∞,

m−1

∑
s=1

(a
(β ĵ(m))

m−s−1 − a
(β ĵ(m))

m−s )‖u(s)‖∞

+ a
(β ĵ(m))

m−1 ‖u
(0)‖∞ + τ

β ĵ(m)Γ(2− β ĵ(m))‖ f ‖∞

}
.

(10)

When m = 1, since u(0) = ṽ∗, we have

‖u(1)‖∞ ≤max
{
‖ṽ∗‖∞, a

(β ĵ(1))

0 ‖u(0)‖∞ + τ
β ĵ(1)Γ(2− β ĵ(1))‖ f ‖∞

}
≤‖u(0)‖∞ + tβ̃

1 Γ(1− βmax)‖ f ‖∞.

When m = 2, with (10), it holds that

‖u(2)‖∞ ≤max
{
‖ṽ∗‖∞, (a

(β ĵ(2))

0 − a
(β ĵ(2))

1 )‖u(1)‖∞ + a
(β ĵ(2))

1 ‖u(0)‖∞ + τ
β ĵ(2)Γ(2− β ĵ(2))‖ f ‖∞

}
≤max

{
‖ṽ∗‖∞, (a

(β ĵ(2))

0 − a
(β ĵ(2))

1 )‖u(1)‖∞ + a
(β ĵ(2))

1

(
‖u(0)‖∞ +

τ
β ĵ(2)Γ(2− β ĵ(2))

(1− β ĵ(2))2
−β ĵ(2)

‖ f ‖∞

)}
≤‖u(0)‖∞ + tβ̃

2 Γ(1− βmax)‖ f ‖∞

Assume that the following formula holds when m = 1, 2, . . . , l, which is given by

‖u(m)‖∞ ≤ ‖u(0)‖∞ + tβ̃
mΓ(1− βmax)‖ f ‖∞.

Then, when m = l + 1, with (10), it yields that

‖u(l+1)‖∞ ≤max
{
‖ṽ∗‖∞,

l

∑
s=1

(a
(β ĵ(l+1))

l−s − a
(β ĵ(l+1))

l−s+1 )‖u(s)‖∞ + a
(β ĵ(l+1))

l ‖u(0)‖∞

+ τ
β ĵ(l+1)Γ(2− β ĵ(l+1))‖ f ‖∞

}
≤max

{
‖ṽ∗‖∞,

l

∑
s=1

(a
(β ĵ(l+1))

l−s − a
(β ĵ(l+1))

l−s+1 )
(
‖u(0)‖∞ + tβ̃

s Γ(1− βmax)‖ f ‖∞

)
+ a

(β ĵ(l+1))

l

(
‖u(0)‖∞ + t

β ĵ(l+1)
l+1 Γ(1− β ĵ(l+1))‖ f ‖∞

)}
≤‖u(0)‖∞ + tβ̃

l+1Γ(1− βmax)‖ f ‖∞.

Hence, the nonlinear scheme (7) is unconditionally stable, i.e.,

‖u(m)‖∞ ≤ ‖u(0)‖∞ + T β̃Γ(1− βmax)‖ f ‖∞.

3. Preconditioned Policy-Krylov Subspace Method

In order to solve the HJB Equation (8), the policy iteration method [42] is used as a
component in constructing the fast algorithm.

3.1. Policy Iteration Method

The discrete HJB equation can be written by the following component-wise form [42]:

θi(u(m) − ṽ∗)i + (1− θi)(Wu(m) − h(m) + D1 ⊗ IN f )i = 0. (11)

where (v)i denotes the i-th entry of any given vector v and 1 ≤ i ≤ NNs. The vector θ
contains the control parameters and its i-th entry is valued by θi = arg minθ∈{0,1}{θ(u(m) −
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ṽ∗)i + (1− θ)(Wu(m) − h(m) + D1 ⊗ IN f )i}. Then, the policy iteration method can be used
to solve (11). The framework of the policy iteration method is presented in Algorithm 1.

Algorithm 1 Framework of the policy iteration method

Let (u(m))k be the k-th iteration of the policy iteration method for computing the solution
u(m). Let θk ∈ RNNs , Mk ∈ RNNs×NNs , and bk ∈ RNNs . For 1 ≤ i ≤ NNs, we have

(θ(m))k
i = arg min

θ∈{0,1}
{θ((u(m))k − ṽ∗)i + (1− θ)(Wu(m) − h(m) + D1 ⊗ IN f )i},

(M(m))k
i = (θ(m))k

i (INNs)i + (1− (θ(m))k
i )(W)i,

(b(m))k
i = (θ(m))k

i (v
∗)i + (1− (θ(m))k

i )(h
(m) − D1 ⊗ IN f )i.

Find (u(m))k+1 ∈ RNNs , such that

(M(m))k(u(m))k+1 = (b(m))k. (12)

With Algorithm 1, it is known that a linear system needs to be solved in each policy
iteration. To ensure the algorithm is reliable, the coefficient matrix (M(m))k in (12) should
be invertible. Hence, we have the following lemma. Remark that the notation Mm,k is used
to stand for (M(m))k to simplify the statement in the subsequent theoretical analysis.

Lemma 2. For 0 < β j < 1, the coefficient matrix Mm,k is invertible and satisfies

‖(Mm,k)−1‖∞ ≤ 1.

Proof. With Lemma 1, we know that matrix W is an M-matrix. Coefficient matrix Mm,k is
constructed by selecting rows from W and the identity matrix INNs , thus matrix Mm,k is
also an M-matrix and invertible. In addition, the entries [ij,k] of the identity matrix hold
that |ik,k| −∑j 6=k |ij,k| = 1. Refer to [43], ‖(Mm,k)−1‖∞ ≤ 1 can be obtained.

The matrix W is an M-matrix, then the properties of the LCP considered in this paper
are similar to the case in [42]. Refer to the proof in [42], the following theorem can be
obtained straightforwardly, which ensures that the policy iteration method converges to
the solution in finite steps.

Theorem 2. Let (uk)∞
k=0 be the sequence generated by Algorithm 1. Then,

uk+1 ≥ uk, n ∈ N

and un = u∗, n ≥ K

where u∗ is the solution of (11) and K is an integer independent of u0.

3.2. Preconditioned Krylov Subspace Method

In each policy iteration, a linear system (12) is needed to be solved. Based on the
structure of the matrix Mm,k, a fast Krylov subspace method is used as the linear solver.
The matrix-vector product Mm,kv can be obtained by

Mm,kv = Θm,kv + (INNs −Θm,k)(W̃v− vec((D1QVT)T)), (13)

where v is any given vector, and V is an N-by-Ns matrix reshaped by v column by column.
Θm,k is the diagonal matrix, and its i-th diagonal entry equals the control parameter (θ(m))k

i
in Algorithm 1. Since matrix W̃ is a block diagonal matrix with tri-diagonal blocks, with (13),
the operation cost of Mm,kv is O(NN2

s ), and each iteration of the Krylov subspace method
also costs O(NN2

s ).
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Although the operation cost of each iteration of the Krylov subspace method is
O(NN2

s ), the total cost for solving the linear system (12) depends on the iteration number.
If the coefficient matrix Mm,k is ill conditioned, the Krylov subspace method converges
to the solution slowly. Hence, the preconditioning technique is considered to reduce
the iteration number and avoid this situation. However, extra computational costs are
needed for the preconditioning technique in each iteration. The preconditioner based on
circulant matrices will not be considered because its extra computational cost usually is
O(NNs log NNs) due to the fast Fourier transformation. In this section, we develop a
simple preconditioner with the tri-diagonal structure, which is defined by

Pm,k = Θm,k INs N + (INNs −Θm,k)(W̃ − D1Qd ⊗ IN), (14)

where Qd = diag{q1,1, q2,2, . . . , qNs ,Ns}. Because the preconditioner Pm,k keeps the tri-
diagonal structure, the matrix-vector product (Pm,k)−1v costsO(NNs) based on the Thomas
algorithm, where v is any given vector. Although the operation cost for the preconditioned
Krylov subspace method is still O(NN2

s ) per iteration, some theorems are needed to
ensure the proposed preconditioning technique is useful. First, we need to ensure the
preconditioner is invertible.

Theorem 3. The preconditioner Pm,k is invertible and satisfies

‖(Pm,k)−1‖∞ ≤ 1.

Proof. By the definition of the preconditioner Pm,k, we know that it is constructed by select-
ing the row between the matrices W̃ −D1Qd ⊗ IN and INNs . Refer to the proof of Lemmas 1
and 2, it is easy to know that Pm,k is an M-matrix and satisfies ‖(Pm,k)−1‖∞ ≤ 1.

Despite the invertibility of the proposed preconditioner, proved by Theorem 3, the con-
vergence rate of the preconditioned Krylov subspace method is critical. It is well known
that the convergence rate of the Krylov subspace method is influenced by the condition
number of the coefficient matrix. Therefore, the following theorem is given to prove that
the condition number of the coefficient matrix with the proposed preconditioner has an
upper boundary.

Theorem 4. For 0 < β j < 1 and 0 < τ < 1, the condition number of the preconditioned coefficient
matrix (Pm,k)−1Mm,k is bounded, that is,

cond((Pm,k)−1Mm,k) ≤
(

τβmin max
k∈Ns
{|qk,k|}+ 1

)2
. (15)

Proof. With Theorem 3, it is straightforward that

‖(Pm,k)−1Mm,k‖∞ =‖(Pm,k)−1(Mm,k − Pm,k) + INNs‖∞

≤‖(Pm,k)−1(INNs −Θ)(D1(Qd −Q)⊗ IN)‖∞ + 1

≤τβmin max
k∈Ns
{|qk,k|}+ 1.

Additionally, with Lemma 2, it yields

‖((Pm,k)−1Mm,k)−1‖∞ =‖(Mm,k)−1Pm,k‖∞ = ‖(Mm,k)−1(Pm,k −Mm,k) + INNs‖∞

≤‖(Mm,k)−1(Pm,k −Mm,k)‖∞ + 1

≤‖(Mm,k)−1‖∞‖(D1(Q−Qd)⊗ IN)‖∞ + 1

≤τβmin max
k∈Ns
{|qk,k|}+ 1.
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Hence, the condition number of the preconditioned matrix (Pm,k)−1Mm,k is bounded, which
can be written by

cond((Pm,k)−1Mm,k) =‖(Pm,k)−1Mm,k‖∞‖((Pm,k)−1Mm,k)−1‖∞

≤
(

τβmin max
k∈Ns
{|qk,k|}+ 1

)2
.

With Theorem 4, we know that the proposed preconditioner is able to ensure that the
condition number of the preconditioned matrix is bounded. The upper bound is affected by
Q, but τβmin usually being sufficiently small can help us to ensure that the upper bound is
not too large. Hence, the proposed preconditioner can be expected to reduce the condition
of the coefficient matrix and improve the convergence rate of the Krylov subspace method.

Remark 1. Although Theorem 4 holds for the left preconditioner, this theorem still holds for
the right preconditioner with similar proofs. The numerical tests with the right preconditioning
technique are also given in Section 4.

4. Numerical Experiment

In this section, three American option pricing problems with time-fractional deriva-
tives containing two states, four states, and eight states are considered as the numerical
examples to test our proposed preconditioned policy-Krylov subspace method. All the
numerical experiments were carried out in Matlab 2016a in the workstation with the
following configuration: Intel(R) Core(TM) i9-10900K CPU 3.70 GHz and 64 GB RAM.
The bi-conjugate gradient stabilized method and the GMRES method are used in this
section, and their stopping criterion is 10−10. The stopping criterion of the policy iteration
method is 10−7. The initial guesses of two iterative methods are both the numerical so-
lution on the previous time step. The restart of the GMRES method is 20 in this section.
In addition, to facilitate the calculation, in this section, we set a new symbol Ñ that satisfies
Ñ = N + 1.

In the numerical experiment, we assume that the strike price K = 50, the risk-free
interest rate r = 0.05, and the expiry moment T = 1, i.e., one year. The truncation
boundaries [Smin, Smax] = [0, 100]. The other parameters of the three cases are listed by

(a) Ns = 2, σ = [0.2, 0.4], β = [0.8, 0.95], Q =

[
−2 2
3 −3

]
.

(b) Ns = 4, σ = [0.2, 0.3, 0.15, 0.2], β = [0.8, 0.95, 0.6, 0.7],

Q =


−45 20 15 10
30 −80 30 20
10 10 −60 40
20 10 20 −50

.

(c) Ns = 8, σ = [0.2, 0.3, 0.15, 0.2, 0.5, 0.2, 0.4, 0.3], β = [0.8, 0.95, 0.6, 0.7, 0.8, 0.3, 0.2, 0.6],

Q =



−192 34 16 36 31 23 25 27
32 −125 3 37 15 2 29 7
17 21 −144 19 9 9 25 14
36 5 4 −118 16 14 18 25
7 34 7 13 −145 32 21 31

10 24 9 36 5 −98 11 3
5 14 16 14 37 1 −124 37
5 20 1 4 38 6 7 −81


.

The first part of the numerical experiment is to test the convergence rate of the nonlin-
ear scheme (7) and the effectiveness of the proposed solution strategy. The performance
of the Krylov subspace method without preconditioning technique is also presented in
order to demonstrate the performance of the proposed preconditioner Pm,k. Since the exact
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solution is absent, the numerical solution from a fine grid where Ñ = 213 and M = 211

is regarded as the exact solution to compute the truncation errors. Related numerical
results from the bi-conjugate gradient stabilized method are presented in Table 1, while the
numerical results from the GMRES method are given in Table 2.

Table 1. Numerical results from the bi-conjugate gradient stabilized methods.

CG PCG

N M Error Rate Ite-Out Ite-In Time Ite-In Time

Case (a)

28 26 3.9728× 10−3 - 2.86 77.46 0.37 s 2.56 0.08 s
29 27 1.9224× 10−3 1.0472 2.82 106.05 1.24 s 2.08 0.21 s
210 28 9.1278× 10−4 1.0746 2.86 141.44 4.96 s 1.78 0.79 s
211 29 3.9949× 10−4 1.1921 2.86 184.55 23.49 s 1.54 4.40 s

Case (b)

28 26 8.9047× 10−3 - 2.73 62.25 0.38 s 7.92 0.19 s
29 27 4.5215× 10−3 0.9778 2.77 91.38 1.59 s 5.79 0.51 s
210 28 2.1635× 10−3 1.0634 2.71 138.52 8.79 s 4.61 2.26 s
211 29 9.3962× 10−4 1.2032 2.69 208.57 44.75 s 3.70 9.30 s

Case (c)

28 26 1.9890× 10−3 - 3.33 427.40 4.83 s 14.84 0.55 s
29 27 9.8072× 10−4 1.0201 3.32 848.73 35.33 s 11.46 2.04 s
210 28 4.8702× 10−4 1.0099 3.26 1705.16 242.65 s 9.43 7.15 s
211 29 2.1722× 10−4 1.1648 3.24 - - 7.41 30.50 s

Table 2. Numerical results from the GMRES methods.

GMRES PGMRES

N M Error Rate Ite-Out Ite-In Time Ite-In Time

Case (a)

28 26 3.9724× 10−3 - 2.86 156.68 1.66 s 5.04 0.11 s
29 27 1.9220× 10−3 1.0474 2.82 242.87 6.81 s 4.12 0.26 s
210 28 9.1239× 10−4 1.0749 2.86 406.86 36.64 s 3.33 0.90 s
211 29 3.9910× 10−4 1.1929 2.86 692.43 392.76 s 3.05 5.00 s

Case (b)

28 26 8.9046× 10−3 - 2.73 113.89 1.58 s 13.86 0.30 s
29 27 4.5214× 10−3 0.9778 2.77 191.73 8.20 s 10.59 0.72 s
210 28 2.1634× 10−3 1.0635 2.71 372.04 99.65 s 8.29 3.07 s
211 29 9.3955× 10−4 1.2032 2.69 760.57 637.37 s 6.55 11.78 s

Case (c)

28 26 1.9890× 10−3 - 3.33 1411.11 36.60 s 24.77 0.98 s
29 27 9.8069× 10−4 1.0202 3.32 8428.32 1409.52 s 18.56 4.21 s
210 28 4.8698× 10−4 1.0099 3.26 32,658.12 17,206.00 s 14.56 10.57 s
211 29 2.1718× 10−4 1.1650 3.24 - - 11.55 39.96 s

In Tables 1 and 2, the notation ‘Error’ denotes the infinity norm of the truncation
error of the nonlinear scheme (7) solved by the preconditioned policy-Krylov subspace
method, and ‘Rate’ means the convergence rate. The notations ‘CG’ and ‘PCG’ stand for
the bi-conjugate gradient stabilized method without and with the proposed preconditioner,
respectively. Similarly, ‘GMRES’ and ‘PGMRES’ denote the GMRES method and the GMRES
method with the proposed preconditioner, respectively. The iteration numbers of the policy
iteration method with different linear solvers are almost the same. Thus only the average
number of policy iterations from the preconditioned Krylov subspace method is given and
denoted by ‘Ite-Out’. The notations ‘Ite-In’ and ‘Time’ are the average iteration numbers
of the linear solvers and CPU time, respectively. Remark that the left preconditioning
technique is used for the preconditioned bi-conjugate gradient stabilized method, and the
right preconditioning technique is used for the preconditioned GMRES method.
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From Tables 1 and 2, it can be seen that the convergence rate of the proposed nonlinear
scheme is first-order. Note that the errors of the two tables are close because both of these
linear solvers solve the same problem with the same stopping criterion. The policy iteration
method converges to the solution rapidly, which can be found by ‘Ite-Out’. Compared
with the bi-conjugate gradient stabilized method and GMRES method, we find that the
GMRES method takes more iterations for the same problem in our numerical examples.
Significantly, the proposed preconditioner can improve the convergence rate of the bi-
conjugate gradient stabilized and GMRES methods. As analyzed in Theorem 4, the upper
bound on the condition number of Case (c) is higher than Case (a) and (b) due to the
number of states being larger. Hence, the bi-conjugate gradient stabilized method and the
GMRES method with preconditioner needs more iterations to converge.

To further analyze the effect of the preconditioning technique and verify Theorem 4,
the second part of the numerical experiment focuses on testing the eigenvalues and condi-
tion numbers of the preconditioned matrix (Pm,k)−1Mm,k and coefficient matrix Mm,k. It is
difficult to choose a specific matrix to finish the test since the matrices Pm,k and Mm,k are
determined by m and k. Given the existence of the American option free boundary, there is
usually a point θ∗ such that the matrix satisfies θ = 1 when S < θ∗ and θ = 0 when S ≥ θ∗.
To facilitate further analysis, we used Case (b) to finish the test and set a particular P and
M that satisfied θ∗ = b Ñ

2 c. Then, the eigenvalue distributions of the coefficient matrix M
and preconditioned matrix P−1M when M = Ñ = 210 are given in Figure 1. Additionally,
the condition numbers of them when M = Ñ are given in Figure 2.

(a) (b)

Figure 1. Eigenvalues distribution: (a) eigenvalue of coefficient matrix M; (b) eigenvalue of precondi-
tioned matrix P−1 M.

(a) (b)

Figure 2. Condition number of the coefficient matrix: (a) condition number of preconditioned matrix
P−1 M; (b) comparison of condition number of P−1 M and M.

From Figure 1a, we know that the maximum of the real part of the eigenvalues of
the coefficient matrix is more than 600, which may cause the slow convergence rate of the
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Krylov subspace method. Conversely, the eigenvalues in Figure 1b are clustered around one
after preconditioning, although the gathering radius is close to 0.3, which helps improve
the convergence rate of the Krylov subspace method.

In Figure 2, the condition number of the coefficient matrix M, the condition number
of the preconditioned matrix P−1M, and the upper boundary of the condition number
given by Theorem 4 are presented. From Figure 2a, the condition number is lower than 5
with the preconditioning technique. The theoretical upper boundary decreases from 28.65
to 3.33 as M increases. In Figure 2b, the condition number without the preconditioning
technique is given to compare with the condition number of P−1M. One can see that the
condition number is increasing with M and the maximum value is 3318.69 when M = 211.
With the proposed preconditioning technique, the condition number is kept below 5, which
demonstrates that the proposed preconditioner can reduce the condition number of the
coefficient matrix M.

In the last part of the numerical experiment, the option values of three cases are
presented in Figure 3 when M = Ñ = 212, respectively. In Figure 3, we can find that
multi-regimes cause the option value differences between different regimes.

(a) (b)

(c)

Figure 3. Option value of three examples: (a) option value of two regimes; (b) option value of four
regimes; (c) option value of eight regimes.

5. Concluding Remark

This paper considers the multi-state time-fractional LCP for American options pricing
and proposes a preconditioned policy-Krylov subspace method to handle this problem.
The considered problem has been transformed into HJB equations coupled by the Markov
generator matrix, then a nonlinear finite difference scheme is developed to discretize it with
unconditional stability guarantees. A preconditioned policy-Krylov subspace method has
been proposed to solve the discrete HJB equation with convergence guarantees. The condi-
tion number of the preconditioned coefficient matrix has been proven to have an upper
boundary. The numerical experiments are presented to demonstrate the efficiency of
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the proposed nonlinear finite difference scheme and the preconditioned policy-Krylov
subspace method.

In addition, the considered problem is based on a non-dividends option pricing model,
and the dividend models are yet to be addressed. The problem of pricing American options
with dividends, as well as the problem of pricing options with fractional order derivatives
in space-time, will be addressed in our future work.
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