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Abstract: This brief report studies conditions to ensure the nonexistence of finite-time stable equilibria
in a class of systems that are described by means of nonlinear integral equations, whose kernels are
part of some Sonine kernel pairs. It is firstly demonstrated that, under certain criteria, a real-valued
function that converges in finite-time to a constant value, different from the initial condition, and
remains there afterwards, cannot have a Sonine derivative that also remains at zero after some finite
time. Then, the concept of equilibrium is generalized to the case of equivalent equilibrium, and it is
demonstrated that a nonlinear integral equation, whose kernel is part of some Sonine kernel pair,
cannot possess equivalent finite-time stable equilibria. Finally, illustrative examples are presented.
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1. Introduction

Integer-order integrals and derivatives conform classical tools that allow us to describe
local behavior, producing dynamic models that can be considered to approximate real-
world dynamics to a good extent, when certain constraints are imposed. Nevertheless,
fractional-order operators permit a better comprehension of non-local phenomena [1]; for
this reason, fractional-order integrals and derivatives stand as formidable tools for the
modeling and control of dynamical systems with more advanced characteristics.

While searching for the key of generalization, additional operators have been
considered, such as variable-order [2,3] and distributed-order operators [4–9]. In addition,
ingenious definitions have been proposed in [10–12], relying on non-singular kernels.
Nonetheless, dynamical systems with non-singular kernel derivatives lead to a different
class of integral equations, which is beyond the scope of the present study. Additional
formulations of derivative operators can be found in [13–17].

In this report, the Sonine conditions are deemed to show the equivalence of the
proposed models with well-suited integral equations [18]. Sonine derivatives have been
previously studied in the inspiring works [19–23], and these operators generalize some
previously defined non-local derivatives, permitting us to consider a larger class of
dynamic responses.

The study of Sonine systems in relation to integral equations have interested the
research community in recent years. The authors of [3,24] considered Sonine operators
to propose and analyze well-suited variable-order derivative operators, leading to the
study of a class of dynamical systems whose solutions are equivalent to some integral
equations. In [25], some stability criteria were studied regarding a class of nonlinear
integral equations, which are equivalent to suitable systems that are described in terms of
Sonine derivatives, where the assumption of integer-order differentiable solutions is not
considered. In [26], a proportional-integral controller was designed to compensate for a
larger class of disturbances and un-modeled effects. Other outstanding applications in the
same direction consider processes with anomalous diffusion [27].
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The contribution of this brief report is the formulation of some criteria to assure the
nonexistence of finite-time stable equilibria, considering a class of integral equations,
which are equivalent to some Sonine derivative based systems. The present study
would be considered of paramount importance in the design of more general control
systems, accounting for the intriguing properties of advanced physical systems and
engineering processes.

The case of the nonexistence of finite-time stable equilibria has been previously
investigated for the case of fractional-order systems [28,29]. Nevertheless, integer-order
systems can still possess finite-time stable equilibria by virtue of their local behavior; an
interesting application of finite-time stability of integer-order systems can be found in [30].

It is important to comment that the main contribution of this paper is different from
that of [31], which studies the blow-up phenomenon, or finite-time escape, in a class of
nonlinear integral equations with continuous solutions. Furthermore, the kernel in [31] is
continuous and differentiable at all points of its domain, contrary to the case of the kernels
that are considered in this paper.

The remainder of this document is organized as follows: the next section exposes
preliminaries on Sonine integrals and derivatives, including an extension to the case of not
necessarily integer-order differentiable functions. Section 3 presents the main results on the
nonexistence of finite-time stable equilibria for generalized systems. Illustrative examples
are studied in Section 4, and the main conclusions are presented in Section 5.

2. Preliminaries
2.1. Generalized Operators

The exposition of this section is given in detail in [20–23,25]. The following definition
of a kernel pair is interesting for the study of generalized calculus:

Definition 1. Let κ(t) and λ(t) ∈ L1
loc([0, ∞)) be two non-negative functions that satisfy the

so-called Sonine condition,∫ t

0
λ(t− τ)κ(τ)dτ =

∫ t

0
λ(τ)κ(t− τ)dτ = 1. (1)

It is said that the functions κ(t) and λ(t) conform a kernel pair.

In this report, it is assumed that both κ(t) and λ(t) have Laplace transforms, leading to

sK(s)Λ(s) = 1, (2)

for F(s) =
∫ ∞

0
e−st f (t)dt the Laplace transform of function f (t).

The following properties are considered in [25]:

• lim
t→∞

κ(t) = 0 and lim
t→∞

λ(t) = 0.

• lim
t→0

κ(t) = ∞ and lim
t→0

λ(t) = ∞.

• lim
t→0

∫ t

0
κ(τ)dτ = 0 and lim

t→0

∫ t

0
λ(τ)dτ = 0.

• lim
t→∞

∫ t

0
κ(τ)dτ = ∞ and lim

t→∞

∫ t

0
λ(τ)dτ = ∞.

The following definitions constitute the generalized integral and derivative
operators [20–22,25].

Definition 2. Let f ∈ L∞
loc([0, ∞)) and κ ∈ L1

loc([0, ∞)), with κ absolutely continuous on [t0, t]
for arbitrary t0 > 0. Then,

I κ(t) f (t) =
∫ t

0
κ(t− τ) f (τ)dτ (3)
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is the generalized, or Sonine, integral of function f (t) associated to kernel κ(t).

Definition 3. Let y(t) be a good enough continuous function, such that

lim
z→0

λ(z)|y(t + z)− y(t)| = 0.

Then, whenever
∫ t

0

∂λ(t− τ)

∂τ
[y(t)− y(τ)]dτ exists,

Dλ(t)y(t) = λ(t)[y(t)− y(0)] +
∫ t

0

∂λ(t− τ)

∂τ
[y(t)− y(τ)]dτ (4)

is the generalized derivative of y(t) with respect to λ(t), and y(t) is called λ-differentiable.

If function y(t) is integer-order differentiable, one has that the derivative in (4) can be
rewritten in a form that resembles the Caputo derivative [25].

Proposition 1. Let y(t) be integer-order and λ-differentiable. Then,

Dλ(t)y(t) = I λ(t)ẏ(t) =
∫ t

0
λ(t− τ)ẏ(τ)dτ. (5)

The following result is of great interest since it allows us to relate the solution of a
generalized differential equation with a well-suited integral equation [25].

Theorem 1. Consider y(t) a Laplace transformable function, such that

y(t) = y(0) +
∫ t

0
κ(t− τ)ϕ(τ)dτ, (6)

for some ϕ ∈ L∞
loc[0, ∞). Then,

I κ(t)Dλ(t)y(t) = y(t)− y(0), (7)

and ϕ(t) = Dλ(t)y(t) at least almost everywhere.

2.2. Generalized Systems

The sort of systems considered in this report are represented by means of nonlinear
integral equations of the form

x(t) = x(0) +
∫ t

0
κ(t− τ) f (τ, x(τ))dτ, (8)

where x : [0, ∞) → R is the pseudo-state, t ∈ [0, ∞) is the time, f ∈ L∞
loc([0, ∞)) is the

integrable flow function, and κ(t) is part of the kernel pair {κ(t), λ(t)}.
System (8) can be rewritten as the generalized differential equation,

Dλ(t)x(t) = f (t, x(t)). (9)

The definition below, for the case of generalized systems, is inspired in [32].

Definition 4. The point x = x∗ is an equilibrium of (9) if Dλ(t)x∗ = f (t, x∗) for all t ≥ 0.

Remark 1. It can be noted that Dλ(t)c = 0, whenever c is a constant. Then, x = x∗ is
an equilibrium of (9) if and only if f (t, x∗) = 0 for all t ≥ 0. Additionally, considering
y(t) = x(t)− x∗, Equation (9) becomes

Dλ(t)y(t) = f̄ (t, y(t)), (10)
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with f̄ (t, y(t)) = f (t, y(t) + x∗), which possess the equilibrium y∗ = 0.

The previous remark implies that one can consider x∗ = 0 as the equilibrium of (9),
otherwise, it is possible to perform a change of coordinates.

3. Main Results

A natural way to prove that an equilibrium cannot be finite-time stable relies on
a contrapositive argument, which consists in demonstrating that, if the solutions of (9)
converge to x∗ in finite-time and stay there afterwards, then, x∗ is not an equilibrium of (9).
In other words, if x(t) → x∗ after T < ∞, then Dλ(t)x(t) = f (t, x(t)) cannot stay at zero
after some finite time T′ ≥ T.

Theorem 2. Let x(t) be a continuous solution of system (9), and suppose that ∃T > 0, a finite
time, such that x(t) = 0 ∀t ≥ T. If∫ T

0

1
λ(t)

∂λ(t− τ)

∂τ
dτ → 0 as t→ ∞. (11)

Then, Dλ(t)x(t) cannot stay at zero after some finite moment.

Proof. The generalized derivative of x(t) is

Dλ(t)x(t) = λ(t)[x(t)− x(0)] +
∫ t

0

∂λ(t− τ)

∂τ
[x(t)− x(τ)]dτ. (12)

Additionally, since x(t) = 0 ∀t ≥ T, one gets for t ≥ T that

Dλ(t)x(t) = −λ(t)x(0)−
∫ T

0

∂λ(t− τ)

∂τ
x(τ)dτ. (13)

Suppose there is T′ ≥ T, with Dλ(t)x(t) = 0 whenever t ≥ T′. Then,

λ(t)x(0) = −
∫ T

0

∂λ(t− τ)

∂τ
x(τ)dτ, (14)

for t ≥ T′. Furthermore, it is possible to realize that

|x(0)| = 1
λ(t)

∣∣∣∣∫ T

0

∂λ(t− τ)

∂τ
x(τ)dτ

∣∣∣∣
≤ max

ς∈[0,T]
|x(ς)|

∫ T

0

1
λ(t)

∂λ(t− τ)

∂τ
dτ.

(15)

Finally, condition (11) implies that x(0) = 0, and x∗ = 0 is a finite-time stable
equilibrium only considering the set of solutions with zero initial conditions.

In accordance with [29], Theorem 2 also applies in the case of fractional-order systems.
Nonetheless, condition (11) in Theorem 2 can be difficult to compute, and is impractical
in more general application scenarios. A less stringent condition can be considered if one
imposes that f (t, x(t)) is continuous in both t and x.

Theorem 3. Let x(t) be a continuous solution of system (9), and suppose that ∃T > 0, a finite
time, such that x(t) = 0 ∀t ≥ T. If f (t, x(t)) is a continuous function on t and x. Then, x∗ = 0
is not an equilibrium of system (9).

Proof. Considering the equivalence between (8) and (9), one has for t ≥ T that

0 = x(0) +
∫ t

0
κ(t− τ) f (τ, x(τ))dτ, (16)
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since x(t) = 0 for t ≥ T.
If one considers that x∗ = 0 is an equilibrium of (9), one has that f (τ, 0) = 0 ∀τ ≥ 0

and, consequently,

0 = x(0) +
∫ T

0
κ(t− τ) f (τ, x(τ))dτ. (17)

Relying on the continuity of f (·), the extreme value theorem allows us to express

|x(0)| ≤ max
ς∈[0,T]

| f (ς, x(ς))|
∫ T

0
κ(t− τ)dτ

= max
ς∈[0,T]

| f (ς, x(ς))|
∫ t

t−T
κ(τ)dτ.

(18)

Finally, remembering that κ(t) is absolutely continuous in any closed interval [t0, t],
with t0 > 0, one has that κ(t) is bounded and absolutely integrable in [t− T, t] for t > T.
Therefore,

|x(0)| ≤ T max
ς∈[0,T]

| f (ς, x(ς))| max
$∈[t−T,t]

κ($), (19)

which implies that x(0) = 0 since k(t)→ 0 as t→ ∞.

The above result is consistent with [28] for the case of fractional-order systems. Then,
it is worth noting that any feedback of the form uα,γ(t) = −γ|x(t)|αsign(x(t)), with gain
γ > 0 and exponent α ∈ (0, 1), in Dλ(t)x(t) = uα,γ(t), is not able to enforce finite-time
stable solutions. However, for the integer-order system ẋ = −γ|x(t)|αsign(x(t)), the origin
x = 0 is a finite-time stable equilibrium. If x → 0 in finite-time, γ|x(t)|αsign(x(t))→ 0 is
also in finite-time; but since x∗ = 0 is an equilibrium, it cannot be finite-time stable, for the
case of generalized systems (including those of fractional order).

The case of a continuous flow f (·) is interesting and covers a broad spectrum of
potential applications. Nevertheless, discontinuous feedback is very interesting since
it considers commuting devices for controller implementation. In the case where f (·) is
discontinuous at x∗ = 0, it is possible that Dλ(t)x(t) and f (t, x(t)) are not identical at x = x∗,
but they have the same average or equivalent values. In this latter case, the definition
below, which extends the concept of equilibrium, is of particular interest.

Definition 5. Consider system (8), with f ∈ L1
loc(R+) ∩ L∞(R+). If∫

I
f (t, x∗)dt = 0,

for any open interval, I ⊂ [0, ∞). Then, the point x = x∗ is an equivalent equilibrium of (8).

Theorem 4. Let x(t) be a continuous solution of system (8), and suppose that ∃T > 0, a finite
time, such that x(t) = 0 ∀t ≥ T. Then, x∗ = 0 is not an equivalent equilibrium of (8).

Proof. We proceed by contradiction, that is, one supposes that x∗ = 0 is a finite-time stable
equivalent equilibrium of system (8).

From the fact that x∗ = 0 is finite-time stable with convergence time T > 0, for t ≥ T
one has that

0 = x(0) +
∫ t

0
κ(t− τ) f (τ, x(τ))dτ

= x(0) +
∫ T

0
κ(t− τ) f (τ, x(τ))dτ +

∫ t

T
κ(t− τ) f (τ, 0)dτ.

(20)
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It is possible to appreciate that the initial condition is bounded as

|x(0)| ≤
∫ T

0
κ(t− τ)| f (τ, x(τ))|dτ +

∫ t

T
κ(t− τ)| f (τ, 0)|dτ. (21)

For the first integral in the right-hand side of (21) and t > T, one has that∫ T

0
κ(t− τ)| f (τ, x(τ))|dτ ≤ ‖ f (ς, x(ς))‖L∞([0,T])

∫ T

0
κ(t− τ)dτ

= ‖ f (ς, x(ς))‖L∞([0,T])

∫ t

t−T
κ(τ)dτ

≤ T‖ f (ς, x(ς))‖L∞([0,T]) max
$∈[t−T,T]

κ($).

(22)

Therefore, considering that κ(τ) → 0 as τ → ∞, one has that
∫ T

0 κ(t −
τ)| f (τ, x(τ))|dτ → 0.

For the second integral and t > T, one gets∫ t−ε

T
κ(t− τ)| f (τ, 0)|dτ ≤ max

ς∈[T,t−ε]
κ(t− ς)

∫ t−ε

T
| f (τ, 0)|dτ

≤ κ(ε)
∫ t−ε

T
| f (τ, 0)|dτ

(23)

for all ε ∈ (0, t− T). Then, the fact that x∗ = 0 is an equivalent equilibrium of (8) implies
that

∫ t−ε
T | f (τ, 0)|dτ = 0 and, consequently,

∫ t−ε

T
κ(t− τ) f (τ, 0)dτ = 0, f or t− T > ε > 0. (24)

Finally, fixing some t > T, and considering the continuity of the function

F(ε) =
∫ t−ε

T
κ(t− τ) f (τ, 0)dτ (25)

at ε = 0, it results in ∫ t

T
κ(t− τ) f (τ, 0)dτ = 0, ∀t ≥ T > 0. (26)

Therefore, x(0) = 0 and, thus, the only way x∗ = 0 is a finite-time stable equivalent
equilibrium of (8) is that x(0) = x∗.

Theorem 4 includes Theorem 3 as a particular case; however, it is convenient to
present both cases separately. As a conclusion of Theorem 4, the solution of an integral
equation, whose kernel is a member of a Sonine kernel pair, cannot have finite-time stable
equilibria with the assumption that its flow is a Lebesgue integrable and an essentially
bounded function.

4. Examples
4.1. Fractional-Order Systems with General Analytic Kernels

In accordance with [33], let [a, b] ⊂ R, α̂, β̂ ∈ C with <(α̂) > 0, <(β̂) > 0, and R ∈ R+

such that R > (b − a)<(β̂). Consider a complex function that is analytic on the disc
{z ∈ C : |z| < D}, defined by the locally uniformly convergent power series

A
(

tβ̂
)
=

∞

∑
k=0

aktβ̂k, (27)
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where the coefficients ak could depend on α̂ and β̂. Let κ(t) be a general analytic kernel
defined by

κ(t) = tα̂−1 A
(

tβ̂
)

; (28)

then, the fractional-order integral operator with a general analytic kernel is given by

I κ(t) f (t) =
∫ t

0
(t− τ)α̂−1 A

(
(t− τ)β̂

)
f (τ) dτ = AI α̂,β̂

0+ f (t). (29)

In this way, considering Definition 1, one has∫ t

0
(t− τ)α̂−1 A

(
(t− τ)β̂

)
λ(τ) dτ = 1, (30)

that is,
L
{

tα̂−1 A
(

tβ̂
)
∗ λ(t)

}
= L {1}. (31)

Recalling the uniform convergence of the series, it follows that

Λ(s)
∞

∑
k=0

ak
Γ
(

β̂k + α̂
)

sβ̂k+α̂
=

1
s

, (32)

with Γ(·) the gamma function [34]. Defining

AΓ

(
s−β̂
)
=

∞

∑
k=0

akΓ
(

β̂k + α̂
)(

s−β̂
)k

, (33)

one has that
Λ(s)s1−α̂ AΓ

(
s−β̂
)
= 1. (34)

Finally, according to the Fernandez–Özarslan-Baleanu function [35], one gets

λ(t) = L −1

 sα̂−1

AΓ

(
s−β̂
)
 = A0

(
t; α̂, β̂, 1

)
. (35)

From the previous analysis, consider α̂ = α, β̂ = 0 and the series

A(1) =
∞

∑
k=0

ak =
1

Γ(α)
,

AΓ(1) = Γ(α)
∞

∑
k=0

ak = Γ(α)A(1) = 1.
(36)

Then, from (28) and (35), the associated kernel pair is

κ(t) =
tα−1

Γ(α)
,

λ(t) = L −1
{

sα−1

AΓ(1)

}
= L −1

{
1

s1−α

}
=

t−α

Γ(1− α)
,

(37)

where α ∈ (0, 1). By considering the pair (37), the Riemann–Liouville integral of order α
is obtained in (29). In addition, since κ(t)→ 0 as t→ ∞, it is proved that fractional-order
systems do not have finite-time stable (equivalent) equilibria for an integrable flow f (·).
Furthermore, it is also possible to reach the same conclusion by noting that
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∫ T

0

1
λ(t)

∂λ(t− τ)

∂τ
dτ =

Γ(1− α)

t−α

[
(t− τ)−α

Γ(1− α)

]τ=T

τ=0

=
1

t−α

[
(t− T)−α − t−α

]
=

[(
1− T

t

)−α

− 1

]
→ 0 as t→ ∞.

(38)

This result has been previously reported in [28] for the case of continuous flows,
and in [29] for more general cases that include discontinuous feedback; nonetheless, those
contributions rely on a more restrictive class of integro-differential operators than those
studied in this report.

A more general version of the above example can be obtained as follows. Let
α̂ = β, β̂ = α, and

ak =
(−ω)kΓ(γ + k)
Γ(αk + β)Γ(γ)k!

, 0 < α ≤ 1, ; (39)

then, from (27), the three-parameter Mittag–Leffler function is obtained as

A(tα) =
∞

∑
k=0

(γ)k
Γ(αk + β)

(−ωtα)k

k!
= Eγ

α,β(−ωtα), (40)

with (γ)k as the Pochhammer symbol [36]. In addition, considering the generalized
geometric series, one has that

AΓ
(
s−α
)
=

∞

∑
k=0

akΓ(αk + β)
(
s−α
)k

=
∞

∑
k=0

(γ)k
k!
(
−ωs−α

)k
=

1
(1 + ωs−α)γ . (41)

The above gives rise to the kernel pair,

κ(t) = tβ−1Eγ
α,β(−ωtα),

λ(t) = L −1
{

sβ−1

AΓ(s−α)

}
= L −1

{
sα(−γ)−(1−β)

(sα + ω)−γ

}
= t−βE−γ

α,1−β(−ωtα).
(42)

Considering the pair (42), the Prabhakar integral and Prabhakar derivative,
respectively, are obtained [37–39]. For β ∈ (0, 1) with αγ < β < 1 + αγ, one has that

lim
t→∞

κ(t) = lim
s→0

sK(s) = lim
s→0

sαγ−β+1

(sα + ω)γ = 0. (43)

In addition, lim
t→∞

λ(t) = 0, as well as
∫ t

0
κ(τ)dτ,

∫ t

0
λ(τ)dτ → ∞ as t→ ∞, showing

that those systems, which are modeled through Prabhakar derivatives, do not have finite-
time stable equilibria. For example, consider the function depicted in Figure 1 given by

x(t) =

{
1− t, t ∈ [0, 1]

0, t ≥ 1.
(44)

In order to calculate the derivative associated with function (44), from Definition 3
and the kernel pair (42), the Extended Prabhakar derivative is

D
λ(t)
t0

x(t) = (t− t0)
−βE−γ

α,1−β(−ω(t− t0)
α)[x(t)− x(t0)]

−
∫ t

t0

(t− τ)−β−1E−γ
α,−β(−ω(t− τ)α) [x(t)− x(τ)] dτ.

(45)



Fractal Fract. 2023, 7, 320 9 of 12

Then, according to the function (44), with t0 = 0, it follows that

Dλ(t)x(t) = t−βE−γ
α,1−β(−ωtα)[x(t)− 1]− x(t)

∫ t

0
(t− τ)−β−1E−γ

α,−β(−ω(t− τ)α) dτ

+
∫ 1

0
(t− τ)−β−1E−γ

α,−β(−ω(t− τ)α) dτ

−
∫ 1

0
(t− τ)−β−1E−γ

α,−β(−ω(t− τ)α) τ dτ.

(46)

Evaluating the integrals in the above equation leads to∫ t

0
(t− τ)−β−1E−γ

α,−β(−ω(t− τ)α) dτ = t−βE−γ
α,−β+1(−ωtα) (47)

∫ 1

0
(t− τ)−β−1E−γ

α,−β(−ω(t− τ)α) dτ = t−βE−γ
α,−β+1(−ωtα)− (t− 1)−βE−γ

α,−β+1(−ω(t− 1)α) (48)

∫ 1

0
(t− τ)−β−1E−γ

α,−β(−ω(t− τ)α) τ dτ = −(t− 1)−βE−γ
α,−β+1(−ω(t− 1)α)

− (t− 1)−β+1E−γ
α,−β+2(−ω(t− 1)α)

+ t−β+1E−γ
α,−β+2(−ωtα).

(49)

Finally,

Dλ(t)x(t) = (t− 1)−β+1E−γ
α,−β+2(−ω(t− 1)α)− t−β+1E−γ

α,−β+2(−ωtα). (50)

Figures 2 and 3 show the behavior of function λ(t) in Equation (42), associated with
the extended Prabhakar derivative of function in (44), resulting in Equation (50). The results
are obtained considering the parameters α = 0.65, β = 0.5, γ = −0.25. Note that there is
no finite-time of convergence in the derivative.

t

x(t)

0

1

1

Figure 1. Function x(t) vs. time t.

Figure 2. λ(t) (Equation (42)) with α = 0.65, β = 0.5, and γ = −0.25.
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Figure 3. Dλ(t)x(t) (Equation (50)) with α = 0.65, β = 0.5, and γ = −0.25.

4.2. Distributed-Order System

The following system, from [25], is related to a distributed-order system, where the
kernel pair is

κ(t) =
∫ ∞

t

et−z

z
dz,

λ(t) =
∫ 1

0

t−α

Γ(1− α)
dα.

(51)

It is possible to demonstrate that sK(s)Λ(s) = 1 and κ(t) → 0 as t → ∞, implying
the nonexistence of finite-time stable equilibria for a large class of well-behaved flows.
In addition, it is possible to notice that λ′(z)|z=t−τ goes faster to zero than λ(t), as
with t → ∞, implying that the generalized derivative of a continuous function x(t),
with the non-zero Lebesgue measure and compact support, cannot remain at zero after
some finite-time.

5. Conclusions

This report studied the finite-time stability concept for the case of a general class
of nonlinear integral equations whose kernels belong to some Sonine kernel pairs. It
was demonstrated that, under some conditions, the nonexistence of finite-time stable
equilibria can be guaranteed. The present result provides a basis upon which to
understand the dynamic properties of a large family of integro-differential operators, which
include fractional- and distributed-order derivatives and integrals as particular cases,
with potential applications in a family of variable-order operators, recently proposed in
the literature. This result prevents the search for continuous and discontinuous controllers
that guarantee the enforcement of finite-time stable equilibria, in a vast class of generalized
systems, although finite-time convergence is still possible thorough the principle of
dynamic extension.
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