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Abstract: A non-Markovian model of tumor cell invasion with finite velocity is proposed to describe
the proliferation and migration dichotomy of cancer cells. The model considers transitions with
age-dependent switching rates between three states: moving tumor cells in the positive direction,
moving tumor cells in the negative direction, and resting tumor cells. The first two states correspond
to a migratory phenotype, while the third state represents a proliferative phenotype. Proliferation is
modeled using a logistic growth equation. The transport of tumor cells is described by a persistent
random walk with general residence time distributions. The nonlinear master equations describing
the average densities of cancer cells for each of the three states are derived. The present work also
includes the analysis of models involving power law distributed random time, highlighting the
dominance of the Mittag–Leffler rest state, resulting in subdiffusive behavior.

Keywords: anomalous transport; subdiffusion; Mittag–Leffler function; integro-differential equations;
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1. Introduction

Tumor cell invasion is a complex process that involves both the proliferation and
migration of cancer cells. Proliferation refers to the ability of cancer cells to divide and
grow, while migration refers to their ability to move and invade surrounding tissues. Re-
searchers have devoted large efforts in investigating the development of malignant tumors,
particularly those that are characterized by dysregulated cell migration and uncontrolled
proliferation. Gliomas, a type of brain tumor, are known for their high rates of cell prolifera-
tion and motility, as well as their ability to invade normal tissue away from the multicellular
tumor. Clinical studies and investigations have indeed shown that the proliferation rate
of migratory cells in gliomas is often lower in the invading tumor tissue compared to the
tumor core [1,2]. This relationship between cell migration and proliferation, known as the
migration–proliferation dichotomy, has been shown to play a critical role in the invasive-
ness of malignant gliomas and is an important factor that must be taken into consideration
when developing treatments for these tumors. Despite advances in medical technology and
research, the switching between two phenotypes, as well as the invasion process, remain
not fully understood. This presents a challenge in developing effective treatments and
accurate prognoses for patients with this type of tumor. The mathematical modeling of the
migration and proliferation dichotomy of cancer cells has been an active area of research
in recent years, as it provides a valuable tool for understanding the complex interplay be-
tween these two processes in cancer progression and invasion. The migration–proliferation
dichotomy in gliomas has been studied using a variety of approaches. These include a
stochastic two-state switching model, where the migration–proliferation of cancer cells was
formulated in terms of a continuous time random walk (CTRW) [3–7]; multiparametric
modeling of the phenotype switching [8]; the simulation of multiscale glioma growth and
invasion using an agent-based approach [9,10]; and numerical and analytical approaches,
where the phenotype switching depends on oxygen in a threshold manner, which were
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developed in the framework of reaction–diffusion equations [11]. It was proposed by Khain
et al. [12,13] that the motility of cancer cells is a function of their density. The phenomenon
of phenotypic switching caused by the density effect was also discussed in [14,15]. In
recent years, there has been a significant amount of research focused on the “Go-or-Grow”
mechanism and its effect on glioma invasion. The role of the “Go-or-Grow” mechanism in
glioma invasion, which is thought to be linked to oxygen availability in the environment
of a growing tumor, was proposed by Hatzikirou et al. [16]. Multiscale modeling for acid-
and vasculature-mediated glioma invasion and the effects of go-or-grow dichotomy and
tissue anisotropyin were discussed in [17]. Mansury and colleagues [18] introduced the use
of evolutionary game theory in an agent-based brain tumor model as a means of studying
the evolution and dynamics of brain tumors. An alternative approach to studying the
growth and progression of tumors was proposed by Böttger et al. [19], in which a model
that specifically incorporates tumor cell dynamics was developed to analyze the interplay
of proliferation and migration processes in detail. Recently, Godlweski et al. [20] identified
a single microRNA that plays a key role in the regulation of glioma cell proliferation, mi-
gration, and responsiveness to glucose deprivation. New approaches to modeling glioma
invasion have emerged in recent years, with sources [21–23] providing examples.

Previous research by Fedotov et al. [24] demonstrated that the use of the standard
diffusion approximation for transport processes, in conjunction with logistic growth, re-
sults in an overestimation of the overall propagation rate in glioma. This finding was
verified in [5,6]. The presence of anomalous diffusion in the stochastic movement of cells is
frequently observed, thereby highlighting the significance of fractional diffusion equations
and fractional derivative in modeling some biological phenomena, such as the cancer cell
motility [25] and tumor growth [26]. The persistent random walk model constitutes a
well-established framework that can be easily augmented to incorporate extensions, such
as cell reactions [27,28]. However, most existing methods and techniques for addressing
the issue of persistent random walks with reactions focus on Markovian switching between
two states [29–31]. According to a study described in [32], cell motility can be explained by
a persistent random walk model, which demonstrates that cells have a memory of their
past velocities.

In [33], the authors proposed a model that incorporates a three-state switching mecha-
nism and generates anomalous subdiffusion. The resulting governing equations for this
formulation are

∂p+
∂t

+ ν
∂p+
∂x

= −λp+(x, t) + r+i0(x, t), (1)

∂p−
∂t
− ν

∂p−
∂x

= −λp−(x, t) + r−i0(x, t), (2)

∂p0

∂t
= λp+(x, t) + λp−(x, t)− (1− r0)i0(x, t), (3)

where p+(x, t) and p−(x, t) are the probability density functions (PDFs) of particles moving
with constant speed ν in the positive or negative direction for exponentially distributed
running times with rate λ, and p0(x, t) is the PDF of a particle that has zero velocity
for Mittag–Leffler distributed resting times. Here, r+, r−, and r0 describe three possible
transitions that the particle can make from the rest, and i0(x, t) is the integral escape rate
from the rest state and is defined as

i0(x, t) = τ
−β
0 D

1−β
t p0(x, t), (4)

where D1−β
t denotes the Riemann–Liouville derivative and is given by

D1−β
t p0(x, t) =

1
Γ(β)

∂

∂t

∫ t

0

p0(x, t′)

(t− t′)1−β
dt′, (0 < β < 1). (5)
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It is important to highlight that for non-Markovian switching states in random walk
theory, a general formula for the escape rate i0(x, t) can be represented through convolution
of the memory kernel and the density, which will be illustrated later.

Although the model (1)–(3) involves a non-Markovian anomalous rest state, the
switching running state is Markovian. The main objective of this paper is to expand upon
the work of the anomalous stochastic transport model of particles outlined in [33] by
incorporating non-Markovian running states. Specifically, we will assume that the running
time is arbitrarily distributed [34], rather than solely following an exponential distribution
as described in [33]. A second extension of [33] is the implementation of a reaction term into
the non-Markovian model. Another main objective of this paper is to extend the analysis of
the migration–proliferation dichotomy model presented in [6]. For a biologically motivated
reaction–diffusion model, it may be worthwhile to enhance the model by incorporating
additional states for the cells or the particles. Our approach addresses this by by including
an additional state for migrating cells, in addition to the existing migratory and proliferative
states. We are interested in investigating the impact of considering the movement of cells in
both positive and negative directions with finite velocities±ν, as opposed to the movement
of cells in a single direction with a fixed velocity, as previously considered in [5,6]. Our
goal is to create a more realistic theory for the phenomenon of phenotype cell switching.
Our model provides a description of the complex cell transport in the framework of a
persistent random walk with memory effects, taking into account anomalous transport and
the resulting slow mobility of cancer cells.

2. Three-State Proliferation–Migration Model Involving a Residence Time Variable

In this paper, we provide an analysis of the migration and proliferation of tumor
cells using a three-state persistent random walk model on a one-dimensional space with
continuous sample paths (no jumps). The model considers transitions between moving
states with constant velocity (migratory phenotype) via an intermediate resting state with
zero velocity (proliferating phenotype). More specifically, we suggest a model in which the
process of tumor cell invasion consists of three possible states: two moving states, in which
the tumor cells randomly move (migrate) with a constant velocity ν in the positive (state
+) or negative (state −) direction but are unable to proliferate and can switch phenotypes;
and a resting state (state 0), in which the tumor cells are allowed to proliferate but do not
migrate and can also switch phenotypes.

One way to characterize the migration–proliferation dichotomy is through the use
of a commonly used phenomenological model that employs reaction–diffusion equations.
The basic structure of our model is as follows: The migratory phenotype cell remains in
state + during a running time T+ (state +’s residence time) or in state − during a running
time T− (state −’s residence time). In these moving states, the cell starts to move with
constant speed ν at time t = 0 in the positive (state +) or negative (state −) direction, and
after a random time (running time) it switches to a proliferating phenotype cell. Following
a waiting time T0 (state 0’s residence time) spent in state 0, the cell makes the choice to
switch to some next state. Specifically, it either returns to a migratory phenotype (state +
or state −) or remains at its resting state (state 0). Clearly, the fundamental aspect of this
process can be represented by a three-state random process, where the cell exhibits one
of three distinct states: positive directional movement of tumor cells, negative directional
movement of tumor cells, or a state of rest for tumor cells. We assume that the residence
times are random variables.

To describe the transition process between these states, we introduce the switching
rate, β j(τ), as a function of residence time τ such that [35]

β j(τ) =
ψj(τ)

Ψj(τ)
, j = +, −, 0, (6)
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where ψj(τ) and Ψj(τ), j = +, −, 0 are PDFs of the residence times and the corresponding
survival functions, respectively. Ψj(τ) are defined as

Ψj(τ) =
∫ ∞

τ
ψj(u)du, j = +, −, 0. (7)

In this case, β+(τ)h and β−(τ)h represent the conditional probability of transition
from migrating states to a proliferating state in the small interval (τ, τ + h), given that
there is no transition up to time τ. The product β0(τ)h has a similar meaning for the
transition from a proliferating state to one of migrating states. Thus, β+(τ) is the switching
rate from state + to state 0, β−(τ) is the switching rate from state − to state 0, and β0(τ)
determines the switching rate from state 0 to either state + or state −. Since the switching
rate β j(τ) is dependent on the duration of time the cell has stayed in a specific state, our
approach has the advantage of being adaptable to various forms of the residence time
probability distribution. This is noteworthy due to recent evidence indicating that the
PDF of the residence time may not be exponential. In this study, we introduce three PDFs:
p+(x, t), p−(x, t) and p0(x, t). The functions p+(x, t) and p−(x, t) represent the probability
densities that the position of cells with a migratory phenotype (moving state) is within the
interval (x, x + dx) at time t and moving with positive and negative velocities, respectively.
The function p0(x, t) represents the probability density that the position of cells with a
proliferating phenotype (resting state) is within the interval (x, x + dx) at time t and has
zero velocity.

In this section, we aim to develop a migration and proliferation model for cancer cells
and derive non-Markovian master equations to describe the dynamics of the cells transport
process. Transition probabilities β+(τ), β−(τ) and β0(τ) can be introduced that depend on
the residence time τ spent in the migrating and proliferating states, respectively [35]. It is
useful to define the structured densities of cancer cells as dependent on the residence time
τ [36]. Let n+(x, t, τ) and n−(x, t, τ) be the densities of migrating cells at point x at time t,
whose residence time in a migratory phenotype state (state + or state −, respectively) lies
in the interval (τ, τ + dτ). The density of cells in a proliferating state that corresponds to
the aforementioned migrating cells is n0(x, t, τ).

The balance equations for structured densities n+(x, t, τ), n−(x, t, τ) and n0(x, t, τ)
can be written as follows.

For migrating states,

∂n+

∂t
+

∂n+

∂τ
+ ν

∂n+

∂x
= −β+(τ)n+, (8)

∂n−
∂t

+
∂n−
∂τ
− ν

∂n−
∂x

= −β−(τ)n−. (9)

For a proliferating state,

∂n0

∂t
+

∂n0

∂τ
= −β0(τ)n0 + f (p)n0. (10)

The nonlinear function f (p) is the proliferation rate, where p = p+ + p− + p0. For
example, we can use the logistic growth for cell proliferation involving the cell proliferation
rate U and the carrying capacity K such that [6]

f (p) = U
[
1− p

K

]
. (11)

We assume that the initial conditions for the system are given by

nj(x, 0, τ) = p0
j (x)δ(τ), j = +,−, 0, (12)
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where p0
j (x) is the initial densities of cancer cells (0 ≤ τ ≤ t). It corresponds to the case

when the residence time of all cells at t = 0 equals to zero.
The boundary conditions at zero running/waiting time (τ = 0) are

n+(x, t, 0) = α+

∫ t

0
β0(τ)n0(x, t, τ)dτ, (13)

n−(x, t, 0) = α−

∫ t

0
β0(τ)n0(x, t, τ)dτ, (14)

n0(x, t, 0) =
∫ t

0
β+(τ)n+(x, t, τ)dτ +

∫ t

0
β−(τ)n−(x, t, τ)dτ + α0

∫ t

0
β0(τ)n0(x, t, τ)dτ, (15)

where α+, α− and α0 describe the conditional transition probabilities from proliferation state
to a state of positive velocity, negative velocity, or remaining at its resting state, respectively.
Specifically, α+ represents the probability of transitioning to a state of positive velocity, ν,
while α− represents the probability of transitioning to a state of negative velocity, −ν. On
the other hand, α0 represents the transition probability that the resting cell remains at rest
again, where α+ + α− + α0 = 1. Generally, the probabilities α+, α− and α0 can facilitate the
formulation of the effect of the external force.

The mean densities at point x at time t, pj(x, t), can be obtained by integrating the
structured densities nj(x, t, τ) over residence time variable τ

pj(x, t) =
∫ t

0
nj(x, t, τ)dτ, j = +,−, 0. (16)

3. Non-Markovian Three-State Model

The aim of this section is to set up a non-Markovian model for the migration and
proliferation of cells by eliminating the residence time variable τ and find equations for
p+(x, t), p−(x, t) and p0(x, t) by solving the partial differential Equations (8)–(10) together
with the boundary conditions (13)–(15) at τ = 0 and initial condition (12) at t = 0.

The product β j(τ)nj(x, t, τ) gives the phenotype switching rate corresponding to a
particular residence time τ. If we denote the fluxes between migrating and proliferating
cells by i+(x, t), i−(x, t) and i0(x, t), then the switching term ij(x, t) can be obtained by
integrating β jnj over variable τ from 0 to t:

ij(x, t) =
∫ t

0
β j(τ)nj(x, t, τ)dτ, j = +,−, 0. (17)

It follows from Equations (13)–(15) and (17) that

n+(x, t, 0) = α+i0(x, t), n−(x, t, 0) = α−i0(x, t), n0(x, t, 0) = i+(x, t) + i−(x, t) + α0i0(x, t). (18)

Applying the method of characteristics, we obtain the following solutions to Equations (8)–(10):
For migrating states (0 ≤ τ < t)

n+(x, t, τ) = n+(x− vτ, t− τ, 0)e−
∫ τ

0 β+(u)du, (19)

n−(x, t, τ) = n−(x + vτ, t− τ, 0)e−
∫ τ

0 β−(u)du. (20)

For a proliferating state (0 ≤ τ < t)

n0(x, t, τ) = n0(x, t− τ, 0)e−
∫ τ

0 β0(u)du+
∫ t

t−τ f (p(x,u))du. (21)
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It can be observed that all of the derived solutions (19)–(21) contain an exponential
factor e−

∫ τ
0 β j(u)du that can be understood to represent the survival function Ψj(τ):

Ψj(τ) = e−
∫ τ

0 β j(u)du, j = +,−, 0. (22)

Considering the boundary conditions specified in Equations (13)–(15), the solutions
represented by Equations (19)–(21) can be expressed in terms of the survival function
from (22) and the fluxes between the migrating and proliferating states (switching terms)
from (17) as follows:

n+(x, t, τ) = α+i0(x− ντ, t− τ)Ψ+(τ), (23)

n−(x, t, τ) = α−i0(x + ντ, t− τ)Ψ−(τ), (24)

n0(x, t, τ) = [i+(x, t− τ) + i−(x, t− τ) + α0i0(x, t− τ)]Ψ0(τ)e
∫ t

t−τ f (p(x,u))du. (25)

It should be noted that the residence time PDF, ψj(τ), can be expressed in terms of the
switching rate, β j(τ), as follows [35]:

ψj(τ) = β j(τ)e
−
∫ τ

0 β j(u)du, j = +,−, 0. (26)

The nonlinear master equations for unstructured densities p+(x, t), p−(x, t) and
p0(x, t) can be obtained by differentiating (16) with respect to time t together with (8)–(10):

∂p+
∂t

= n+(x, t, t)−
∫ t

0
β+(τ)n+(x, t, τ)dτ − ν

∫ t

0

∂n+

∂x
dτ −

∫ t

0

∂n+

∂τ
dτ, (27)

∂p−
∂t

= n−(x, t, t)−
∫ t

0
β−(τ)n−(x, t, τ)dτ + ν

∫ t

0

∂n−
∂x

dτ −
∫ t

0

∂n−
∂τ

dτ, (28)

∂p0

∂t
= n0(x, t, t)−

∫ t

0
β0(τ)n0(x, t, τ)dτ +

∫ t

0
f (p)n0(x, t, τ)dτ −

∫ t

0

∂n0

∂τ
dτ. (29)

By using (13)–(17), we obtain a system of integro-differential equations for the PDFs
p+(x, t), p−(x, t) and p0(x, t) in terms of the switching terms i+(x, t), i−(x, t) and i0(x, t):

∂p+
∂t

+ ν
∂p+
∂x

= −i+(x, t) + α+i0(x, t), (30)

∂p−
∂t
− ν

∂p−
∂x

= −i−(x, t) + α−i0(x, t), (31)

∂p0

∂t
= f (p)p0 + i+(x, t) + i−(x, t)−−(1− α0)i0(x, t). (32)

Note that the above Equations (30)–(32) can be obtained by using the Fourier–Laplace
transform technique. The switching terms i+(x, t) and i−(x, t) describe the average flux of
cells from migrating states to proliferating state and i0(x, t) describes the average flux of
cells from the proliferating state to migrating states.

The terms accounting for changes in state i+(x, t), i−(x, t) and i0(x, t) are expressed
in terms of p+(x, t), p−(x, t) and p0(x, t), respectively, as follows (see Appendix A for the
details of the derivation):

i+(x, t) =
∫ t

0
H+(t− τ)p+(x− ν(t− τ), τ)dτ, (33)
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i−(x, t) =
∫ t

0
H−(t− τ)p−(x + ν(t− τ), τ)dτ, (34)

i0(x, t) =
∫ t

0
H0(t− τ)p0(x, τ)e

∫ t
τ f (p(x,u))dudτ, (35)

where Hj(t) is the memory kernel defined by its Laplace transform [37]:

H̃j(s) =
ψ̃j(s)
Ψ̃j(s)

, j = +,−, 0. (36)

Here, ψ̃j(s) and Ψ̃j(s) are the Laplace transforms of the residence time PDF ψj(τ) and
the survival function Ψj(τ), respectively. The nonlinear master Equations (30)–(32) together
with interaction terms (33)–(35) are a generalization of a linear system of equations obtained
in [33,38].

The Fourier–Laplace transform of the total density p(x, t) = p+(x, t) + p−(x, t) +
p0(x, t), where the proliferating rate f (n) = 0, can be written as (see Appendix B)

ˆ̃p(k, s) =


p̂0
+

[
α+ψ̃+Ψ̃0 + α+Ψ̃+ − α−α+ψ̃0ψ̃−Ψ̃+ + α−α+ψ̃0ψ̃+Ψ̃− − α0α+ψ̃0Ψ̃+

]
+ p̂0
−
[
α−ψ̃−Ψ̃0 + α−Ψ̃− − α−α+ψ̃0ψ̃+Ψ̃− + α−α+ψ̃0ψ̃−Ψ̃+ − α0α−ψ̃0Ψ̃−

]
+ p̂0

0
[
Ψ̃0 + α+ψ̃0Ψ̃+ + α−ψ̃0Ψ̃−

]


1− α+ψ̃0ψ̃+ − α−ψ̃0ψ̃− − α0ψ̃0
, (37)

where p̂0
j =

∫ ∞
−∞ p0

j (x) eikx dx, j = +,−, 0.
In what follows, we will examine various distributions for residence time PDFs, ψj(τ),

including power law distributions.

4. Examples of Three-State Switching Model

In this section, two examples are considered, one of which is Markovian, while the
other is non-Markovian.

4.1. Markovian Case

Let us consider the case when the switching rates β j(τ) are constant. This case
corresponds to the exponential time PDFs ψj(τ) = β je

β jτ , and the exponential survival
functions Ψj(τ) = eβ jτ , for which H̃j(s) = β j and H(τ) = β jδ(τ), j = +,−, 0. It follows
from Equations (16) and (17) that the switching terms of cells are

i+(x, t) = β+p+(x, t), i−(x, t) = β−p−(, t), i0(x, t) = β0 p0(x, t). (38)

For example, if we consider only the simple case of a switching process for which
α+ = 1/2, α− = 1/2 and α0 = 0 and assume β+(τ) = β−(τ) = β and β0(τ) = β0, then
Equations (30)–(32) can be reduced to a classical three-state Markovian model for the mean
densities of cells of migratory phenotype p+(x, t) and p−(x, t) and the mean density of
cells of proliferating phenotype p0(x, t):

∂p+
∂t

+ ν
∂p+
∂x

= −βp+ +
1
2

β0 p0, (39)

∂p−
∂t
− ν

∂p−
∂x

= −βp− +
1
2

β0 p0, (40)

∂p0

∂t
= f (p)p0 + βp+ + βp− − β0 p0. (41)
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If there is no proliferating in state 0 (in the case when f (p) = 0), then Equations (39)–(41)
become the same as the governing equations in [38], where self-reinforcement is taken into
consideration and the single governing hyperbolic partial differential equation for the proba-
bility density of random walk position is derived, from which the second moment is obtained
in the long-time limit.

4.2. Non-Markovian Case

Now, we consider another distribution of the residence times ψj(t) that corresponds
to the family of gamma distributions with parameters γ and β j, that is

ψj(τ) =
β

γ
j τγ−1e−β jτ

Γ(γ)
, j = +, −, 0. (42)

Notice immediately that when γ = 1, then (42) reduces to the form of the exponential
distribution PDF, covered in the previous subsection. Hence, exponential density is a
special case of gamma density. For example, if the parameter γ = 2, then the residence
time PDF and the survival probability turn out to be

ψj(τ) = β2
j τe−β jτ , Ψj(τ) = (β jτ + 1)τe−β jτ , j = +, −, 0, (43)

and their corresponding Laplace transforms are

ψ̃j(s) =
β2

j(
β j + s

)2 , Ψ̃j(s) =
2β j + s(
β j + s

)2 , j = +, −, 0. (44)

In this case, the Laplace transform of the memory kernel is

H̃j(s) =
β2

j

2β j + s
, j = +, −, 0. (45)

Taking the inverse Laplace transform, the memory kernel has an exponential form

Hj(τ) = β2
j e−2β jτ , j = +, −, 0. (46)

Therefore, the switching terms (33)–(35) are now written as

i+(x, t) = β2
+

∫ t

0
e−2β+τ p+(x− ν(t− τ), τ)dτ, (47)

i−(x, t) = β2
−

∫ t

0
e−2β−τ p−(x + ν(t− τ), τ)dτ, (48)

i0(x, t) = β2
0

∫ t

0
e−2β0τ p0(x, τ)e−

∫ t
τ f (p(x,u))dudτ. (49)

In this case, it is evident that it is no longer Markovian. The defining characteristic of
the flux from the proliferating state to the migratory states i0(x, t) in this non-Markovian
case is its dependence on proliferating rate f (p), which is reflected in its exponential

term e−
∫ t

τ f (p(x,u))du, while this phenomenon does not exist in the Markovian case. Similar
outcomes were observed in the transport and nonlinear reaction system in [39]. In this
paper, the main attention is directed toward the anomalous case, in which the velocities
of cell migration alternate at random times distributed in accordance with an exponential
distribution, and the behavior of proliferation is characterized by rest times distributed
following a power law distribution.
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5. Anomalous Three-State Model with Mittag–Leffler Distributed Rest Times

In this section, we consider an anomalous switching case and determine an average
position of a cancer cell, 〈x(t)〉, and the mean squared displacement (MSD), 〈x2(t)〉, when
there is no proliferating process in state 0: f (p) = 0. Given that the proliferation of cancer
cells is influenced by numerous conditions, it is assumed that a characteristic scale for the
proliferating residence time is not present [6]. As a result, the PDF for the residence time in
the proliferating state exhibits a power law behavior. Thus, we introduce a switching term,
i0(x, t), that incorporates the Riemann–Liouville fractional derivative, which is equivalent
to the waiting time for a cell in the rest state, with a corresponding PDF derived from a
Mittag–Leffler function. Its survival function is expressed as

Ψ0(τ) = Eβ0

[
−
(

τ

τ0

)β0
]

, 0 < β0 < 1, (50)

then

ψ0(τ) = −
d

dτ
Ψ0(τ) = −

d
dt

Eβ0

[
−
(

τ

τ0

)β0
]

, (51)

where τ0 is a parameter with units of time and Eβ0(.) is the one-parameter Mittag–Leffler
function. The parameter β0 is the measure of the strength of the resting state [6]. A decrease
in β0 increases the probability of a longer residence time in the proliferating state. As β0
approaches 1, the Markovian case with exponentially distributed resting times, τ0

−1e−t/τ0 ,
is recovered.

The residence times in the proliferating state will be distributed approximately as

ψ0(τ) ∼
(τ0

τ

)1+β0
, 0 < β0 < 1, (52)

for large values of τ/τ0 (as τ → ∞), leading to the formation of “heavy” or power law tail
distributions. Power law distributions have been widely observed in various empirical
studies of stochastic processes with intricate underlying mechanisms. Additionally, numer-
ous examples have demonstrated the significance of power law waiting times in real-world
phenomena.

The Laplace transforms of residence time PDF ψ0(τ) and its corresponding survival
function Ψ0(τ) are

ψ̃0(s) =
1

1 + (sτ0)
β0

, Ψ̃0(s) =
τ0(sτ0)

β0−1

1 + (sτ0)
β0

. (53)

The Laplace transform ψ̃0(s) corresponding to Equation (52) can be approximated by

ψ̃0(s) ∼ 1− (τ0s)β0 , 0 < β0 < 1, (54)

for small s [40]. The mean waiting time 〈τ〉 =
∫ +∞

0 τψ0(τ)dτ is infinite in this case. The
memory kernel H0(t) in terms of its Laplace transform is

H̃0(s) ∼ s(τ0s)−β0 . (55)

In this situation, it is more convenient to find the switching term i0(x, t) using the
Laplace transform version of Equation (35):

ĩ0(x, s) = H̃0(s) p̃0(x, s). (56)
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Inserting H̃0(s) into the above equation and then taking the inverse Laplace trans-
form gives

i0(x, t) =
1

τ0
β0
D1−β0

t p0(x, t), (57)

where D1−β
t is the Riemann–Liouville fractional derivative defined in (5). Contrary to the

proliferating process, an average transport time is finite. Therefore, we assume that the
residence time PDFs for migrating states are exponentially distributed with rate β

ψ+(τ) = ψ−(τ) = βe−βτ , (58)

where β is constant. The Laplace transform of ψ+(τ) and ψ−(τ) are

ψ̃+(s) = ψ̃−(s) =
β

β + s
, (59)

and the Laplace transform of their corresponding survival functions Ψ+(τ) and Ψ−(τ) are

Ψ̃+(s) = Ψ̃−(s) =
1

β + s
. (60)

In order to comprehend the implications of incorporating a heavy-tailed waiting time
distribution for the rest state, two basic scenarios are analyzed: a single velocity model and
a symmetric dual velocity model, both of which possess a non-Markovian rest state. The
first and second moments at the long-term limit are performed for each of these models.

5.1. Single Migration State Model

The aim of this subsection is to show that if the migrating cancer cells move with
a constant velocity ν, then the mean cell position 〈x(t)〉 increases as tβ0 for 0 < β0 < 1.
Consider the particular case when all cells at t = 0 start to move to the positive direction
with the velocity ν from the point x = 0. To achieve this, we set α+ = 1, α− = 0 and
α0 = 0, for which the initial density of cells in migrating states are p0

+(x) = δ(τ) and
p0
−(x) = 0, and the initial density of cells in proliferating state, p0

0(x), is zero. Then,
p̂0
+(k) = 1, p̂0

−(k) = 0 and p̂0
0(k) = 0. The system of integro-differential equations for the

PDFs p+(x, t) and p0(x, t) in terms of the switching term i0(x, t) is

∂p+
∂t

+ ν
∂p+
∂x

= −βp+(x, t) +
1

τ0
β0
D1−β0

t p0(x, t), (61)

∂p0

∂t
= βp+(x, t)− 1

τ0
β0
D1−β0

t p0(x, t). (62)

It follows from Equation (37) that

ˆ̃p(k, s) =
p̂0
+

[
α+ψ̃+Ψ̃0 + α+Ψ̃+

]
1− α+ψ̃0ψ̃+

. (63)

In the limit s→ 0, we find from (54), (59) and (60) that

ˆ̃p(k, s) ∼ βτ0
β0

s1−β0(−ikv + βτ0
β0 sβ0)

. (64)

To find the average position of cancer cells for large time asymptotic t→ ∞, we use
the Laplace transform of 〈x(t)〉 defined by

〈x(s)〉 = −i
∂

∂k
ˆ̃p(k, s)

∣∣∣∣∣
k=0

, (65)
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where ˆ̃p(k, s) = ˆ̃p+(k, s) + ˆ̃p−(k, s) + ˆ̃p0(k, s) is the Fourier–Laplace transform of the total
density of cells p = p+ + p− + p0.

By using Equation (65), we find

〈x(s)〉 ∼ ν

s1+β0 βτ0
β0

. (66)

Finally, taking the inverse Laplace transform, the average position of cells is

〈x(t)〉 ∼ ν

Γ(1 + β0)βτ0
β0

tβ0 , 0 < β0 < 1, (67)

which is sublinear. The average position of cancer cells was estimated in [6] using a different
idea, yet the same anomalous behavior was obtained. By employing a similar approach,
the MSD, 〈x2(t)〉, of this model can be determined and show that 〈x2(t)〉 ∼ t2β0 . The
anomalous advection reflects the memory effect associated with the slow motion of cells
due to the power law of the residence time distribution for the proliferating state with an
infinite mean residence time (52).

5.2. Symmetric Active States Model

The objective of this subsection is to demonstrate by calculation the MSD that, upon
expanding the previously considered model by incorporating an additional active state
with a velocity of −ν, results in subdiffusion in the long-time asymptotic limit.

By introducing the flux

J(x, t) = νp+(x, t)− νp−(x, t), (68)

Equations (30)–(32) can be combined and reduced to a system of governing equations
for the total density function p(x, t) = p+(x, t) + p−(x, t) + p0(x, t) and p0(x, t).

By adding (30)–(32), we obtain

∂p
∂t

= − ∂J
∂x

. (69)

Now multiplying (30) and (31) by ν and subtracting the resulting equations, and by
setting α+ = 1/2, α− = 1/2 and α0 = 0, we obtain

∂J
∂t

= −ν2 ∂p
∂x

+ ν2 ∂p0

∂x
− ν[i+(x, t)− i−(x, t)]. (70)

Then, by differentiating (69) with respect to t and (70) with respect to x and eliminating
the flux ∂2 J/∂t∂x, and combining it with (32), we arrive at the governing equations

∂2 p
∂t2 = ν2 ∂2 p

∂x2 − ν2 ∂2 p0

∂x2 − ν
∂

∂x
[i+(x, t)− i−(x, t)], (71)

∂p0

∂t
= i+(x, t) + i−(x, t)− i0(x, t). (72)

We consider now the symmetrical initial conditions for which the cells start to move
from the point x = 0 at t = 0 as follows: p0

+(x) = δ(τ)/2 and p0
−(x) = δ(τ)/2, and the

initial density of cells in proliferating state, p0
0(x), is zero. Then p̂0

+(k) = 1/2, p̂0
−(k) = 1/2

and p̂0
0(k) = 0. From (71) and (72), and by using β(p+ + p−) = βp− βp0, we obtain a

reduced system of integro-differential equations for the PDFs p(x, t) and p0(x, t):

∂2 p
∂t2 = ν2 ∂2 p

∂x2 − ν2 ∂2 p0

∂x2 − β
∂p
∂t

, (73)
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∂p0

∂t
= βp(x, t)− βp0(x, t)− 1

τ0
β0
D1−β0

t p0(x, t). (74)

Performing the Fourier–Laplace transform to (73) and (74), we obtain

ˆ̃p(k, s) =
s + β

s2 + sβ + ν2k2 − βν2k2

s+β+τ0
−β0 s1−β0

. (75)

In the limit s→ 0,
ˆ̃p(k, s) ∼ 1

s + ν2

β2 τ0
β0 k2s1−β0

. (76)

Mathematically, the MSD is defined by

〈x2(t)〉 =
∫ ∞

−∞
x2(t)p(x, t) dx, (77)

which in the Fourier–Laplace space reads

〈x2(s)〉 = − ∂2

∂k2
ˆ̃p(k, s)

∣∣∣∣∣
k=0

. (78)

Calculating the MSD at the long time limit using the above formula, we find

〈x2(s)〉 ∼ 2ν2

s1+β0 β2τ0
β0

, (79)

and subsequent Laplace inversion, we obtain

〈x2(t)〉 ∼ 2ν2

(1 + β0)β2τ0
β0

tβ0 , 0 < β0 < 1. (80)

Once more, it is observed that the power law PDF for the residence time in the
proliferating state results in subdiffusive behavior. The calculation of the second moment is
performed utilizing the Laplace technique in [33]; however, the same anomalous behavior
is observed.

6. Conclusions

We developed a three-state non-Markovian model to characterize the migration–
proliferation dichotomy of tumor cells with general residence time distributions. Specif-
ically, the model differentiates between a migratory state, where cells move without un-
dergoing proliferation, and a proliferative state, where they do not migrate but instead
undergo division. The objective of this study was to provide a mesoscopic description
of the anomalous transport and reactions associated with the migration–proliferation di-
chotomy mechanism. This work further analyzed the two-state non-Markovian model for
the migration–proliferation dichotomy of cancer cells introduced in [6] by incorporating an
additional state for migrating cells. It also extended the stochastic transport of particles
outlined in [33]. In comparison to the work of Han et al. (2021), we enhanced the model
by introducing non-Markovian running states. In particular, we assumed that the running
time follows an arbitrary distribution instead of being limited to an exponential distribution
as stated in [33]. Additionally, we incorporated a reaction term into the non-Markovian
model as another extension of [33]. The developed probabilistic approach for the transport
of tumor cells with directional in migration speed and a rest state was described using a
persistent random walk with an arbitrary residence time distribution, while the prolifera-
tion rate was modeled using a nonlinear function of the densities of all three cell types. A
set of balance equations for cancer cells with two phenotypes, which can switch randomly
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between cell proliferation and migration, was derived with a non-local switching term in-
volving the Riemann–Liouville fractional derivative. To achieve this, the Markovian model
was employed as the initial approach, under the premise that the transition probabilities
depend on the residence time variable.

To investigate the nature of our model in the anomalous case involving power law
residence time distributions, we calculated the average position of cancer cells in a single
migration state model that corresponds to sublinear growth in time: 〈x(t)〉 ∼ tβ0 , for
0 < β0 < 1. The MSD for symmetric bi-directional migration model was estimated and
showed that 〈x2(t)〉 ∼ tβ0 , for 0 < β0 < 1. We demonstrated through analytical methods
that if cells move in a migratory state with constant velocity ν, using power law residence
time distributions for the proliferative state (the Mittag–Leffler distributed waiting times for
rests) results in subdiffusive behavior in the long time asymptotic limit. This describes the
impact of an anomalous rest state on persistent random walks of cells with finite velocity:
the longer a cell survives in a proliferative state, the smaller the probability of switching to
a migratory state.

Our proposed model offers a general framework for analyzing reaction–transport
systems characterized by non-Markovian and anomalous transitions between active and
inactive states. This model is suitable for bi-directional intracellular transport [41] that
involves a resting state for power law distributed times. Recently, it was experimentally
found that the residence time of active movement follows a power law distribution [42].
The presence of subdiffusive behavior in a stochastic transport system due to anomalous
switching constitutes a beneficial aspect of the proposed model, enhancing its potential
applications, particularly in describing biological or ecological movement, including the
fields of population theory and cellular biology. Our intention is to apply the model to
intracellular transport.
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Appendix A. Derivation of The Switching Terms

In this appendix, we demonstrate the process of deriving integral equations for ij(x, t)
and the unstructured density pj(x, t), and determining the structure of the switching terms
ij(x, t) in terms of pj(x, t). The derivation of (33)–(35) involves convolutions in Fourier–
Laplace space via the transformation

FL{ij(x, t)} = ˆ̃ij(k, s) =
∫ ∞

−∞

∫ ∞

0
ij(x, t)e−st+ikxdtdx j = +,−, 0, (A1)

FL{pj(x, t)} = ˆ̃pj(k, s) =
∫ ∞

−∞

∫ ∞

0
pj(x, t)e−st+ikxdtdx j = +,−, 0. (A2)
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The substitution of (23)–(25) into (17) and (16), along with the initial condition (12),
gives

i+(x, t) = α+

∫ t

0
ψ+(τ)i0(x− ντ, t− τ)dτ + α+p0

+(x− νt)ψ+(t), (A3)

i−(x, t) = α−

∫ t

0
ψ−(τ)i0(x + ντ, t− τ)dτ + α−p0

−(x + νt)ψ−(t), (A4)

i0(x, t) =
∫ t

0
ψ0(τ)[i+(x, t− τ) + i−(x, t− τ) + α0i0(x, t− τ)]e

∫ t
t−τ f (p(x,u))dudτ

+p0
0(x)ψ0(t)e

∫ t
0 f (p(x,u))du, (A5)

p+(x, t) = α+

∫ t

0
Ψ+(τ)i0(x− ντ, t− τ)dτ + α+p0

+(x− νt)Ψ+(t), (A6)

p−(x, t) = α−

∫ t

0
Ψ−(τ)i0(x + ντ, t− τ)dτ + α−p0

−(x + νt)Ψ−(t), (A7)

p0(x, t) =
∫ t

0
Ψ0(τ)[i+(x, t− τ) + i−(x, t− τ) + α0i0(x, t− τ)]e

∫ t
t−τ f (p(x,u))dudτ

+p0
0(x)Ψ0(t)e

∫ t
0 f (p(x,u))du, (A8)

where we use formula (26) to eliminate β j(τ). Taking the Fourier–Laplace transform
together with the shift theorem of Equations (A3), (A4), (A6) and (A7), we obtain

ˆ̃i+(k, s) =
[

ˆ̃i0(k, s) + p̂0
+(k)

]
α+ψ̃+(s− ikν), (A9)

ˆ̃i−(k, s) =
[

ˆ̃i0(k, s) + p̂0
−(k)

]
α−ψ̃−(s + ikν), (A10)

ˆ̃p+(k, s) =
[

ˆ̃i0(k, s) + p̂0
+(k)

]
α+Ψ̃+(s− ikν), (A11)

ˆ̃p−(k, s) =
[

ˆ̃i0(k, s) + p̂0
−(k)

]
α−Ψ̃−(s + ikν). (A12)

Then, from (A9)–(A12), we obtain

ˆ̃i+(k, s) =
ψ̃+(s− ikν)

Ψ̃+(s− ikν)
ˆ̃p+(k, s), (A13)

ˆ̃i−(k, s) =
ψ̃−(s + ikν)

Ψ̃−(s + ikν)
ˆ̃p−(k, s). (A14)

Inverse Fourier–Laplace transform of Equations (A13) and (A14) gives (33) and (34).
The expression for i0(x, t) in terms of p0(x, t) can be obtained by multiplying

Equations (A5) and (A8) by e−
∫ t

0 f (p(x,u))du, and taking the Laplace transform L{ f },
we obtain

L{i0(x, t)e−
∫ t

0 f (p(x,u))du} =
[

p0
0(x) + L{[i+(x, t) + i−(x, t) + α0i0(x, t)]e−

∫ t
0 f (p(x,u))du}

]
ψ̃0(s), (A15)

L{p0(x, t)e−
∫ t

0 f (p(x,u))du} =
[

p0
0(x) + L{[i+(x, t) + i−(x, t) + α0i0(x, t)]e−

∫ t
0 f (p(x,u))du}

]
Ψ̃0(s). (A16)

Then from (A15) and (A16), we obtain

L{i0(x, t)e−
∫ t

0 f (p(x,u))du} = L{p0(x, t)e−
∫ t

0 f (p(x,u))du} ψ̃0(s)
Ψ̃0(s)

. (A17)
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Inverse Laplace transform gives

i0(x, t)e−
∫ t

0 f (p(x,u))du =
∫ t

0
H0(t− τ)p0(x, τ)e−

∫ τ
0 f (p(x,u))dudτ. (A18)

From Equation (A18), we obtain (35).

Appendix B. Derivation of The Fourier–Laplace Transform of The Total Density

The purpose of this appendix is to determine the Fourier–Laplace transform of the
total density p(x, t) for the case when the proliferating rate f (p) = 0. The total density is
given by the sum p(x, t) = p+(x, t) + p−(x, t) + p0(x, t).

If f (p) = 0, then we obtain from (A15) and (A16)

ˆ̃i0(k, s) =
[

ˆ̃i+(k, s) + ˆ̃i−(k, s) + α0
ˆ̃i0(k, s) + p̂0

0(k)
]
ψ̃0(s), (A19)

ˆ̃p0(k, s) =
[

ˆ̃p+(k, s) + ˆ̃i−(k, s) + α0
ˆ̃i0(k, s) + p̂0

0(k)
]
Ψ̃0(s). (A20)

Then from (A19) and (A20), we find

ˆ̃i0(k, s) =
ψ̃0(s)
Ψ̃0(s)

ˆ̃p0(k, s). (A21)

Substitution of (A13), (A14) and (A21) into (A11), (A12) and (A20) gives

ˆ̃p+(k, s) =
[

ψ̃0(s)
Ψ̃0(s)

ˆ̃p0(k, s) + p̂0
+(k)

]
α+Ψ̃+(s− ikν), (A22)

ˆ̃p−(k, s) =
[

ψ̃0(s)
Ψ̃0(s)

ˆ̃p0(k, s) + p̂0
−(k)

]
α−Ψ̃−(s + ikν), (A23)

ˆ̃p0(k, s) =
[

ψ̃+(s− ikν)

Ψ̃+(s− ikν)
ˆ̃p+(k, s) +

ψ̃−(s + ikν)

Ψ̃−(s + ikν)
ˆ̃p−(k, s) + α0

ψ̃0(s)
Ψ̃0(s)

ˆ̃p0(k, s) + p̂0
0(k)

]
Ψ̃0(s). (A24)

These three equations can be rewritten as

ˆ̃p+(k, s) = α+ψ̃0(s)ψ̃+(s− ikν) ˆ̃p+(k, s) + α+ψ̃0(s)Ψ̃+(s− ikν)
ψ̃−(s + ikν)

Ψ̃−(s + ikν)
ˆ̃p−(k, s)

+α+ψ̃0(s)Ψ̃+(s− ikν) p̂0
0(k) + α+Ψ̃+(s− ikν) p̂0

+(k)

+α+α0ψ̃0(s)Ψ̃+(s− ikν)
ψ̃0(s)
Ψ̃0(s)

ˆ̃p0(k, s), (A25)

ˆ̃p−(k, s) = α−ψ̃0(s)ψ̃−(s + ikν) ˆ̃p−(k, s) + α−ψ̃0(s)Ψ̃−(s + ikν)
ψ̃+(s− ikν)

Ψ̃+(s− ikν)
ˆ̃p+(k, s)

+α−ψ̃0(s)Ψ̃−(s + ikν) p̂0
0(k) + α−Ψ̃−(s + ikν) p̂0

−(k)

+α−α0ψ̃0(s)Ψ̃−(s + ikν)
ψ̃0(s)
Ψ̃0(s)

ˆ̃p0(k, s), (A26)

ˆ̃p0(k, s) = α+ψ̃0(s)ψ̃+(s− ikν) ˆ̃p0(k, s) + α−ψ̃0(s)ψ̃−(s + ikν) ˆ̃p0(k, s)

+α+ψ̃+(s− ikν)Ψ̃0(s) p̂0
+(k) + α−ψ̃−(s + ikν)Ψ̃0(s) p̂0

−(k)

+Ψ̃0(s) p̂0
0(k) + α0ψ̃0(s) p̂0(k). (A27)
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From (A22) and (A23), we obtain

ˆ̃p+(k, s)
Ψ̃+(s− ikν)

=
α+ ˆ̃p−(k, s)

α−Ψ̃−(s + ikν)
− α+ p̂0

−(k) + α+ p̂0
+(k), (A28)

ˆ̃p−(k, s)
Ψ̃−(s + ikν)

=
α− ˆ̃p+(k, s)

α+Ψ̃+(s− ikν)
− α− p̂0

+(k) + α− p̂0
−(k), (A29)

ψ̃0(s) ˆ̃p0(k, s)
Ψ̃0(s)

=
ˆ̃p+(k, s)

α+Ψ̃+(s− ikν)
− p̂0

+(k), (A30)

ψ̃0(s) ˆ̃p0(k, s)
Ψ̃0(s)

=
ˆ̃p−(k, s)

α−Ψ̃−(s + ikν)
− p̂0

−(k). (A31)

Substitution of (A29) and (A30) into (A25) gives

ˆ̃p+(k, s) = α+ψ̃0(s)ψ̃+(s− ikν) ˆ̃p+(k, s) + α−ψ̃0(s)ψ̃−(s + ikν) ˆ̃p+(k, s)

−α−α+ψ̃0(s)Ψ̃+(s− ikν)ψ̃−(s + ikν) p̂0
+(k)− α0α+ψ̃0(s)Ψ̃+(s− ikν) p̂0

+(k)

+α+ψ̃0(s)Ψ̃+(s− ikν) p̂0
0(k) + α+Ψ̃+(s− ikν) p̂0

+(k) + α0ψ̃0(s) p̂+(k)

+α−α+ψ̃0(s)Ψ̃+(s− ikν)ψ̃−(s + ikν) p̂0
−(k), (A32)

and substitution of (A28) and (A31) into (A26) gives

ˆ̃p−(k, s) = α−ψ̃0(s)ψ̃−(s + ikν) ˆ̃p−(k, s) + α+ψ̃0(s)ψ̃+(s− ikν) ˆ̃p−(k, s)

−α−α+ψ̃0(s)Ψ̃−(s + ikν)ψ̃+(s− ikν) p̂0
−(k)− α0α0ψ̃0(s)Ψ̃−(s + ikν) p̂0

−(k)

+α−ψ̃0(s)Ψ̃−(s + ikν) p̂0
0(k) + α−Ψ̃−(s + ikν) p̂0

−(k) + α0ψ̃0(s) p̂−(k)

+α−α+ψ̃0(s)Ψ̃−(s + ikν)ψ̃+(s− ikν) p̂0
+(k). (A33)

It is convenient to write the functions without including their arguments. From (A27),
(A32) and (A33), we find explicit expressions for ˆ̃p+(k, s), ˆ̃p−(k, s) and ˆ̃p0(k, s):

ˆ̃p+ =

(
α+Ψ̃+ − α−α+ψ̃0ψ̃−Ψ̃+ − α0α+ψ̃0Ψ̃+

)
p̂0
+ + α−α+ψ̃0ψ̃−Ψ̃+ p̂0

− + α+ψ̃0Ψ̃+ p̂0
0

1− α+ψ̃0ψ̃+ − α−ψ̃0ψ̃− − α0ψ̃0
, (A34)

ˆ̃p− =

(
α−Ψ̃− − α−α+ψ̃0ψ̃+Ψ̃− − α0α−ψ̃0Ψ̃−

)
p̂0
− + α−α+ψ̃0ψ̃+Ψ̃− p̂0

+ + α−ψ̃0Ψ̃− p̂0
0

1− α+ψ̃0ψ̃+ − α−ψ̃0ψ̃− − α0ψ̃0
, (A35)

ˆ̃p0 =
α+ψ̃+Ψ̃0 p̂0

+ + α−ψ̃−Ψ̃0 p̂0
− + Ψ̃0 p̂0

0
1− α+ψ̃0ψ̃+ − α−ψ̃0ψ̃− − α0ψ̃0

. (A36)

The Fourier–Laplace transform of the total density p(x, t) is ˆ̃p(k, s) = ˆ̃p+(k, s) +
ˆ̃p−(k, s) + ˆ̃p0(k, s). Thus, using (A34)–(A36), we obtain (37).
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