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Abstract: This work is concerned with the computational solution of the time-dependent 3D parabolic
Heston–Cox–Ingersoll–Ross (HCIR) PDE, which is of practical importance in mathematical finance.
The HCIR dynamic states that the model follows randomness for the underlying asset, the volatility
and the rate of interest. Since the PDE formulation has degeneracy and non-smoothness at some
area of its domain, we design a new numerical solver via semi-discretization and the radial basis
function–finite difference (RBF-FD) scheme. Our scheme is built on graded meshes so as to employ
the lowest possible number of discretized nodes. The stability of our solver is proven analytically.
Computational testing is conducted to uphold the analytical findings in practice.
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1. Introduction
1.1. Background

One of the fundamental and important problems in mathematical finance is to price
options via the partial differential equation (PDE) of Black–Scholes (BS), see e.g., [1,2].
Several extensions to this model can be found in the literature, such as the Heston model;
see, for instance, [3] and the references cited therein.

The Heston model, as an extension of the Black–Scholes model [4], can be extended
further if the rate of interest pursues a stochastic dynamic as well. In literature, one of the
famous models that take both the volatility and the rate of interest to follow stochastic
dynamics is the model of Heston–Cox–Ingersoll–Ross (HCIR); see [5,6]. The point is
that such extensions based on the randomness of the volatile and the interest of the Black–
Scholes model are more favorable than some generalizations based on considering fractional
Brownian motion, which leads to fractional Black–Scholes PDE or similar ones in option
pricing, as discussed in [7,8].

Recalling that for the non-negative stochastic variable R(t), the classic process of the
Cox–Ingersoll–Ross (CIR) was given in [9] as follows:

R(0) =R0, (1)

dR(t) =
√

R(t)θdW(t) + (−R(t) + η)κdt,

wherein θ, κ, and η, are the volatility’s speed, the adjustment, and the mean, respectively.
Besides, W(t) is the standard Wiener process.
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The model of HCIR, combining the model of Heston and (1) with the correlation
constants ρ12, ρ13, ρ23 ∈ [−1, 1], can be provided as follows [10]:

dR(t) =σ2

√
R(t)dW3(t) + (b(t)− R(t))adt,

dV(t) =σ1

√
V(t)dW2(t) + (η −V(t))κdt, (2)

dS(t) =
√

V(t)S(t)dW1(t) + R(t)S(t)dt,

whereas R(t) represents the process of rate of interest. Meanwhile, γ > 0, S(t) and V(t)
are the volatility of volatility, the stock and variance processes, respectively. Additionally,
dW1(t)dW2(t) = ρdt and κ > 0 shows the speed of adjustment of the volatility to η > 0 as
its mean, whileW1(t),W2(t), andW3(t) are 3 motions of Brownian. Additionally, b is a
positive. Here, the parameters σ1, σ2, a are real positive constants. Noting that the condition
of Feller for the positivity of V(t) states that 2κη > γ2, see [11].

1.2. PDE Formulation

Considering (1), the European option valuation under the HCIR model could be
attained as the following PDE (forward in time) [12]:

∂U(x, y, z, t)
∂t

=
1
2

x2y
∂2U(x, y, z, t)

∂x2 +
1
2

σ2
1 y

∂2U(x, y, z, t)
∂y2 +

1
2

σ2
2 z

∂2U(x, y, z, t)
∂z2

+ ρ12σ1xy
∂2U(x, y, z, t)

∂x∂y
+ ρ13σ2x

√
yz

∂2U(x, y, z, t)
∂x∂z

+ ρ23σ1σ2
√

vr
∂2U(x, y, z, t)

∂y∂z

+ zx
∂U(x, y, z, t)

∂x
+ κ(η − y)

∂U(x, y, z, t)
∂y

+ a(b(T − t)− z)
∂U(x, y, z, t)

∂z
− zU(x, y, z, t),

(3)

where in z, y, and x are the interest rate, the instantaneous variance, and the asset price, respectively.
For the call case of pricing, the initial condition (the so-called payoff) can be given by:

U(x, y, z, 0) = (x− K, 0)+, (4)

where K stands for the price of the strike. The initial condition when the option is of the
stated type can be furnished similarly.

The HCIR 3D model is provided on (x, y, z, t) ∈ [0,+∞)× [0,+∞) ×[0,+∞) ×(0, T].
A truncation of the unbounded domain is needed to resolve the problem numerically. This
is considered as follows:

Ω = [0, xmax]× [0, ymax]× [0, zmax], (5)

wherein xmax, ymax, and zmax are real fixed values.
Generally speaking, it is hard to choose xmax, ymax, and zmax as the optimal value to

obtain the best numerical results. The chosen values must be large enough to make the
incorporation of the boundary conditions possible. We also plan to use graded meshes to
concentrate further on the hot part, in which the spontaneous variance and the interest rate
tend to zero (the PDE is degenerate) and the underlying asset approaches the strike price.

1.3. Motivation and the Need for Numerical Methods

The application of time-dependent PDE-based models in finance is an obvious, since
in the modeling process, each asset or the involved variables with randomness mainly
yield in a new spatial variable in terms of a PDE problem. Finite difference (FD) meth-
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ods as pioneer schemes of different versions have been discussed for solving financial
PDEs [13]. In this work, the main goal is to propose a novel computational procedure for
resolving (3) via the well-resulted methodology of the radial basis function–finite difference
(RBF-FD) [14–16]. In fact, in such methods, we have the accuracy of the meshfree RBF
methods and the sparsity patterns of the FD schemes simultaneously [17,18]. Hence, it will
be highly suitable and not yet employed for the 3D PDE (3). Numerical pieces of evidence
will support the theoretical discussions.

1.4. Layout

The remainder of this manuscript is as follows. Section 2 provides the graded meshes,
i.e., the non-uniform meshes that we need to discretize (3) and (4), adaptively, with a clear
focus on the financially significant part, at which the underlying asset, the spontaneous
variance and the rate of interest tend to the x = K, and y = z = 0, respectively. In
fact, the 3D time-dependent parabolic PDE (3) demonstrates non-smoothness at x = K.
Section 3 describes the methodology of the RBF-FD method along the weighting coefficients
of a generalized RBF for our procedure. Section 4 investigates how the proposed solver
can be constructed in sparse arrays and matrix forms as elegantly as possible. Ultimately,
a sparse set of linear ordinary differential equations (ODEs) is derived. Section 5 is de-
voted to the numerical investigation of a high-order time-stepping solver with sixth-order
convergence. The theoretical stability of our solver is proven. Numerical experiments are
given and discussed in detail in Section 6. A short conclusion of this work is furnished
in Section 7.

2. The Graded Meshes

For these proceedings, it is assumed that {xi}m
i=1 is a partition for x ∈ [xmin, xmax]. A

well-resulted and famous non-uniform mesh can be given as follows [19,20]:

xi = Ψ(νi), 1 ≤ i ≤ m, (6)

where m� 3 and
νmax = νm > · · · > ν2 > ν1 = νmin, (7)

stand for m equidistant nodes, while we have:

νint =
xright − xleft

d1
, (8)

νmin = sinh−1
(

xmin − xleft
d1

)
,

νmax = νint + sinh−1
( xmax − xright

d1

)
.

We, too, find that xmin = 0 and xmax = 14K. The parameter υ1 > 0 controls the nodes
density on x = K. In addition, one defines

Ψ(ν) =


xleft + υ1 sinh(ν), νmin ≤ ν < 0,
xleft + υ1ν, 0 ≤ ν ≤ νint,
xright + υ1 sinh(ν− νint), νint < ν ≤ νmax.

(9)

Here, in (8), we consider υ1 = K
20 , while xleft = max{e−0.0025T , 0.5} × K, xright = K,

and [xleft, xright] ⊂ [0, xmax].
The discretized nodes for the variable y, i.e., {yj}n

j=1 are constructed by:

yj = sinh(ς j)υ2, j = 1, 2, . . . , n, (10)
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wherein υ2 > 0 furnishes a density around y = 0. Here, we consider υ2 = ymax
500 , where

ymax = 10. Additionally, ς j are the equidistant discretized nodes furnished by:

∆ς = (n− 1)−1 sinh−1
(

ymax

υ2

)
, ς j = (j− 1)∆ς, 1 ≤ j ≤ n. (11)

Ultimately, the non-uniform nodes for the variable z are provided as:

zk = υ3 sinh(ζk), 1 ≤ k ≤ o, (12)

wherein zmax = 1 and υ3 = zmax
500 is a positive value. Here, we consider that ζk = (∆ζ)(k− 1),

∆ζ = 1
o−1 sinh−1

(
zmax

υ3

)
. We note that the variables i, j, and k are local variables in this

manuscript. It is also necessary to show such graded meshes in some plots. This is
illustrated in Figure 1 for different values of m, n, and o.

0 200 400 600 800 1000 1200 1400 0 2 4 6 8 10

y

0.0 0.2 0.4 0.6 0.8 1.0

z

0 200 400 600 800 1000 1200 1400

x

0 2 4 6 8 10

y

0.0 0.2 0.4 0.6 0.8 1.0

z

Figure 1. Distributions of the nodes along each spatial variables, for m = n = o = 10 at the top and
m = m = o = 30 at the bottom.

3. The Weighting Coefficients for the RBF-FD Methodology

To compute the coefficients αi in the RBF-FD methodology, we take into consideration
that there is a linear operator, L. Then, at y = y

p
, for the point locations y

i
, it is possible to

have the following system [21]:
φ1(y1

) φ1(y2
) · · · φ1(ym

)

φ2(y1
) φ2(y2

) · · · φ2(ym
)

...
...

...
φm(y1

) φm(y2
) · · · φm(ym

)




α1
α2
...

αm

 =


Lφ1(y)|y=y

p

Lφ2(y)|y=y
p

...
Lφm(y)|y=y

p

, (13)

wherein y denotes a d-dimensional vector quantity for a set of test functions φ(y), 1 ≤ k ≤ m.
The generalized multiquadric RBF (GMQ RBF) is used for numerical implementations

from now on, as follows ([22], Chapter 4):

φ(ri) = (p2 + r2
i )

ς, 1 ≤ i ≤ m, (14)

wherein ς stands for an appropriate constant, the shape parameter is p, and ri = ‖x− xi‖
stands for the Euclidean distance.

It concentrates on calculating the weighting coefficients for the GMQ RBF (for the
one-dimensional case without loss of generality). To calculate the coefficients of the RBF-FD
methodology, we consider three non-uniform points in a stencil and write for the first
derivative [23]:

L[φ(xj)] '
ψ

∑
i=1

αiφ(xi), j = 1, 2, . . . , ψ, (15)
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wherein L as an operator. In fact, for ψ = 3, we attain: {xi + θh, xi, xi − h}, θ > 0, h > 0,
and compute (15) as follows:

f ′(xi) ' αi+1 f (xi+1) + αi f (xi) + αi−1 f (xi−1). (16)

In approximating the first derivative of a sufficiently differentiable function, the
analytical weights corresponding to this RBF can be determined as follows [24]:

αi−1 =
θ
(

p2(9− 6ς)− h2(ς− 1)(4(ς− 5)θ − 10ς + 29)
)

3p2h(2ς− 3)(θ + 1)
, (17)

αi =
(θ − 1)

(
p2(6ς− 9) + 4h2(ς− 5)(ς− 1)θ

)
3p2h(2ς− 3)θ

, (18)

αi+1 =
p2(6ς− 9)− h2(ς− 1)θ(2ς(5θ − 2)− 29θ + 20)

3p2h(2ς− 3)θ(θ + 1)
. (19)

In a similar way, to estimate the function’s second derivative, one has the following

f ′′(xi) '
i+1

∑
j=i−1

Θj f (xj), (20)

and we obtain the following weighting coefficients:

Θi−1 =
2
(

p2(6ς− 9)− h2(ς− 1)
(
4(ς− 5)θ2 + (34− 8ς)θ + 10ς− 29

))
3p2h2(2ς− 3)(θ + 1)

, (21)

Θi =
2
(

p2(9− 6ς) + h2(ς− 1)
(
4(ς− 5)θ2 + (25− 2ς)θ + 4(ς− 5)

))
3p2h2(2ς− 3)θ

, (22)

Θi+1 =
2
(

p2(6ς− 9)− h2(ς− 1)(2ς(θ(5θ − 4) + 2) + θ(34− 29θ)− 20)
)

3p2h2(2ς− 3)θ(θ + 1)
. (23)

The procedure for the discretization nodes which are on the boundaries is given
along the spatial variable x, while it is similar for the other spatial variables of the PDE
problem (3). The formulations (17)–(19) and (21)–(22) are fruitful from the second row to
the second-to-last row, while for the first and final rows of (28) and (29), the weights are not
valid on boundaries and sided estimations must be incorporated. Thus, using [25] for the
stencil {x1, x2, x3}, we have:

f ′(x1) = f [x2, x1]− f [x2, x3] + f [x3, x1] +O
(
(x1 − x2)

2
)

, (24)

and

f ′(xm) = − f [xm−2, xm−1] + f [xm−2, xm] + f [xm−1, xm] +O
(
(xm−1 − xm)

2
)

, (25)

where f [w, q] = ( f (w)− f (q))(w− q)−1. Although we have used these approximation
from the work [25], it is recalled that they are obtained by considering three unstructured
points in a stencil and constructing the unique interpolating polynomial of the second
degree. We then compute its first derivative in x1 to obtain (24) or in xm to obtain (25).

In a similar manner, for the four points {{x4, f (x4)}, {x3, f (x3)}, {x2, f (x2)}, {x1, f (x1)}},
we can obtain

f ′′(x1) =
2(δx1,2 + δx1,3 + δx1,4)

δx1,2δx1,3δx1,4
f (x1) +

2(δx3,1 + δx4,1)

δx1,2δx2,3δx2,4
f (x2)

+
2(δx2,1 + δx4,1)

δx1,3δx3,2δx3,4
f (x3) +

2(δx2,1 + δx3,1)

δx1,4δx4,2δx4,3
f (x4) +O

(
h2
)

,
(26)
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where δxς,q = xς − xq, h is for the maximum space width along the stencil’s points. Recall-
ing that we can also obtain:

f ′′(xm) =
2(δxm−3,m + δxm−2,m + δxm−1,m)

δxm−3,mδxm,m−2δxm,m−1
f (xm) +

2(δxm−3,m + δxm−2,m)

δxm−3,m−1δxm−1,m−2δxm−1,m
f (xm−1)

+
2(δxm−3,m + δxm−1,m)

δxm−3,m−2δxm−2,m−1δxm−2,m
f (xm−2) +

2(δxm−2,m + δxm−1,m)

δxm−2,m−3δxm−1,m−3δxm,m−3
f (xm−3)

+O
(

h2
)

.

(27)

4. Construction of Our Solver

Now, the method of lines (MOL) is employed [26,27] to semi-discretize the PDE prob-
lem. In this procedure, the spatial variables are discretized with the RBF-FD formulations
we have obtained in Section 3, and we will obtain a system of ODEs. Thus, we can obtain
the following differentiation matrices for the first and second derivatives of the function
based on the non-uniform stencils provided in Section 2, as follows:

Mx =


αi,j using (17) i− j = 1,
αi,j using (18) i− j = 0,
αi,j using (19) j− i = 1,
0 otherwise,

(28)

and

Mxx =


Θi,j using (21) i− j = 1,
Θi,j using (22) i− j = 0,
Θi,j using (23) j− i = 1,
0 otherwise.

(29)

We come up with the matrices (28) and (29) form the weights in Section 3. To be more
precise, we must consider a loop on the set of discretization points. Then, each time, a
stencil with three non-uniform points is considered and the corresponding weights are
computed. These weights are written in the corresponding rows of the differentiation
matrix. For instance, if we take the second node of the set of discretization points, then the
three-point stencil consists of the first, second the third nodes. After we have obtained the
weights, they will be written in the second row (corresponding to the second node of the
discretization points) of the differentiation matrix.

Now, we denote the Kronecker product by ⊗ and consider I = Ix ⊗ Iy ⊗ Iz, as an
N×N identity matrix where N = o× n×m, Ix is the m×m unit matrix for x, and a similar
operation is conducted for Iy and Iz. The PDE (3) has several diffusions, reactions and
advection terms. Let us consider the first term of this PDE as follows:

1
2

x2y
∂2U(x, y, z, t)

∂x2 , (30)

which can be semi-discretized along space using matrix notations, as follows:

1
2
X 2Y(Mxx ⊗ Iy ⊗ Iz), (31)

where the square matrices Mx, and Mxx are derived via the corresponding weights (28)
and (29), respectively. Furthermore, X is a diagonal and sparse matrix, as follows:

X = diag(x1, x2, · · · , xm)⊗ Iy ⊗ Iz. (32)
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Hence, the MOL procedure on (3) leads to the following matrix:

B =
1
2
X 2Y(Mxx ⊗ Iy ⊗ Iz) +

1
2

σ2
1Y(Ix ⊗Myy ⊗ Iz)

+
1
2

σ2
2Z(Ix ⊗ Iy ⊗Mzz) + ρ12σ1XY(Mx ⊗My ⊗ Iz)

+ ρ13σ2X (YZ)
1
2 (Mx ⊗ Iy ⊗Mz) + ρ23σ1σ2(YZ)

1
2 (Ix ⊗My ⊗Mz)

+ZX (Mx ⊗ Iy ⊗ Iz) + κ(η I −Y)(Ix ⊗My ⊗ Iz)

+ a(β0 I −Z)(Ix ⊗ Iy ⊗Mz)− zI.

(33)

In addition, the square matrices My, Mz, Myy, and Mzz, are similarly derived via the
corresponding weights. Furthermore, Z , and Y are diagonal and sparse matrices, as follows:

Z = Ix ⊗ Iy ⊗ diag(z1, z2, · · · , zo), (34)

Y = Ix ⊗ diag(y1, y2, · · · , yn)⊗ Iz, (35)

The derivation of (33) is based on the differentiation matrices and the structure of the
3D PDE (3). The function b(T − t) can be defined by:

b(τ) = c1 − c2 exp (−c3τ) ' β0, (36)

where c1, c2, and c3 are fixed parameters, and τ = T − t. The advantage of the approxima-
tion in (36) when c2 and c3 are not zero is that, with such an approximation, we can get rid
of the time-dependent function b, and thus the system matrix B is constant.

Now, finally, we determine that:

u′(t) = Bu(t). (37)

The boundaries for the spaces x, y and z are defined by [12]:

U(x, y, z, t) = x, y = ymax, (38)
∂U
∂x

(x, y, z, t) = 1, x = xmax, (39)

U(x, y, z, t) = 0, x = 0, (40)
∂U
∂z

(x, y, z, t) = 0, z = zmax. (41)

Once y = 0 and z = 0, the problem (3) is degenerate, and boundary conditions should
not be incorporated.

By imposing such boundaries, finally, a set of ODEs is deduced by:

u′(t) = B̄u(t) = F(t, u(t)), (42)

wherein B̄ is the coefficient matrix including all the conditions of the boundary. The boundary
conditions (38)–(41) of the PDE are non-homogeneous. However, the system ODE (42)
which comes from the semi-discretization is homogeneous. This is because the boundaries
are imposed by differentiating over time, so for the Neumann conditions, we write the
second-order estimation along each boundary and then they are differentiated over time. The
coefficients will then be replaced as new rows to the matrix B in order to obtain B̄.

5. The Time-Stepping Solver

The solution in the closed-form for the system of stiff ODEs (42) can be given by:

u(t) = etB̃u(0), (43)
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wherein u(0) is initial condition (payoff) based on the type of the option. Finding the final
approximated solution based on (43) needs the calculation of matrix exponential as a matrix
function, which is a time-consuming procedure in a general setting.

Now, consider that uι as an approximate to u(tι). We construct the explicit time-
integrating scheme as follows. Consider k + 1 equidistant points along time, a temporal
step size ζ = T

k > 0, tι+1 = ζ + tι, u0 = u(0) and 0 ≤ ι ≤ k, then the Runge–Kutta (RK)
method with s stages [28] can be written as follows:

gi = uι + ζ
s

∑
j=1

k jai,j,

ki = F(ζci + tι, gi),

uι+1 = uι + ζ
s

∑
i=1

qiki,

(44)

wherein F(·, ·) = B̃u(t). Note that basically, we consider:

ci =
s

∑
j=1

ai,j, 1 ≤ i ≤ s. (45)

Explicit RK solvers are a specific case when

Λ = [ai,j],

to be lower in a strictly triangular sense. Hence, we can attain a solver with sixth-order
convergence by considering [29]:

Λ =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
3
8

1
8 0 0 0 0 0

8
27

2
27

8
27 0 0 0 0

3(3p1−7)
392

(p1−7)
49

−6(p1−7)
49

3(p1−21)
392 0 0 0

−3(17p1+77)
392

(−p1−7)
49 − (8p1)

49
3(121p1+21)

1960
(p1+6)

5 0 0
(7p1+22)

12
2
3

2(7p1−5)
9

−7(3p1−2)
20

−7(9p1+49)
90

−7(p1−7)
18 0


, (46)

with p1 = 211/2, C = (1, 1/2, 2/3, (7− p1)/14, (7+ p1)/14, 1), and q = (9/180, 0, 64/180, 0,
49/180, 49/180 , 9/180).

Here, the choice c1 = 0 in (45) led to an explicit solver having sixth order of conver-
gence along time with seven stages. This means that the total accumulated error is O(ζ6)
and the local truncation error is O(ζ7), ([30], Chapter 8). It is remarked that (44) is just an
application of literature in the process of resolving (3), which is considered the main result
in this work.

Such a higher-order scheme is employed over time to solve (42), since the spatial
order is four and there is a non-smoothness at the strike price for the payoff function. This
automatically affects the accuracy of the numerical solution when marching along time.
Hence, an explicit easy-to-implement solver of higher convergence rate help derive an
effective numerical method.

Theorem 1. Consider that (42) reads the well-known Lipschitz condition. Hence, one has a
conditional temporal-stable iterative method according to (44)–(46) for solving (42).
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Proof. The existence and uniqueness can be obtained by the assumption of satisfying in
the Lipschitz condition. Thus, by incorporating the solver (44)–(46) on the set of ODEs, (42)
provides the relation below [31]:

uι+1 =

(
I + ζ B̃ +

(ζ B̃)2

2!
+

(ζ B̃)3

3!
+

(ζ B̃)4

4!

+
(ζ B̃)5

5!
+

(ζ B̃)6

6!
− (ζ B̃)7

2160

)
uι.

(47)

Hence, the A-stability is∣∣∣∣1 + ζλi +
(ζλi)

2

2
+

(ζλi)
3

6
+

(ζλi)
4

24
+

(ζλi)
5

120
+

(ζλi)
6

720
− (ζλi)

7

2160

∣∣∣∣ ≤ 1, (48)

which is due to (47) for any λi as the eigenvalue of B̃. The condition of stability can be now
expressed as follows: ∣∣∣∣1 + ζλmax +

(ζλmax)2

2
+

(ζλmax)3

6
+

(ζλmax)4

24

+
(ζλmax)5

120
+

(ζλmax)6

720
− (ζλmax)7

2160

∣∣∣∣ ≤ 1.
(49)

Considering Γ = ζλmax, the inequality (49) furnishes a non-linear scalar equation, as follows:

Γ7 − 3Γ6 − 18Γ5 − 90Γ4 − 360Γ3 − 1080Γ2 − 2160Γ− 4320 = 0, (50)

with {−2.61051− 1.23959i,−2.61051 +1.23959i,−0.720604 −2.58827i,−0.720604 +2.58827i,
0.900758 −2.88184i, 0.900758 +2.88184i, 7.86071} as its roots. Equivalently, one could
calculate the following condition on ζ using (44)–(46) when solving (42):

ζ ≤
∣∣∣∣ 7.86
Real(λmax)

∣∣∣∣. (51)

This inequality on the eigenvalues of B̃ will determine the conditional temporal
stability bounds of the presented method when solving (3). Thus, it completes the proof.

Now, an inquiry might arise. The inequality (51) depends on the real part of the largest
eigenvalues of matrix B̃. On the other hand, on the proposed graded mesh, the largest
eigenvalue of B̃ is usually large, so the choice of the time-step ζ could be restrictive. Thus,
it seems the proposed numerical method is not quite stable! In fact, the real part of the
largest eigenvalue of B̃ might be larger due to employing the graded mesh, but because of
this, we need to employ a higher-order explicit method which has large numerical stability
region. To illustrate this further, in Figure 2, we have drawn the numerical stability region
for different time step sizes. It is clear that when ζ is changed at a smaller size, it has a
very big impact on the numerical stability region, and this upholds our choice for the time
stepping solver. It is also pointed out that the application of the graded mesh leads to a
lower number of discretization points to obtain the required accuracy, and this means that
the resulting B̃ is basically of lower dimension when we want to obtain the same accuracy
on uniform meshes.
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Figure 2. The numerical stability region of (44)–(46) for different values of ζ, i.e., ζ = 0.005, ζ = 0.002
and ζ = 0.001.

6. Financial Experiments

The goal here is to calculate the efficiency of different methods to numerically
resolve (3) on a same computational domain when K = 100$, T = 1 year, y0 = 0.04,
z0 = 10%. The outcome of tests must be compared with the associated outcome of existing
solvers to arrive at a logical and valid conclusion. The following solvers are used:

• The quadratically convergent FD method on uniform meshes and the first-order
explicit Euler’s scheme denoted by FDS.

• The scheme with non-equally spaced node distribution (via the Douglas time-stepping
method) given in [19], (shown by THM).

• The method presented by Soleymani et al. in [25] and shown by SAM.
• The presented method of Sections 2–5 shown by RBF-FD-PM.

We used Mathematica 12.0 [32] for programming, with double-precision arithmetic.
The absolute error is given by:

ε =

∣∣∣∣uref − unum

uref

∣∣∣∣, (52)
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wherein uref and unum are the referenced and numerical solutions, respectively. uref was
obtained from the literature.

One effective procedure with which to calculate the parameter of the shape is
p = 5 max{∆xi}, where 1 ≤ i ≤ m− 1, and ∆xi are the increments along the variable mesh.

Three different types of parameters have been considered in Table 1. Tables 2–4
show the convergence history of different solvers in Cases I-III, while also revealing that
RBF-FD-PM is better than the FDS and the THM methods.

Table 1. The values of the constants in PDE (3).

Case I Case II Case III

c3 0 0 2.10
c2 0 0 0.014
c1 0.05 0.055 0.034
a 0.20 0.16 0.22
σ2 0.03 0.03 0.11
σ1 0.04 0.90 1.00
η 0.12 0.04 0.09
ρ23 0.4 0.1 −0.2
ρ13 0.2 0.2 −0.5
ρ12 0.6 −0.5 −0.3
κ 3.0 0.3 1.0
K 100 100 100
T 1 1 0.25

Table 2. Computational results for Case I.

Method m n o N ζ u ε Time

FDS

10 10 10 1000 0.001 21.187 5.75× 10−1 0.49
16 12 12 2304 0.0005 5.887 5.62× 10−1 1.07
30 16 16 7680 0.0001 7.542 4.38× 10−1 11.23
40 20 20 16,000 0.00005 10.698 2.04× 10−1 52.96
54 22 22 26,136 0.00002 10.738 2.01× 10−1 382.17

THM

10 10 10 1000 0.001 12.216 9.12× 10−2 0.68
16 12 12 2304 0.0005 13.046 2.95× 10−2 1.81
30 16 16 7680 0.0001 13.325 8.82× 10−3 15.31
40 20 20 16,000 0.00005 13.376 4.99× 10−3 99.67
54 22 22 26,136 0.00002 13.404 2.92× 10−3 473.52

SAM

10 10 10 1000 0.001 14.944 1.11× 10−1 0.63
16 12 12 2304 0.0005 13.804 2.68× 10−2 1.68
30 16 16 7680 0.0001 13.515 5.28× 10−3 21.54
40 20 20 16,000 0.00005 13.477 2.49× 10−3 107.49
54 22 22 26,136 0.00002 13.457 9.87× 10−4 499.67

RBF-FD-PM

10 10 10 1000 0.002 14.846 1.04× 10−1 0.62
16 12 12 2304 0.001 13.762 2.36× 10−2 1.62
30 16 16 7680 0.0004 13.499 4.09× 10−3 20.81
40 20 20 16,000 0.0001 13.471 2.00× 10−3 101.19
54 22 22 26,136 0.00004 13.455 8.18× 10−4 477.28
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Table 3. Computational results and comparisons for the Case II.

Method m n o N ζ u ε Time

FDS

8 8 8 512 0.002 47.829 5.99× 100 0.27
14 10 10 1400 0.0005 5.469 2.00× 10−1 0.71
20 14 12 3360 0.00025 14.786 1.16× 10−1 2.13
24 16 14 5376 0.0001 12.960 8.95× 10−1 6.91
32 18 18 10,368 0.00005 8.599 2.57× 10−1 28.64
45 24 20 19,800 0.000025 6.456 5.59× 10−2 178.43

THM

8 8 8 512 0.002 5.010 2.67× 10−1 0.30
14 10 10 1400 0.0005 6.440 5.83× 10−2 0.69
20 14 12 3360 0.00025 6.672 2.43× 10−2 1.97
24 16 14 5376 0.0001 6.729 1.59× 10−2 6.58
32 18 18 10,368 0.00005 6.797 6.02× 10−3 32.44
45 24 20 19,800 0.000025 6.830 1.28× 10−3 180.59

SAM

8 8 8 512 0.002 5.794 1.52× 10−1 0.35
14 10 10 1400 0.0005 6.628 3.07× 10−2 0.96
20 14 12 3360 0.00025 6.759 1.16× 10−2 3.11
24 16 14 5376 0.0001 6.776 9.07× 10−3 13.37
32 18 18 10,368 0.00005 6.809 4.30× 10−3 57.16
45 24 20 19,800 0.000025 6.833 8.52× 10−4 232.76

RBF-FD-PM

8 8 8 512 0.004 5.861 1.43× 10−1 0.33
14 10 10 1400 0.001 6.501 4.94× 10−2 0.90
20 14 12 3360 0.0004 6.760 1.15× 10−2 3.03
24 16 14 5376 0.0002 6.786 7.74× 10−3 12.69
32 18 18 10,368 0.0001 6.826 1.90× 10−3 55.84
45 24 20 19,800 0.00004 6.834 7.31× 10−4 224.21

The reference solutions for the Cases I-II-III are 13.444, 6.839 and 3.890, respectively [25].
A numerical solution is presented for Case II in Figure 3, showing the stability of the
numerical solution using RBF-FD-PM.

It can be inferred from the findings of performance outcomes, displayed in Tables 2–4,
that the presented solver is numerically more effective compared to the available methods.
Similar computational tests, conducted on different parameter settings, largely uphold the
above conclusions.

We note that implicit schemes might be attractive for solving the system of ODEs (42),
since they mostly do not rely on the selection of the step size. However, this topics needs
further investigation, since the problem with implicit solvers is that a large set of non-
linear algebraic equations must be solved via a Newton-type method, which increases the
computational elapsed time.

Table 4. Computational results and comparisons for Case III.

Method m n o N ζ u ε Time

FDS

8 8 8 512 0.002 0.857 7.79× 10−1 0.10
14 10 10 1400 0.0005 2.124 4.53× 10−1 0.27
20 14 12 3360 0.00025 2.976 2.34× 10−1 1.08
24 16 14 5376 0.0001 3.214 1.73× 10−1 3.54
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Table 4. Cont.

Method m n o N ζ u ε Time

THM

8 8 8 512 0.002 3.210 1.74× 10−1 0.30
14 10 10 1400 0.0005 3.528 9.30× 10−2 1.01
20 14 12 3360 0.00025 3.604 7.35× 10−2 1.51
24 16 14 5376 0.0001 3.694 5.03× 10−2 4.92

SAM

8 8 8 512 0.002 3.329 1.44× 10−1 0.26
14 10 10 1400 0.0005 3.539 9.02× 10−2 0.87
20 14 12 3360 0.00025 3.719 4.39× 10−2 1.48
24 16 14 5376 0.0001 3.924 8.74× 10−3 4.76

RBF-FD-PM

8 8 8 512 0.0025 3.413 1.22× 10−1 0.23
14 10 10 1400 0.000625 3.610 7.19× 10−2 0.78
20 14 12 3360 0.0004 3.816 1.90× 10−2 1.39
24 16 14 5376 0.00025 3.918 7.19× 10−3 4.67

Figure 3. Numerical solution of the HCIR PDE in Case II. Top-left: for u(x, y, 0.024, 1) on 0 ≤ x ≤ 200,
0 ≤ y ≤ 1, Top-right: for u(x, y, 0.024, 1) on 0 ≤ x ≤ 200, 0 ≤ y ≤ 10, Bottom-left: for u(x, 0.04, z, 1)
on 0 ≤ x ≤ 200, 0 ≤ z ≤ 1 and Bottom-right: for u(100, y, z, 1) on 1 ≤ y ≤ 10, 0 ≤ z ≤ 1.

7. Conclusions

To computationally and efficiently solve the PDE problem (3), this work began by
considering the RBF-FD formulations corresponding to the GMQ RBF in Section 3 based
on the graded meshes discussed in Section 2. Then, the MOL for (3) was performed using
sparse arrays in order to maintain and develop the sparsity as the dimension of the problem
grew. Then in Section 4, a sixth-order explicit solver from the RK family of methods was
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introduced. It was shown that the contributed scheme is fast and stable, with error bounds
O(ζ6). The numerical results given in Section 6 overwhelmingly upheld the theoretical
discussions of the paper. Hence, the proposed solver can be used to solve the important 3D
time-dependent PDE (3) in practice.
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