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Abstract: This work provides an enhanced novel cascaded controller-based frequency stabilization of
a two-region interconnected power system incorporating electric vehicles. The proposed controller
combines a cascade structure comprising a fractional-order proportional integrator and a propor-
tional derivative with a filter term to handle the frequency regulation challenges of a hybrid power
system integrated with renewable energy sources. Driver training-based optimization, an advanced
stochastic meta-heuristic method based on human learning, is employed to optimize the gains of
the proposed cascaded controller. The performance of the proposed novel controller was compared
to that of other control methods. In addition, the results of driver training-based optimization are
compared to those of other recent meta-heuristic algorithms, such as the imperialist competitive
algorithm and jellyfish swarm optimization. The suggested controller and design technique have
been evaluated and validated under a variety of loading circumstances and scenarios, as well as their
resistance to power system parameter uncertainties. The results indicate the new controller’s steady
operation and frequency regulation capability with an optimal controller coefficient and without the
prerequisite for a complex layout procedure.

Keywords: renewable energy resources; optimization techniques; fractional order controller; power
system; load frequency control; heuristic techniques; driver training-based optimization

1. Introduction

Electrical power has played a significant role in technological development for many
years. The demand for electricity has greatly increased because of population growth
and related technological advancements. Conventional, non-renewable energies led to
energy sector installations in the past. However, because of their dearth and unfavorable
effects on the environment, concerns are shifting away from these sources and toward
the installation of renewable energy-based sources (RESs) [1]. To replace non-renewable
supplies with RESs, such as wind energy, photovoltaic (PV) generation, biodiesel, etc., it
is necessary to put more emphasis on sustainable development. Additionally, the use of
energy storage devices to improve green energy-based power grids and the collaborative
management of installed electric cars have drawn significant interest from researchers, busi-
nesses, and governmental incentives and regulations. They may contribute to maintaining
the robustness and dependability of electricity grids [2]. Furthermore, by using modern
single/multi-constraint optimization methods, such as stochastic optimization [3] and
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resilient optimization approaches [4], the performance of the power sector can be improved.
Renewable-based power grids must overcome several obstacles, including intermittency,
decreased inertia, irregular loading patterns, etc. The connectivity of grids powered by
renewable energy is advantageous in several ways. However, renewable energies bring
about unstable electricity grids that respond poorly to disturbances [5]. When compared to
typical grids that are non-renewable-based, the poor inertial response is the main reason for
power grid instability. The inability of photovoltaic and wind generation to sustain a signif-
icant inertial response results from their interaction with power interface converters, which
restricts their ability to balance power demands [6]. Low inertial responses cause severely
unbalanced power grids and lower flexibility of harmonic distortion in renewable-based
power grids when renewable penetration level increases [7].

The literature contains several study recommendations for incorporating electrical
vehicles (EVs) into the power system [8,9]. Green transportation has become a challenging
issue with the current load equilibrium techniques, however, due to the complexity of
managing a networked, multi-area system. The literature has suggested several integrated
orders, predictive models, fuzzy logic controllers, neural networks, fractional orders, and
advanced control systems as the best controllers for load frequency control (LFC) [10–12].
The tilt, derivative, proportional, integrator, and filter derivative have all been extensively
linked in the literature to create several LFC systems. The PI regulator was introduced
for EVs in [13]. However, stability issues with this controller exist, specifically when the
time delay (TD) is taken into account. The filter-based tilt integral derivative controller
for hybrid power networks has been optimized using the differential evolution algorithm,
which was presented in [13]. The PI, TD, and filter controller parameters were combined to
analyze the power networks in [14]. A hybrid approach using an updated form of particle
swarm optimization (PSO) and the genetic algorithm was reported in [15] for establishing
the controller employed to stabilize the frequency of power networks. An imperialist
competitive search (ICA) method with a fractional order controller has been suggested
in [16] for multi-generational networks. The stated controller can successfully enhance
the performance of the power technique when there are several step variations in the
production and/or loading. In two-area power networks, the FOPID and FLC are cascaded
to accomplish frequency regulation [17]. Additionally, it has been suggested to use the grey
wolf optimization algorithm to develop the load frequency controller multi-generation
power networks [18].

The FOPID with FO filter was suggested by the authors in [19], and the SCA technique
was utilized to successfully improve the controller parameters. The authors of [20] utilized
an algorithm known as Harris hawk’s optimization to design the P-I based LFC parameters
in the best possible way. With the addition of capacitive energy storage, Daraz et al. ex-
ploited FOTIDN for multisource IPS while taking into account various non-linearities [21].
By using a hybrid of SCA and fitness-dependent algorithms, the parameters of the sug-
gested method are changed. The authors in [22] used control EVs with TID controllers
and optimized bee colony heuristics to change the settings of the suggested controller.
The virtual inertia monitoring approach reported in [23] was expanded using PSO. In [24],
an ultra-capacitor energy storage device has been developed to address AGC issues in
connected PS. An improved design for the FOTID controller has also been provided us-
ing the path finder optimization technique [25]. Amil et al. recommended fine-tuned
MFOPID/FOPID controllers for a hybrid system in [26], utilizing the jellyfish search algo-
rithm. The authors in [27] proposed a different method of using the imperialist competitor
optimizer to find the ideal settings of the second-order proposed controller for frequency
stabilization systems. A modified tilt derivative with a filter controller based on fractional
order is presented by Mohamed et al. in [28] and has been tuned using the artificial
hummingbird optimizer technique. The salp swarm algorithm was introduced in [29]
to tune the gains of PID controllers considering two area networks. Additionally, the
dual-stage controller was developed in [30] using the butterfly optimization approach. A



Fractal Fract. 2023, 7, 315 3 of 23

unique cascaded FO-ID with filter controller is suggested for AGC systems in PS with
wind/solar/fuel systems in the study mentioned in [31].

It is now clear that the literature has a variety of LFC concepts that employ various
optimization methods. The combination of the LFC-type and the selected optimizer greatly
affects how well the power grid performs during transients. To lessen the projected loading
impacts of RESs in future low-inertial grids, however, enhanced LFC method performance
and design approaches are needed. This paper first introduces a cascaded structure, FOI,
and PD with filter regulators in order to develop a revolutionary modified FO LFC method.
From a different angle, their parameters need a lot of work to be adjusted. Several meta-
heuristic optimization techniques lack reliability because of their greater inclination to
settle at local minimums [32]. Correct tuning is also required for a variety of parame-
ters, especially for FO-based LFC methods. The decision to optimize the parameters is
therefore fraught with difficulty [33]. Extended delay times, exhaustion, sensitivity, and
selectivity to parameter changes are other issues that certain optimizers face. Another
issue with some optimizers is their lengthy processing periods, which require numerous
iterations to ensure solution convergence. This study introduces driver training-based
optimization (DTBO), a new stochastic optimization technique that imitates the human
activity of driving training. The DTBO design was primarily influenced by how people
learn to drive in driving schools and by instructor-training programs. Three stages of the
proposed algorithm are mathematically modeled: (1) instruction from the driving coach,
(2) modeling of student behavior after instructor techniques, and (3) practice. The effec-
tiveness of DTBO is assessed using 23 common objective functions, including unimodal,
multimodal, and IEEE CEC(2017) test function types [34]. The suggested algorithm has a
number of benefits for difficult optimization challenges as well as its anticipated versatility
in handling many types of optimization problems, given that many problems require more
flexibility than DTBO can provide. Due to its mathematical foundation, this algorithm can
be used to address a variety of engineering optimization problems, especially those with
high dimensionality. Based on the inspiration given by the current gap in LFCs and their
layout techniques, the study’s main contributions are summarized below:

• For the connected PS taking into account electrical vehicles, a novel cascade structure
of the proportional integral (PI)-proportional derivative with filter (PDF) is adopted.

• The proposed cascaded control structure is compared to a number of other control
approaches, such as PIDF, PID, and PI controllers.

• The performance of the suggested LFC technique is enhanced using driver–teacher-
based optimization (DTBO), which optimally selects the parameters of the suggested
controller. The outcomes of DTBO are contrasted with those of other contemporary
meta-heuristic algorithms, including the ICA and JSO.

• To ensure the viability of the system, a variety of non-linearities, such as time delay
(TD), governor dead zone (GDZ), boiler dynamic (BD), and generation rate limitations
(GRL), have been examined for the proposed hybrid power system.

• A synchronized participation of EVs with current-generating power units is offered
using the proposed FOPI-PDF central controller.

• Finally, utilizing load changes of ±25% and ±50% and system parameters within a
±40% tolerance, the suggested cascaded controller’s robustness is verified.

2. Power System Investigation

The suggested FOPI-PDF controller’s design is shown in Figure 1, employing the two
area-connected PS with the selected EVs and RESs. The RESs are placed in all of the areas,
with solar energy in region 1 and wind energy in area 2. Area 1 comprises a reheat thermal
plant, whereas area 2 holds the hydro generation unit. Furthermore, it is presumed that
both regions have an equal distribution of EVs. The scheme is built in Matlab/Simulink
using the PS information from [35], which is presented in Appendix A. Additionally, the
physical limitations of PS, including GRL and GDZ, are taken into consideration by using
the GRL rate (0.003 and 0.0017 pu/s), allowing for non-linearity and a more precise thermal
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unit analysis. Likewise, hydro power plants have a maximum production rate of 0.045
pu/s for increasing rates and 0.06 p.u. for declining rates [36–38].
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The transfer function (TF) given in Equation (1) represents the governor dead zone
(GDZ) with a margin of 0.50% [39].

GDZ
GDB

=
N1 + N2s
Tsgs + 1

(1)

where N1 = 0.8 and,

N2 =
−0.2
π

(2)

Time delay (TD) can influence controller implementation, which can amplify oscilla-
tions in the system. Consequently, this work contains a dynamic simulation that considers
TD in the controller error field as well as various operational nonlinearities. Figure 2
denotes the transfer function typical for the BD. This paradigm can be used to assess both
inefficiently managed gas/oil-fired power units as well as efficiently managed coal-fired
power units. When the boiler regulator senses a change in pressure/steam flow rate, the
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pertinent controls are instantly initiated. This is how traditional steam power plants change
their production. Equation (3) is an illustration of the TF boiler dynamics concept [39,40].

Tcpu(s) =
K1b(1 + T1bs)(1 + Trbs)

(1 + 0.1Trbs)s
(3)

Tf (s) =
e−td(s)

Ts + 1
(4)
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2.1. Modeling of Conventional Power Systems

The general TF model for the thermal reheat unit (GT(s)), which is represented by
Equations (5)–(8) correspondingly, includes the reheat (GT1(s)), turbine (GT2(s)), and
governor (GT3(s)).

GT1(s) =
1 + TreKres
(1 + Tres)

(5)

GT2(s) =
1

(1 + Ttrs)
(6)

GT3(s) =
1(

1 + Tgrs
) (7)

GT(s) =
1 + TreKres(

1 + Tgrs
)
(1 + Tres)(1 + Ttrs)

(8)

Likewise, Equations (9)–(12), respectively, reflect the total TF of the hydropower
system (GH(s)) in addition to the TF of the droop compensation (GH1(s)), TF of the hydro
governor (GH2(s), and TF of the penstock with turbine (GH3(s)).

GH1(s) =
(1− Tws)

(1 + 0.5Tws)
(9)

GH2(s) =
(1 + Trss)
(1 + Trhs)

(10)
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GH3(s) =
1(

1 + Tghs
) (11)

GH(s) =
(1− Tws)(1 + Trss)(

1 + Tghs
)
(1 + 0.5Tws)(1 + Trhs)

(12)

2.2. Renewable Energy Resources (RES,s) Modelling

The following models are used to express the GPV(s) of a solar energy system and
Gw(s) of a wind energy system [41]:

GPV(s) =
KPV

TPVs + 1
(13)

Gw(s) =
KT

TTs + 1
(14)

where Kpv and Tpv stand for the PV plant’s gain and time constant, respectively. Similarly,
KT and TT stand for the wind farm’s gain and time constant, respectively.

2.3. Modeling of EV Systems

The batteries of today’s EVs may successfully regulate the PS performance. In response
to electrical system management demands, they can be activated or deactivated. They
might also increase the power system’s reliability, efficiency, and dynamic response, among
other things. Due to the fluctuating pattern of RESs and the associated electrical demands,
one significant task of their use is the role of an EV in preserving the system stability of a PS.
Figure 3 [42] displays the EV dynamical model that was used for the frequency response
analysis in this paper.

The Nernst equation [42] is used in the model to illustrate the relationship between
the linked EVs’ open circuit voltage (Voc) and state of charge (SOC):

Voc(SOC) = S
RT
F

ln
(

SOC
Cnom − SOC

)
+ Vnom (15)

where Cnom and Vnom are the nominal capacities and voltages of the EV batteries, respec-
tively. R stands for the gasoline constant, F for the Faraday constant, and T for temperature.
S stands for the sensitivity parameter.Fractal Fract. 2023, 7, x FOR PEER REVIEW 7 of 24 
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3. Driving Training Based Optimization (DTBO)

DTBO is a new stochastic optimization technique recently proposed in [34] that emu-
lates the human action of driving guidance. The DTBO design was primarily influenced
by how people learn to drive in driving schools and by instructor-training programs.
Three stages of DTBO are mathematically modeled: (1) instruction from the driving coach,
(2) modeling of student behavior after instructor techniques, and (3) practice. The effec-
tiveness of DTBO is assessed using 23 common objective functions, including unimodal,
multimodal, and IEEE CEC(2017) test function forms. The suggested DBOA has a number
of benefits for difficult optimization challenges as well as its anticipated versatility in
handling many types of optimization problems, given that many problems require more
flexibility than DTBO can provide. Due to its mathematical foundation, DTBO can be
used to address a variety of engineering optimization problems, especially those with high
dimensionality. The detail of DTBO algorithm comprises of the subsequent steps:

3.1. Mathematical Representations of DTBO

Driving instructors and students make up the members of the population-based
metaheuristic known as DTBO. Members of the DTBO are potential answers to the specified
problem, which is depicted using a population matrix in Equation (16). Equation (17) is
used to initialize these member positions at random at the beginning of implementation [34].

X =



x11 · · · xij · · · xim
...

. . .
...

. . .
...

xi1 · · · xij · · · xim
...

. . .
...

. . .
...

xN1 · · · xNj · · · xNm


N×M

=



X1
...

Xi
...

XN


N×M

(16)

xi,j = lbj +
(
ubj − lbj

)
× r, i = 1, 2, 3 . . . . . . ..N, J = 1, 2, . . . ., m (17)

where N is the population dimension, m denotes the problem of variables, r belongs
to a random number between [0, 1], and ubj and lbj are the upper and lower bounds,
respectively. X is the inhabitants of DTBO, xi is the ith applicant solution, and xi,j is the
value of the jth mutable represented by the ith applicant solution. The objective function’s
standards are modeled by the vector in Equation (18).

F =



F1
...
Fi
...

FN


N×1

=



F(X1)
...

F(Xi)
...

F(XN)


N×1

(18)

where Fi is the cost function provided by the ith applicant solution and F denotes the
vector of the objective functions. Applicant solutions in DTBO are restructured during the
following three steps: (i) beginner driver training by a driving tutor; (ii) beginner driver
modeling using tutor skills; and (iii) learner driver rehearsal.

3.2. Phase 1: (Learner Driver Training by a Driving Instructor)

The trainee driver selects the driving instructor in the first phase of the DTBO update,
and the instructor then instructs the learner driver in driving. The best members of
the DTBO community are divided into trainee drivers and a limited group of driving
instructors. Members of the population will go to various locations in the search space
after selecting the driving teacher and mastering their techniques. This will strengthen
the DTBO’s investigation capabilities in the broad quest for and detection of the perfect
region. As a result, this stage of the DTBO update illustrates the exploratory capabilities
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of this algorithm. The N memberships of the DTBO are chosen as driving tutors for an
individual rehearsal based on an evaluation of the values of the cost function, as given in
Equation (19).

DI =



DI1
...

DIi
...

DINDI


NDI×m

=



DI11 · · · DI1i · · · DI1m
...

. . .
...

. . .
...

DIi1 · · · DIij · · · DIim
...

. . .
...

. . .
...

DINDI1 · · · DINDIj · · · DINDIm


NDI×m

(19)

where NDI =
[
0.1·N·

(
1− t

T
)]

is the number of driving tutors, DI is the driving instructor
matrix, DIi is the ith driving teacher, DIi,j is the jth dimension, and T is the maximum
number of iterations. The new location for each element in this DTBO phase is first
determined using Equation (20) according to the mathematical modeling of this phase.
Then, if the new position increases the value of the function, it replaces the old one in
accordance with Equation (21).

xPI
i,j =

xi,j + r·
(

DIki ,j − I·xi,j

)
, FDIki ,j < Fi;

xi,j + r·
(

I·xi,j − DIki ,j

)
, Otherwise

(20)

Xi =

{
XPI

i , FPI
i < Fi;

Xi, Otherwise
(21)

where I and r are random numbers chosen from the range [0, 1] and [1, 2], respectively. DIki
,

is arbitrarily selected from the range [1, 2,..., NDI], that represents a driving instructor, xPI
i,j

is its jth dimension, F is its objective function value, and XPI
i is the new intended location

for the ith applicant solution based on the first stage.

3.3. Phase-2 (Modeling of Student Behavior after Instructor Techniques)

The trainee driver imitates the instructor in this stage by trying to mimic all of the
instructor’s gestures and driving techniques. This method shifts DTBO participants to
several locations within the quest space, boosting the DTBO’s exploration capacity. A novel
location is created based on the weighted sum of each participant with the teacher in accor-
dance with Equation (22) to mathematically mimic this idea. According to Equation (23),
the updated location will replace the prior one if it increases the objective function rate.

xP2
i,j = P· xi,j + r·(I − P)· DIki ,j (22)

Xi =

{
XP2

i , FP2
i < Fi;

Xi, Otherwise
(23)

where FP2
i represents the objective function value, XP2

i sis the updated position for ith

candidates, xP2
i,j represents its jth dimension while the pattern index (P) is denoted by

below equation.
P = 0.01 + 0.09(I − t/T) (24)

3.4. Phase 3 (Practice)

The third stage of the DTBO upgrade is based on each trainee driver’s individual
practice to strengthen and improve their driving abilities. In this stage, each novice driver
aims to get a little bit closer to his best abilities. This phase is set up so that each participant
can find a more advantageous position by conducting a local search near where they are
currently located. The ability of DTBO to leverage confined pursuit is demonstrated in
this step. This DTBO phase is precisely described so that, in accordance with Equation (25),
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a random position is initially created close to each population member. If this location
increases the value of the goal function, Equation (26) states that it should take the place of
the prior position.

xP3
i,j = xi,j + R·(1− 2r)

(
1− t

T

)
·xi,j (25)

Xi =

{
XP3

i , FP3
i < Fi;

Xi, Otherwise
(26)

where R is a constant with a value of 0.05. A DTBO iteration is finished after modifying
the sample population in accordance with the first through third phases. The algorithm
entered the following DTBO iteration with the modified population. Through the maximum
number of repetitions, the update procedure is repeated during the mentioned phases and
according to Equations (20)–(26). After DTBO has been applied to the provided problem,
the best possible choice solution that was noted during execution is presented as the
solution. Figure 4 shows the flowchart for the suggested DTBO approach.
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4. Proposed Control Structure and Fitness Function

Traditional PID control can improve controller stability and response time. However,
because of the derivative mode, excessive control inputs are injected into the plant. The
primary culprit in this problem is the noise that is already present in the control indicators.
By including a filtering portion in the derivative part, the inserted noise is removed. The
chattering noise can be reduced by fine-tuning the pole [43,44]. As a result, the FOPI-PDF
is used in the proposed cascaded controller to improve the effectiveness of the control
methodology by combining fractional order integer with proportional and the derivative
filter. The transfer function of FOPI, PDF, and FOPIDF is depicted below:

C1(s) =
Y(s)
R(s)

= Kp +
Ki

sλ
(27)

C2(s) =
Y(s)
R(s)

= KP + Kd

[
Nds

s + Nd

]
(28)

FOPIDF =
Y(s)
R(s)

= Kp +
Ki

sλ
+ Kdsµ

[
Nds

s + Nd

]
(29)

The schematic diagrams of the FOPID, FOPI-PDF, and combined controller structures
are shown in Figure 5, Figure 6, and Figure 7, respectively. The proposed configuration has
the capability to reduce the influence of turbulence on the control system’s performance.
Equation (30) could also be used to express the primary loop transfer function.

Y(s) = G(s)U(s) + d(s) (30)

where G(s) represents the execution and U(s) represents the input pulse. Equation (31) can
be used to calculate U(s).

U(s) = C1(s)·C2(s) (31)

The cascaded (FOPI-PDF) controller gains will be ascertained by minimizing the cost
function (CF) using the DTBO algorithm. The integral of time weighted by the squared
error (ITSE) [4,26] is chosen as the CF because it can reduce time settling and overwhelm
high oscillations quickly [30]:

ITSE = J =
∫ t

0
t
[
∆F2

1 + ∆F2
2 + ∆P2

tie

]
dt (32)

The following restrictions apply to the proposed FOI-PDN controller gains.

KMin
p ≤ Kp ≤ KMax

p ; KMin
d ≤ Kd ≤ KMax

d ; KMin
i ≤ Ki ≤ KMax

i ; λMin ≤ λ ≤ λMax; NMin
d ≤ Nd ≤ NMax

d ; µMin ≤ µ ≤ µMax (33)

Several studies have shown that the Oustaloup recursive approximation (ORA) of FO
derivatives can be implemented in real-time digitally [45]. It has become more familiar
to the ORA with regard to the tuning processes involved with FO controllers. Since it is
widely used in the literature in order to model the integrals and derivatives of FO, the ORA
method has been used in this paper. In mathematical terms, the αth FO derivative (sα) can
be expressed as follows [45]:

sα ≈ wα
h

N

∏
K=−N

s + ωz
k

s + ω
p
k

(34)

where ωz
k denotes the zeros and ω

p
k denotes the poles, which can be represented by the

below equations, respectively.

ωz
k = ωb

(
ωh
ωb

) k+N+ 1−α
2

2N+1
(35)
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ωα
h =

(
ωh
ωb

)−α
2 N

∏
k = −N

ω
p
k

ωz
k

(36)

The approximate FO operator’s function has (2N + 1) zeroes/ poles. ORA filter order
is determined by the number N (order = (2N + 1)). This paper uses the ORA with (M = 5)
and a frequency range (ω ∈ [ωh, ωb]) of [103, 10−3] rad/s.
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5. Implementation, Results and Discussion

This part investigates the efficacy and validity of the unique FOPI-PDF controller
implementation, depicted in Figure 1, in conjunction with EVs for enhancing IPS with the
LFC problem. To ensure fairness, a newly suggested DTBO method was employed to tune
the various control parameters of the FOPI-PDF and other controllers such as the FOPIDF,
PI, and PID. The DTBO technique was constructed using the MATLAB program m-file code
and linked up with the simulink mechanism of the researched interconnected PS to reach
the LFC objective function. Table 1 shows the DTBO-based controller parameters for the
given case study after running the optimization algorithms 15 times using the data from
Appendix B. The robustness of the proposed FOPI-PDF controller is tested by comparing
it to traditional and advanced controllers such as PID, PI, and FOPIDF, using the same
alignment as the EV system that uses the DTBO approach. The per unit load change in
each case is set at (5%) =0.05 p.u. The following case studies critically evaluate the results
obtained from the analyzed multi-area IPS.

Table 1. Optimal values obtained for the proposed techniques.

Parameters
Case-1 Case-2

DTBO JSO ICA FOPI-PDF FOPIDF PID PI

Kp1 1.998 1.877 1.900 1.098 1.950 1.405 1.893
Ki1 1.678 1.458 0.400 1.878 1.340 1.012 1.032
Kd1 1.998 1.877 1.200 1.998 0.902 1.405 -
Kp2 0.345 0.123 1.145 1.889 - - -
λ1 0.710 0.556 1.620 0.710 0.620 - -
µ1 0.671 0.601 1.863 0.671 0.823 - -
N1 8.678 3.234 9.972 8.678 9.972 - 9.899
Kp3 1.678 1.234 2.000 1.678 2.000 1.232 1.767
Kd2 1.998 1.877 1.405 1.998 1.989 1.405 -
Kp4 0.644 1.990 1.235 1.009 - - -
µ2 0.710 0.456 0.620 0.710 0.620 - -
λ2 0.878 0.972 0.678 0.878 0.678 - -
N2 9.900 9.897 7.893 9.900 7.894 - -

5.1. Case-1

In this case, the effectiveness of the DTBO approach was contrasted with the per-
formances of the JSO, hDE-PS, ICA, and FPA algorithms. As shown in Figure 8a–c, the
dynamic response for each optimization algorithm technique has been evaluated for the
interconnected tie line (∆Ptie), area 2 (∆F2), and area 1 (∆F1). Table 2 shows the overall
comparison for (∆F1), (∆F2), and (∆Ptie) in terms of maximum overshoot (MO), minimum
undershoot (MU), and settling time (ST). Figure 8a–c, demonstrates that the FOPI-PDF
controller tuned with the DTBO approaches has improved STs for (∆Ptie) and (∆F2) of
29.11% and 35.08%, respectively, but almost the same peak overshoot as the FOPI-PDF
adjusted with the ICA approaches. Table 2 demonstrates that the DTBO method outper-
forms the JSO strategies for (∆F1), (∆F2), and (∆Ptie) in terms of ST (46.63%, 30.32%, and
14.11%) and MU (79.12%, 73.99%, and 90.00%). When compared to an JSO approach, the
DTBO algorithm reduced peak overshoot by 70.11%, 78.12%, and 69.01% when taking into
account (∆F1), (∆F2), and (∆Ptie), respectively. For the interconnected tie line (∆Ptie), area
2 (∆F2), and area 1 (∆F1), it is evident from Table 2 that our suggested DTBO algorithm
outperforms JSO, ICA, hDE-PS [42], hTLBO with PS [10], and FPA [25] techniques.
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5.2. Case-2

In this case, the effectiveness of a FOPI-PDF controller using the DTBO technique
was compared to the performances of FOPIDF, FOPID, PID, FOTID, and PI controllers.
As shown in Figure 9a–c, the dynamic response for each controller has been evaluated
for the interconnected tie line (∆Ptie), area 2 (∆F2), and area 1 (∆F1). Table 3 shows the
overall comparison for various controllers in terms of transient contents, including MO,
MU, and ST for (∆F1), (∆F2), and (∆Ptie). It is noticeable from Table 3 and Figure 9c
that our suggested FOPI-PDF controller (MO = 0.000129, MU = −0.00065) has the least
undershoot and overshoot as compared to FOPIDF (MO = 0.000218, MU = −0.00119), PID
(MO = 0.000437, MU =−0.00627), PI (MO = 0.001045, MU =−0.00722), MID (MO = 0.000600,
MU =−0.00800), and FOTID controller (MO = 0.00260, MU = −0.00440) for interconnected
tie-line. It can also be seen from Table 3 and Figure 9c that FOPIDF controllers optimized
with DTBO have the lowest settling time for area 1 (ST = 4.420), followed by PID controllers
(ST = 5.020), PI controllers (6.533), FOPI-PDF controllers (ST = 8.434), MID controllers
(ST = 19.01), and FOTID controllers (ST = 25.5). In a tie-line, the FOPI-PDF controller
(ST = 5.98) is very excellent in terms of other controllers, including FOPIDF (ST = 12.60),
PID (8.83), PI (ST = 6.82), MID (ST = 12.69), and FOTID (ST = 18.77). Therefore, it is evident
from Figure 9c that the current described approach outperforms FOPIDF, PID, PI, and
FOTID controllers in terms of ST, MO, and MU for interconnected tie-lines. From Figure 9b,
it can also be observed that the PID controller tuned with the DTBO algorithm has superior
performance (ST = 6.23) as compared to the FOPIDF controller with (ST = 8.61), the PI
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controller with (ST = 9.93), the FOPI-PIDF controller with (ST = 10.9), the MID controller
with (ST = 18.09), and the FOTID controller with (ST = 23.2).
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possible controller improvements. There are 30 simulated runs with 80 iterations, and the 
rest of the parameters are detailed in Appendix B. Each optimization method uses 20 pop-
ulations. As can be seen in Figure 10a–c, the suggested DTBO optimization procedure 
outperforms the investigated JSO and ICA optimizers in terms of conversion characteris-
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Table 3. Transient results for hybrid PS considering Case-2.

Controllers
ST (Settling Time) MO (Maximum Overshoot) MU (Minimum Undershoot)

Area 1 Area 2 (∆Ptie) Area 1 Area 2 (∆Ptie) Area 1 Area 2 (∆Ptie)

FOPI-PDF: DTBO 8.434 10.9 5.98 0.000813 0.000813 0.000129 −0.00922 −0.00922 −0.00065
FOPIDF: DTBO 4.420 8.61 12.6 0.000082 0.000406 0.000218 −0.00135 −0.00179 −0.00119
PID: DTBO 5.020 6.23 8.83 0.000363 0.000048 0.000437 −0.00664 −0.00628 −0.00627
PI:DTBO 6.533 9.93 6.82 0.000017 0.000041 0.001045 −0.00094 −0.00104 −0.00722
[42] MID: hDE-PS 19.01 18.09 12.69 0.00080 0.001700 0.000600 −0.00100 −0.01500 −0.00800
[25] FOTID:FPA 25.5 23.2 18.77 0.00680 0.01170 0.00260 −0.02450 −0.0228 −0.00440

5.3. Case-3

As shown in Figure 10a–c, the convergence curves of various algorithms, including
DTBO, ICA, and JSO, have been assessed for hybrid interconnected PS in this case. Using the
ITSE assessments as a cost function, the suggested FOPI-PDF controller parameters are fine-
tuned. The DTBO parameters listed in Appendix A were selected to yield the best possible
controller improvements. There are 30 simulated runs with 80 iterations, and the rest of
the parameters are detailed in Appendix B. Each optimization method uses 20 populations.
As can be seen in Figure 10a–c, the suggested DTBO optimization procedure outperforms
the investigated JSO and ICA optimizers in terms of conversion characteristics for ITSE
objective functions. Figure 10a–c demonstrates that, in comparison to JSO and ICA, whose
ITSE values are 8.27× 10−4 and 5.92× 3, respectively, the DTBO method converges quickly
under ITSE situations and obtains a value of (ITSE = 6.83 × 10−4).
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5.4. Sensitivity Analysis/Rubustness

Although system models can be described mathematically in a variety of ways, and
because system parameters and configuration might vary over time as a result of the deteri-
oration of system components, the given controller must be robust in the face of parameter
uncertainties. Parametric uncertainties in the system can occasionally disrupt stability
when the proposed control structure is unable to account for them. Parameters such as Kw,
R, Kre, and Tgr are all varied by roughly ±40% from their nominal values and compared
to their minimal responses in order to verify the robustness of the proposed controller.
Figure 11a–c displays validation of the DTBO: FOPI-PDF controller performance under
varying load disturbances up to 25% and ±50%, representing real-world circumstances.
Results obtained with varying system parameters are shown in Figure 12 and Table 4, prov-
ing the proposed controller’s robustness in the face of parameter uncertainty. Furthermore,
the load characteristics of a real-world power system are highly unpredictable and varied.
The mechanism of control needs to be flexible enough to handle unpredictable changes in
load. Consequently, the proposed controller is resilient under a wide range of loads. As
can be seen in Table 4, the actual system response is quite close to the nominal values for
several parameters. The results show that the proposed DTBO-based FOPI-PDF controller
consistently executes within a ± 40% tolerance band for the PS parameters. Furthermore,
for a large variety of parameters at the rated value, the suggested controller’s optimal
values do not necessitate retuning.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 19 of 24 
 

 

Figure 10. Convergence characteristics curve for algorithms (a) DTBO (b) JSO (c) ICA. 

5.4. Sensitivity Analysis/Rubustness 
Although system models can be described mathematically in a variety of ways, and 

because system parameters and configuration might vary over time as a result of the de-
terioration of system components, the given controller must be robust in the face of pa-
rameter uncertainties. Parametric uncertainties in the system can occasionally disrupt sta-
bility when the proposed control structure is unable to account for them. Parameters such 
as Kw, R, Kre, and Tgr are all varied by roughly ±40% from their nominal values and 
compared to their minimal responses in order to verify the robustness of the proposed 
controller. Figure 11a–c displays validation of the DTBO: FOPI-PDF controller perfor-
mance under varying load disturbances up to 25% and ±50%, representing real-world cir-
cumstances. Results obtained with varying system parameters are shown in Figure 12 and 
Table 4, proving the proposed controller’s robustness in the face of parameter uncertainty. 
Furthermore, the load characteristics of a real-world power system are highly unpredict-
able and varied. The mechanism of control needs to be flexible enough to handle unpre-
dictable changes in load. Consequently, the proposed controller is resilient under a wide 
range of loads. As can be seen in Table 4, the actual system response is quite close to the 
nominal values for several parameters. The results show that the proposed DTBO-based 
FOPI-PDF controller consistently executes within a ± 40% tolerance band for the PS pa-
rameters. Furthermore, for a large variety of parameters at the rated value, the suggested 
controller’s optimal values do not necessitate retuning. 

 
(a) 

 
(b) 

Figure 11. Cont.



Fractal Fract. 2023, 7, 315 19 of 23Fractal Fract. 2023, 7, x FOR PEER REVIEW 20 of 24 
 

 

 
(c) 

Figure 11. Different load change for the system considering (a) ∆Ptie (b) ∆F2 (c) ∆F3. 

Table 4. Transient response computation for change in parameters of the power system. 

Parameter % Change ST  MO MU 
  Area 1 Area 1 ∆Ptie Area 1 Area 1 (∆Ptie) Area 1 Area 1 (∆Ptie) 

Kw  +40 6.09 13.23 14.89 0.00031 0.00032 0.00063 −0.00251 −0.00830 −0.00623 
 −40 7.82 13.23 14.90 0.00031 0.00031 0.00061 −0.00257 −0.00840 −0.00618 

Kre +40 6.38 13.45 14.21 0.0002 0.00037 0.00094 −0.00489 −0.00713 −0.00693 
 −40 8.03 13.46 14.23 0.0002 0.00030 0.00098 −0.00482 −0.00913 −0.00678 

R +40 6.10 12.79 14.60 0.0003 0.00014 0.00083 −0.00361 −0.00780 −0.00731 
 −40 7.80 12.80 14.61 0.0003 0.00017 0.00075 −0.00361 −0.00740 −0.00725 

Tgr +40 3.47 12.72 14.09 0.0003 0.00068 0.00064 −0.00315 −0.00240 −0.00610 
 −40 3.51 12.73 14.10 0.0002 0.00047 0.00054 −0.00313 −0.00236 −0.00600 

 
Figure 12. Sensitivity analysis for the system parameters. 

Figure 11. Different load change for the system considering (a) ∆Ptie (b) ∆F2 (c) ∆F3.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 20 of 24 
 

 

 
(c) 

Figure 11. Different load change for the system considering (a) ∆Ptie (b) ∆F2 (c) ∆F3. 

Table 4. Transient response computation for change in parameters of the power system. 

Parameter % Change ST  MO MU 
  Area 1 Area 1 ∆Ptie Area 1 Area 1 (∆Ptie) Area 1 Area 1 (∆Ptie) 

Kw  +40 6.09 13.23 14.89 0.00031 0.00032 0.00063 −0.00251 −0.00830 −0.00623 
 −40 7.82 13.23 14.90 0.00031 0.00031 0.00061 −0.00257 −0.00840 −0.00618 

Kre +40 6.38 13.45 14.21 0.0002 0.00037 0.00094 −0.00489 −0.00713 −0.00693 
 −40 8.03 13.46 14.23 0.0002 0.00030 0.00098 −0.00482 −0.00913 −0.00678 

R +40 6.10 12.79 14.60 0.0003 0.00014 0.00083 −0.00361 −0.00780 −0.00731 
 −40 7.80 12.80 14.61 0.0003 0.00017 0.00075 −0.00361 −0.00740 −0.00725 

Tgr +40 3.47 12.72 14.09 0.0003 0.00068 0.00064 −0.00315 −0.00240 −0.00610 
 −40 3.51 12.73 14.10 0.0002 0.00047 0.00054 −0.00313 −0.00236 −0.00600 

 
Figure 12. Sensitivity analysis for the system parameters. Figure 12. Sensitivity analysis for the system parameters.

Table 4. Transient response computation for change in parameters of the power system.

Parameter % Change ST MO MU
Area 1 Area 1 ∆Ptie Area 1 Area 1 (∆Ptie) Area 1 Area 1 (∆Ptie)

Kw +40 6.09 13.23 14.89 0.00031 0.00032 0.00063 −0.00251 −0.00830 −0.00623
−40 7.82 13.23 14.90 0.00031 0.00031 0.00061 −0.00257 −0.00840 −0.00618

Kre +40 6.38 13.45 14.21 0.0002 0.00037 0.00094 −0.00489 −0.00713 −0.00693
−40 8.03 13.46 14.23 0.0002 0.00030 0.00098 −0.00482 −0.00913 −0.00678

R +40 6.10 12.79 14.60 0.0003 0.00014 0.00083 −0.00361 −0.00780 −0.00731
−40 7.80 12.80 14.61 0.0003 0.00017 0.00075 −0.00361 −0.00740 −0.00725

Tgr +40 3.47 12.72 14.09 0.0003 0.00068 0.00064 −0.00315 −0.00240 −0.00610
−40 3.51 12.73 14.10 0.0002 0.00047 0.00054 −0.00313 −0.00236 −0.00600



Fractal Fract. 2023, 7, 315 20 of 23

6. Conclusions

The proposed FOPI-PDN controller for the LFC of two regions, hybrid renewable en-
ergies and conventional power sources, with the incorporation of numerous nonlinearities
including GDZ, GRL, TD, and BD, was investigated in this research work. The Driver Train-
ing Based Optimization (DTBO), an advanced stochastic meta-heuristic algorithm, was
used to optimize the settings of the recommended controller. The simulation results show
that the DTBO-based tuned FOPI-PDF controller successfully decreases peak overshoot by
89.12%, 83.11%, and 78.10% for area-2, area-1, and link power variation, respectively, while
delivering a minimum undershoot of 79.12%, 73.99%, and 90.00% for both areas and link
power. Similarly, as compared to the conventional controller, the DTBO-based FOPI-PDF
controllers improve the ST by 46.63%, 30.32%, and 14.11% for the load frequencies (∆F1),
(∆F2), and (∆Ptie), respectively. Finally, the FOPI-PDF controller resilience is tested by
deviating from the minimal values for the system parameters. The results show that when
the system coefficients or load conditions change, the suggested controller gains are not
reset. The efficiency of the DTBO-based FOPI-PDF controller shows that it can success-
fully manage LFC difficulties in hybrid power systems with protracted oscillations. In the
future, the proposed control scheme could be extended to include three or more areas as
well as regulation of the combined effect of frequency and voltage for multigeneration
interconnected renewable/non-renewable power systems.
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Appendix A

Table A1. Hybrid PS and Their Parametric Values [27,42,44].

LFC model

Parameter Value Parameter Value

Tps1 11.49 Kps1 68.97

RH 2.4 Kps2 68.97

Tps2 11.49 β2 0.4312

RT 2.4 B1 2.4

Reheat Thermal PS

Kt 0.54367 Ttr 0.3

Tre 10 Kre 0.3

Tgr 0.08

Parameters and their values for Electric Vehicles

Vnom 364.8 Cnom 66.2

Rs 0.074 Rt 0.047

Ct 703.6 RT/F 0.02612

Minimum SOC (in Percentage) 10 Maximum SOC (in Percentage) 95

CBatt 24.15
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Table A1. Cont.

Hydro Power System

Tw 1 Trh 28.749

Kh 0.32586 Tr 5

Tgh 0.2

Renewable energy resources

Ks 0.5 KT 1

Ts 1 TT 0.3

KWTG 1 TWTG 1.5

Boiler Dynamic

Cb 200 K3 0.92

Trb 0.545 Tf 0.23

Tr 1.4 Trh 28.75

K1 0.85 K2 0.095

T1b 0.545 K1b 0.950

Appendix B

Table A2. DTBO Coefficient and Their Values.

Coefficient Values Coefficient Values Coefficient Values Coefficient Values

No of Iteration 80 Lower limit
(Lb) −2 No of

dimension 7 Coefficient 2

No of Population
(Np) 30 Constant (R) 0.05 Random

Number (r) [0, 1] Coefficient
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