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Abstract: Despite the fact the Laplace transform has an appreciable efficiency in solving many
equations, it cannot be employed to nonlinear equations of any type. This paper presents a modern
technique for employing the Laplace transform LT in solving the nonlinear time-fractional reaction–
diffusion model. The new approach is called the Laplace-residual power series method (L-RPSM),
which imitates the residual power series method in determining the coefficients of the series solution.
The proposed method is also adapted to find an approximate series solution that converges to the
exact solution of the nonlinear time-fractional reaction–diffusion equations. In addition, the method
has been applied to many examples, and the findings are found to be impressive. Further, the results
indicate that the L-RPSM is effective, fast, and easy to reach the exact solution of the equations.
Furthermore, several actual and approximate solutions are graphically represented to demonstrate
the efficiency and accuracy of the proposed method.

Keywords: Caputo fractional derivative; Laplace-residual power series method; fractional reaction–
diffusion model
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1. Introduction

Fractional integral and derivatives are a branch of applied mathematical analysis and
have been developed theoretically in recent years [1–11]; the application of this field has
been used in many areas such as sciences, engineering, aerodynamic, thermodynamic,
mechatronics, image processing, physics, and fluid flow phenomena [12,13]. The essential
improvement of fractional differential equations (FDEs) is to provide a tool for the definition
of different behaviors in different fields.

Most FDEs do not have exact analytic solutions, so approximation methods (numerical
or analytical) must be used, such as the Jacobi Tau method [14], the Sinc–Legendre collo-
cation method [15], the Petrov–Galerkin algorithm [16], the decomposition method [8,17],
the Variational iteration method [18], and the homotopy transformation perturbation
method [19]. The RPSM is an effective method used to solve wide classes of differential
equations [20].

Eriqat et al. [21] proposed a new scheme to solve a class of fractional differential
equations by combining the LT and the RPSM and called it the L-RPSM. This new method
is guaranteed to have more simplicity than RPSM for creating the exact and approximate so-
lutions (ASs) to the linear and nonlinear FDEs, such as the neutral FDEs [21], the nonlinear
time-dispersive fractional partial differential equations (FPDEs) [22], the nonlinear frac-
tional reaction–diffusion for bacteria growth model [23], the time-fractional nonlinear fisher
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PDE [24], the fuzzy fractional population dynamics model [25], the fuzzy quadratic Riccati
differential equations [26], the fractional Lane-Emden equations [27], and the high-order
FPDEs [28].

The reaction–diffusion equations describe the behavior of a large range of chemical
systems where the diffusion of material competes with the production of that material
by some form of chemical reaction. The simplest reaction–diffusion models are of the
form [29]:

Dtν = M(x)D2
xν + r(ν), (1)

where ν = ν(x, t), M(x) is a continous function, x ∈ R, t > 0, and r(ν) is a non-linear
analytic function of ν that is chosen as reaction kinetics.

Recently, Equation (1) has been reformulated by replacing the time-first derivative
with a time-fractional derivative, so it becomes as follows [19,30,31]:

Dα
t ν = M(x)D2

xν + r(ν), (2)

where α (0 < α ≤ 1) is a parameter defining the time Caputo fractional derivative
(C-FD) order.

Several researchers have used different methods to solve the non-linear time-fractional
reaction diffusion equation (TFRDE) in Equation (2), such as Elzaki homotopy transforma-
tion perturbation method [19], the RPSM method [31], the homotopy analysis method [30],
and other methods [32–39].

In this paper, the L-RPSM is modified and adapted to create a series solution for the
TFRDE, and comparisons with previous methods are made to show the ease and efficiency
of the technique. Solving TFRDE using the L-RPSM consists of three steps: (i) convert
the given TFRDE into Laplace space, (ii) construct a series solution to the Laplace form
of TFRDE, and (iii) convert the solution to the original space using the inverse LT. The L-
RPSM introduces a new nice fractional expansion that is used to find the coefficients of a
series solution without using fractional derivatives as in RPSM. Additionally, a few simple
calculations give us the coefficients of a series compared to the RPSM, which requires
several calculations to establish the fractional derivatives in the solution steps. Finally,
the exact and accurate approximation solutions by L-RPSM can be obtained with a rapidly
convergent series.

The paper is organized as follows: Section 2 reviews some important results related
to C-FD and LT. In Section 3, we construct the ASs for TFRDE based on our proposed
L-RPSM. In Section 4, applications are performed to validate the efficiency and accuracy of
the proposed method. Finally, we provided a conclusion in Section 5.

2. C-FD Operator, LT, and Fractional Expansions

This section reviews some important concepts of C-FD and suggests fractional expan-
sion in LT space to construct exact and ASs for the TFRDEs in the next section. For more
information about C-FD and LT, the reader can refer to Refs. [1–6,21,22].

Definition 1 ([1]). The C-FD of v(x, t) for order α is given by:

Dα
t v(x, t) =

∂αv(x, t)
∂tα

=

Jm−α
t

(
∂mv(x,t)

∂tm

)
, m− 1 < α < m,

∂mv(x,t)
∂tm , α = m ∈ N,

(3)

where t ≥ 0, x ∈ I, I is an interval, Dα
t refers to the C-FD of order α, m ∈ N, and Jβ

t denotes the
Riemann–Liouville fractional integral operator of order β that given by:

Jβ
t ν(x, t) =

{
1

Γ(β)

∫ t
0 (t− τ)β−1ν(x, t)dτ, β > 0, t > τ ≥ 0,

ν(x, t) β = 0,
(4)
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provided the integral exists.

Lemma 1 ([1]). For m − 1 < α ≤ m, γ > α − 1, t ≥ 0, and λ ∈ R, we summarize some
important properties for C-FD as follows:

1. Dα
t λ = 0.

2. Dα
t tγ = Γ(γ+1)

Γ(γ+1−α)
tγ−α.

3. Dα
t Jα

t ν(x, t) = ν(x, t).

4. Jα
t Dα

t ν(x, t) = ν(x, t)−∑m−1
j=0 ∂

j
tν(x, 0+) tj

j! .

Definition 2 ([40]). Let ν(x, t) be a piecewise continuous function (PCF) on I × [0, ∞) and of
exponential order (EO) δ. Then, the LT of the ν(x, t) is defined as:

V(x, s) = L[ν(x, t)] :=
∫ ∞

0
e−stν(x, t)dt, s > δ, (5)

and the inverse LT of the V(x, s) is defined as:

ν(x, t) = L−1[V(x, s)] :=
∫ c+i∞

c−i∞
estV(x, s)ds, c = Re(s) > c0, (6)

where c0 lies in the right half plane of the absolute convergence of the Laplace integral.

Lemma 2 ([40]). Let u(x, t) and v(x, t) be PCFs on I × [0, ∞) and of EOs δ1 and δ2, respec-
tively, where δ1 < δ2. Suppose that U(x, s) = L[u(x, t)]; V(x, s) = L[v(x, t)]; and a, b are
constants. Then,

1. L[au(x, t) + bv(x, t)] = aU(x, s) + bV(x, s), x ∈ I, s > δ1.
2. L[eatv(x, t)] = V(x, s− a), x ∈ I, s > a + δ1.
3. lim

s→∞
sV(x, s) = v(x, 0), x ∈ I.

Lemma 3 ([22]). Let ν(x, t) be a PCF on I × [0, ∞) and of EO δ, V(x, s) = L[ν(x, t)]. Then, the
following properties of LT operator for C-FD are satisfied:

1. L[Dα
t ν(x, t)] = sαV(x, s)−∑m−1

k=0 sα−k−1∂k
t ν(x, 0), m− 1 < α < m.

2. L[Dnα
t ν(x, t)] = snαV(x, s)−∑n−1

k=0 s(n−k)α−1Dkα
t ν(x, 0), 0 < α ≤ 1,

where Dnα
t = Dα

t .Dα
t . . . Dα

t (n-times).

Theorem 1 ([22]). Let ν(x, t) be a PCF on I × [0, ∞) and of EO δ. If the function
V(x, s) = L[ν(x, t)] has a fractional expansion as follows:

V(x, s) =
∞

∑
n=0

fn(x)
snα+1 , 0 < α ≤ 1, x ∈ I, s > δ, (7)

then fn(x) = Dnα
t u(x, 0).

Remark 1 ([22]). The inverse LT of the expansion in Theorem 1 has the following form:

ν(x, t) =
∞

∑
n=0

Dnα
t ν(x, 0)

Γ(nα + 1)
tnα, 0 < α ≤ 1, t ≥ 0. (8)

3. The L-RPSM for Solving TFRDE

In this section, we apply L-RPSM to the nonlinear TFRDE to be discussed.

Step 1. Employ LT to both sides of Equation (2), i.e.,

L[Dα
t ν(x, t)] = M(x)L[D2

xν(x, t)] + L[r(ν(x, t))] (9)
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By the fact (1) in Lemma 3 at α ∈ (0, 1], one can rewrite Equation (9) as

V(x, s) =
ν(x, 0)

s
+

M(x)
sα

D2
xV(x, s) +

R(x, s)
sα

, (10)

where V(x, s) = L[ν(x, t)] and R(x, s) = L[r(ν(x, t))].

Step 2. Construct a series solution to the Laplace form:

1. Write the series solution, V(x, s) of Equation (10) as follows:

V(x, s) =
∞

∑
n=0

fn(x)
snα+1 , (11)

and the kth-truncated solution as

Vk(x, s) =
k

∑
n=0

fn(x)
snα+1 . (12)

It is noteworthy that the convergence of the series (11) is discussed in detail in
Ref. [22].
We suppose that the initial guess of Equation (2) is ν(x, 0) = f (x). Hence,
according to fact (3) in Lemma 2 we have f0(x) = lim

s→∞
sV(x, s) = ν(x, 0) = f (x).

So, Equation (12) can be written as:

Vk(x, s) =
f (x)

s
+

k

∑
n=1

fn(x)
snα+1 . (13)

2. Construct the Laplace-Residual function (LRF), LRes(x, s), to Equation (10) as:

LRes(x, s) = V(x, s)− f (x)
s
− M(x)

sα
D2

xV(x, s)− R(x, s)
sα

, (14)

and the kth-LRF, LResk(x, s) is

LResk(x, s) = Vk(x, s)− f (x)
s
− M(x)

sα
D2

xVk(x, s)− R(x, s)
sα

. (15)

3. Substitute the kth-truncation, Vk(x, s), as in Equation (13), into Equation (15)
and multiply both sides of resulting equation by skα+1, k = 1, 2, . . .

4. To obtain the requited coefficients, fn(x), n = 1, 2, . . . , k, in Equation (13), we
solve the following algebraic equation recursively:

lim
s→∞

skα+1LResk(x, s) = 0, k = 1, 2, . . . (16)

5. Substitute the forms of the required coefficients, fn(x), n = 1, 2, . . . , k into
Equation (13) to obtain the kth-AS, Vk(x, s), of Equation (10).

Step 3. Employ the inverse LT on the final form of Vk(x, s) to ensure the existence of the
kth-AS, νk(x, t) of Equation (2) .

4. Applications

Five applications of TFRDEs are considered in this section to validate our proposed
method. The MATHEMATICA 11 and MAPLE 2018 software packages are used in our
computational process and graphical results.
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Application 1. Consider the TFRDE [30]:

Dα
t ν(x, t) = D2

xν(x, t) + ν(x, t)(1− ν(x, t)), 0 < α ≤ 1, x ∈ R, (17)

subject to a constant initial condition
ν(x, 0) = c. (18)

The exact solution for Equation (17) at α = 1 is ν(x, t) = cet/(1− c + cet).
Firstly, employ the LT to both sides of Equation (17) to obtain

V(x, s) =
c
s
+

D2
xV(x, s)

sα
+

1
sα

V(x, s)− 1
sα
L[(L−1[V(x, s)])2]. (19)

The L-RPSM proposes the solution for the Laplace form as Equation (19) with a
fractional power series. Suppose that the solution is given in the following form:

V(x, s) =
∞

∑
n=0

fn(x)
snα+1 . (20)

It is clear that by using the constant initial condition, we have f0(x) = lim
s→∞

sV(x, s) =

ν0(x, t) = c. Additionally, the kth-truncated series, Vk(x, s), can be written as:

Vk(x, s) =
c
s
+

k

∑
n=1

fn(x)
snα+1 . (21)

Before we go deep into the L-RPSM, let us define the LRF, LRes(x, s), for Equation (19)

LRes(x, s) = V(x, s)− c
s
− D2

xV(x, s)
sα

− 1
sα

V(x, s) +
1
sα
L[(L−1[V(x, s)])2], (22)

and accordingly, the kth-LRF, LResk, is

LResk(x, s) = Vk(x, s)− c
s
− D2

xVk(x, s)
sα

− 1
sα

Vk(x, s) +
1
sα
L[(L−1[Vk(x, s)])2]. (23)

To determine the value of the first unknown coefficient, f1(x), we consider (k = 1) in
Equation (23) to obtain

LRes1(x, s) = V1(x, s)− c
s
− D2

xV1(x, s)
sα

− 1
sα

V1(x, s) +
1
sα
L[(L−1[V1(x, s)])2], (24)

substitute V1(x, s) = c/s + f1(x)/sα+1 into Equation (24) as follows:

LRes1(x, s) =
f1(x)
sα+1 −

D2
x f1(x)
s2α+1 − c

sα+1 −
f1(x)
s2α+1 +

c2

sα+1 +
2c f1(x)
s2α+1 +

Γ(2α + 1) f 2
1 (x)

Γ(α + 1)2s3α+1 . (25)

According to the fact in Equation (16) for k = 1, we have

lim
s→∞

sα+1LRes1(x, s) = f1(x)− c + c2 = 0. (26)

Solve the Equation (26) for f1(x), to obtain the following output:

f1(x) = c(1− c). (27)
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In the same manner, to obtain the value of the second unknown coefficient, we consider
(k = 2) in Equation (23):

LRes2(x, s) = V2(x, s)− c
s
− D2

xV2(x, s)
sα

− 1
sα

V2(x, s) +
1
sα
L[(L−1[V2(x, s)])2]. (28)

Since V2(x, s) = c/s + c(1− c)/sα+1 + f2(x)/s2α+1; therefore, we can rewrite
Equation (28) as:

LRes2(x, s) =− c2

sα+1 −
c(1− c)− f2(x)

s2α+1 − f2(x) + D2
x f2(x)

s3α+1

+
1
sα
L
[(
L−1

[
c
s
+

c(1− c)
sα+1 +

f2(x)
s2α+1

])2]
.

(29)

Multiplying both sides of Equation (29) by s2α+1 and solving the sequence equation
lim
s→∞

s2α+1LRes2(x, s) = 0 for f2(x) yields

f2(x) = c(1− 3c + 2c2). (30)

Proceeding, as stated in the previous steps, in determining the functions fk(x), one
can easily obtain the following results:

f3(x) =(−1 + c)c

(
− (1− 2c)2 − (−1 + c)cΓ(1 + 2α)

Γ(1 + α)2

)
,

f4(x) =(−1 + c)c(−1 + 2c)

(
(1− 2c)2 +

1
Γ(1 + α)

(
(−1 + c)c

(
4αΓ( 1

2 + α)√
π

+
2Γ(1 + 3α)

Γ(1 + 2α)

)))
.

(31)

We can express the solution obtained by L-RPSM of Equation (19) in an infinite series
as follows:

V(x, s) =
c
s
− (−1 + c)c

sα+1 +
(−1 + c)c(−1 + 2c)

s2α+1

+
1

s3α+1

(
(−1 + c)c

(
− (1− 2c)2 − (−1 + c)cΓ(1 + 2α)

Γ(1 + α)2

))
+ · · ·

(32)

Consequently, the solution of Equations (17) and (18) by taking the inverse LT of
Equation (32) is

ν(x, t) =c− (−1 + c)ctα

Γ(α + 1)
+

(−1 + c)c(−1 + 2c)t2α

Γ(2α + 1)

+
t3α

Γ(3α + 1)

(
(−1 + c)c

(
− (1− 2c)2 − (−1 + c)cΓ(1 + 2α)

Γ(1 + α)2

))
+ · · ·

(33)

Figure 1 shows the surface graphs of the 5th-AS at different values of α and the exact
solutions at α = 1 of Equations (17) and (18) obtained by L-RPSM. It is clear from the figures
that the 5th-AS of the Application 1 is in very good agreement with the exact solution at
α = 1. In addition, the behavior of the solution did not change with the change in the
values of α.
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(a) (b)

(c) (d)

Figure 1. The surface graphs of the exact and ASs of Equations (17) and (18): (a) ν5(x, t) when α = 0.6,
(b) ν5(x, t) when α = 0.8, (c) ν5(x, t) when α = 1, and (d) exact solution when α = 1.

Application 2. Consider the non-homogeneous TFRDE

Dα
t ν(x, t) =D2

xν(x, t) + ν(x, t)(1− ν(x, t)) + sin x + 2 sin x
tα

Γ(1 + α)
+ sin2 x

t2α

Γ(1 + α)2 ,

t > 0, 0 < α ≤ 1, x ∈ R.
(34)

subject to the initial condition
ν(x, 0) = 1. (35)

Taking the LT to both sides of Equation (34) and using Equation (35), we obtain the
following Laplace form:

V(x, s) =
1
s
+

D2
xV(x, s)

sα
+

V(x, s)
sα

− 1
sα
L[(L−1[V(x, s)])2] +

sin x
sα+1 +

2 sin x
s1+2α

+
sin2 xΓ(1 + 2α)

s1+3αΓ(1 + α)2 .
(36)

Suppose that the kth-AS of Equation (36) takes the following expansion form:

Vk(x, s) =
1
s
+

k

∑
n=1

fn(x)
snα+1 . (37)



Fractal Fract. 2023, 7, 309 8 of 16

Define the kth-LRF, LResk(x, s), for Equation (36) as follows:

LResk(x, s) =Vk(x, s)− 1
s
− D2

xVk(x, s)
sα

− Vk(x, s)
sα

+
1
sα
L[(L−1[Vk(x, s)])2]− sin x

sα+1

− 2 sin x
s1+2α

− sin2 xΓ(1 + 2α)

s1+3αΓ(1 + α)2 .
(38)

To determine the form of first unknown coefficient, f1(x), we consider (k = 1) in
Equation (38), to obtain:

LRes1(x, s) = V1(x, s)− 1
s
− D2

xV1(x, s)
sα

− V1(x, s)
sα

+
1
sα
L[(L−1[V1(x, s)])2]− sin x

sα+1

− 2 sin x
s2α+1 −

sin2 xΓ(1 + 2α)

s3α+1Γ(1 + α)2 .
(39)

Substitute 1st-AS, V1(x, s) = 1/s + f1(x)/sα+1, into Equation (39), to have:

LRes1(x, s) =
f1(x)
sα+1 −

D2
x f1(x)
s2α+1 +

f1(x)
s2α+1 +

f1(x)2Γ(1 + 2α)

s1+3αΓ(1 + α)2 −
sin x
sα+1

− 2 sin x
s1+2α

− sin2 xΓ(1 + 2α)

s1+3αΓ(1 + α)2 .
(40)

Multiply Equation (40) by sα+1, to obtain:

sα+1LRes1(x, s) = f1(x)− D2
x f1(x)

sα
+

f1(x)
sα

+
f1(x)2Γ(1 + 2α)

s2αΓ(1 + α)2 − sin x

− 2 sin x
sα

− sin2 xΓ(1 + 2α)

s2αΓ(1 + α)2 .
(41)

In reference to the fact in Equation (16) and to solve lim
s→∞

skα+1LResk(x, s) = 0 for k = 1,

we obtain the following output:

f1(x) = sin x. (42)

By repeating above-illustrated steps in determining the values of unknown coefficients,
we obtain:

fn(x) = 0, n = 2, 3, 4, . . . (43)

Therefore, the 1st-AS, V1(x, s), of Equation (36) is the exact solution, which can be
expressed as follows:

V(x, s) =
1
s
+

sin x
sα+1 . (44)

Employ inverse LT to both sides of Equation (44) to obtain the exact solution (obtained
in [31]), ν(x, t), of Equations (34) and (35) as follows:

ν(x, t) = 1 + sin x
tα

Γ(1 + α)
. (45)

Figure 2 shows the 2D graphs of the exact solution to Equations (34) and (35) at
α = 0.4, 0.6, 0.8, 1, and t = 0.1, 0.7. It is clear that with increasing time, the amplitude of
the wave increases and the variation in amplitude decreases with different α values.
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(a) (b)

Figure 2. The 2D graphs of the exact solution, ν(x, t), for Equations (34) and (35) at α = 0.4, 0.6, 0.8, 1:
(a) ν1(x, t) when t = 0.1, (b) ν1(x, t) when t = 0.7.

Application 3. Consider time-fractional Fitzhugh–Nagumo equation

Dα
t ν(x, t) = D2

xν(x, t) + ν(x, t)(1− ν(x, t))(ν(x, t)− θ), t > 0, 0 < α ≤ 1, x ∈ R, 0 < θ < 1, (46)

subject to the initial condition

ν(x, 0) =
1

1 + e−
x√
2

. (47)

In the special case when α = 1, the exact solution for Equations (46) and (47) is [19]:

ν(x, t) =
1(

1 + e−
x√
2
−
(

1
2−θ
)

t
) (48)

Applying LT on both sides of Equations (46) and (47) gives:

V(x, s) =
1

s(1 + e−
x√
2 )

+
D2

xV(x, s)
sα

+
1
sα
L[(L−1[V(x, s)])2]− 1

sα
L[(L−1[V(x, s)])3]

− θ

sα
V(x, s) +

θ

sα
L[(L−1[V(x, s)])2],

(49)

thus, the kth-truncated series of Equation (49) is:

Vk(x, s) =
1

s(1 + e−
x√
2 )

+
k

∑
n=1

fn(x)
snα+1 , (50)

and the kth-LRF, LResk(x, s), is:

LResk(x, s) =Vk(x, s)− 1

s(1 + e−
x√
2 )
− D2

xVk(x, s)
sα

− 1
sα
L[(L−1[Vk(x, s)])2]

+
1
sα
L[(L−1[Vk(x, s)])3] +

θ

sα
Vk(x, s)− θ

sα
L[(L−1[Vk(x, s)])2].

(51)

To determine the forms of unknown coefficients fn(x), n = 1, 2, . . ., we substitute the
kth-truncated series of Equation (50) into the kth-LRF of Equation (51), multiply the new
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equation by skα+1, and recursively solve the fact lim
s→∞

skα+1LResk(x, s) = 0, k = 1, 2, . . . for

fk(x). The following are the first few forms of the coefficients fk(x, s):

f1(x) =− e
x√
2 (−1 + 2θ)

2
(

1 + e
x√
2

)2 ,

f2(x) =−
e

x√
2

(
−1 + e

x√
2

)
(−1 + 2θ)2

4
(

1 + e
x√
2

)3 ,

f3(x) =
1

8(1 + e
x√
2 )5
√

πΓ(1 + α)

(
e

x√
2 (1− 2θ)2

(
21+2αe

x√
2

(
1 + e

x√
2 (−2 + θ) + θ

)
Γ
(1

2
+ α
)

− (−1 + e
x√
2 )
√

π
(

1− 6e
x√
2 − 2θ + e

√
2x(−1 + 2θ)

)
Γ(1 + α)

))
.

(52)

We can express the L-RPS solution of Equation (49) in an infinite series as:

V(x, s) =
1

s(1 + e−
x√
2 )
− e

x√
2 (−1 + 2θ)

2sα+1(1 + e
x√
2 )2
− e

x√
2 (−1 + e

x√
2 )(−1 + 2θ)2

4s2α+1(1 + e
x√
2 )3

+ · · · (53)

Consequently, the solution of time-fractional Fitzhugh–Nagumo Equations (46) and
(47) by taking the inverse LT of Equation (53) is

ν(x, t) =
1

(1 + e−
x√
2 )
− e

x√
2 (−1 + 2θ)tα

2Γ(α + 1)(1 + e
x√
2 )2
− e

x√
2 (−1 + e

x√
2 )(−1 + 2θ)2t2α

4Γ(2α + 1)(1 + e
x√
2 )3

+ · · · (54)

Figure 3 shows the surface graphs of the 4th approximate L-RPS and the exact solutions
for Equations (46) and (47) when θ = 0.8 at different values of α. From these sub-figures, it
is clear that ν4(x, t) close the exact solution as the value of α increases .

Application 4. Consider the generalized Fisher’s equation such that [19]

Dα
t ν(x, t) = D2

xν(x, t) + ν(x, t)(1− ν(x, t)6), 0 < α ≤ 1, x > 0, (55)

subject to the initial condition

ν(x, 0) =
1

3
√

1 + e
3
2 x

. (56)

The exact solution for Equations (55) and (56) when α = 1 is ν(x, t) = { 1
2 tanh

[− 3
4 (x− 5

2 t)] + 1
2}

1
3 .

Taking the LT to both sides of Equation (55), we obtain:

V(x, s) =
1

s
3
√

1 + e
3
2 x

+
D2

xV(x, s)
sα

+
V(x, s)

sα
− 1

sα
L[(L−1[V(x, s)])7]. (57)

Suppose that the k-truncated series solution of Equation (57) takes the following
expansion form:

Vk(x, s) =
1

s
3
√

1 + e
3
2 x

+
k

∑
n=1

fn(x)
snα+1 , (58)
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and the kth-LRF,LResk is:

LResk(x, s) = Vk(x, s)− 1

s
3
√

1 + e
3
2 x
− D2

xVk(x, s)
sα

− Vk(x, s)
sα

+
1
sα
L[(L−1[Vk(x, s)])7]. (59)

(a) (b)

(c) (d)

Figure 3. The surface graphs of the exact and 4th ASs for Equations (46) and (47): (a) ν4(x, t) when
α = 0.6, (b) ν4(x, t) when α = 0.8, (c) ν4(x, t) when α = 1, and (d) exact solution (α = 1).

By applying L-RPSM, we obtain the first four unknown coefficients fn(x), n = 1, 2, 3
in Equation (58), which are as follows:

f1(x) =
5e

3
2 x

4 3
√
(1 + e

3
2 x)4

,

f2(x) =
25e

3
2 x(−3 + e

3
2 x)

16 3
√
(1 + e

3
2 x)7

,

f3(x) =
25
(

45e
3
2 x + 123e3x − 85e

9
2 x + 5e6x − 21(4)α+1e3xΓ( 1

2+α)√
πΓ(1+α)

)
64 3
√
(1 + e

3
2 x)13

.

(60)

We can express the solution of Equation (57) obtained by L-RPSM as follows:

V(x, s) =
5e

3
2 x

4s 3
√
(1 + e

3
2 x)4

+
25e

3
2 x(−3 + e

3
2 x)

16sα+1 3
√
(1 + e

3
2 x)7

+ · · · . (61)
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Therefore, the solution to the generalized Fisher’s equation as in Equations (55) and
(56) is:

ν(x, t) =
5e

3
2 x

4 3
√
(1 + e

3
2 x)4

+
25tαe

3
2 x(−3 + e

3
2 x)

16Γ(α + 1) 3
√
(1 + e

3
2 x)7

+ · · · . (62)

Figure 4 shows the surface graphs of the 4th-AS at different values of α and the exact
solutions at α = 1 for Equations (55) and (56). From this figure, it can be seen that the
region of convergence of the series solution is small in direction of the t-axis and that the
solution becomes smoother with increasing the value of α.

(a) (b)

(c) (d)

Figure 4. The surface graphs of the exact and ASs for Equations (55) and (56): (a) ν4(x, t) when
α = 0.6, (b) ν4(x, t) when α = 0.8, (c) ν4(x, t) when α = 1, and (d) exact solution (α = 1).

Application 5. Consider the fractional heat-like equation [14,15,17,18]

Dα
t ν(x, t) =

1
2

x2D2
xν(x, t), 0 < x ≤ 1, 0 < t ≤ 1, 0 < α < 1, (63)

subject to the boundary conditions

ν(0, t) = 0, ν(1, t) = Eα(tα), (64)

with the following initial condition:
ν(x, 0) = x2. (65)
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By employing the LT to both sides of Equation (63), we obtain:

V(x, s) =
x2

s
+

1
2sα

x2D2
xV(x, s). (66)

Suppose that the kth-truncated series solution of Equation (66) takes the following
expansion form:

Vk(x, s) =
x2

s
+

k

∑
n=1

fn(x)
snα+1 , (67)

and the kth-LRF, LResk is:

LResk(x, s) = Vk(x, s)− x2

s
− 1

2sα
x2D2

xV(x, s). (68)

By applying L-RPSM, we obtain the unknown coefficients fn(x), in Equation (67),
which are as follows:

f1(x) =x2,

f2(x) =x2,

f3(x) =x2,

f4(x) =x2

fn(x) =x2, n = 5, 6, 7, 8, . . . .

(69)

We can express the L-RPS solution of Equation (66) as follows:

V(x, s) =
∞

∑
n=0

x2

snα+1 . (70)

Upon using inverse LT for both sides of Equation (70), the solution of the fractional
heat-like equation as in Equations (63)–(65) is

ν(x, t) = x2
∞

∑
n=0

tnα

Γ(nα + 1)
= x2Eα(tα), (71)

where Eα(z) is the Mittag–Leffler function and defined as Eα(z) = ∑∞
n=0

zn

Γ(1+nα)
. It is clear

that when α = 1, we have E1(t) = et. Hence, x2et is the exact solution of the classical
heat-like equation [14,15,17,18].

Table 1 shows the values of numerical solutions and consecutive errors (Con.Err) of
17th-AS obtained by L-RPSM for different values of α, where the Con.Err of ν17(x, t) is
Con.Err(x, t) = |ν17(x, t)− ν15(x, t)|. From the results, we conclude that L-RPSM provides
accurate AS and demonstrates rapid convergence in AS. Moreover, the time taken by the
computer to calculate the symbolic and numerical quantities was very limited compared
with other methods. That is why we can say that L-RPSM is a simplified and attractive
method to find exact and ASs.

Table 2 presents the comparison of absolute error obtained by L-RPSM with the
variational iteration method (VIM) [18], the Adomian decomposition method (ADM) [17],
the Sinc–Legendre spectral collocation method (S-LCM) [15], and the Jacopi Tau method
(JTM) [14] at α = 1. From Table 2, it is clear that the absolute errors of the AS obtained by
L-RPSM of the heat-like equation are small, and we can see that the number of absolute
errors decreases as the number of iterations increases .
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Table 1. The numerical solutions and Con.Err obtained by the L-RPSM for Application 5 at α = 0.75,
0.9, and 1.

α = 0.75 α = 0.90 α = 1.00

t x k = 17 Con.Err k = 17 Con.Err k = 17 Con.Err

0.25 0.3 0.13491 1.1782× 10−17 0.12186 7.7226× 10−22 0.11556 1.0163× 10−24

0.6 0.53965 4.7127× 10−17 0.48744 3.0890× 10−21 0.46225 4.0650× 10−24

0.9 1.21422 1.0603× 10−16 1.09675 6.9503× 10−21 1.04006 9.1463× 10−24

0.50 0.3 0.18196 4.9884× 10−14 0.15953 1.7042× 10−17 0.14839 6.7567× 10−20

0.6 0.72782 1.9954× 10−13 0.63810 6.8169× 10−17 0.59354 2.7027× 10−19

0.9 1.63759 4.4896× 10−13 1.43573 1.5338× 10−16 1.33546 6.0810× 10−19

0.75 0.3 0.24016 6.6573× 10−12 0.20709 5.9642× 10−15 0.19053 4.5015× 10−17

0.6 0.96062 2.6629× 10−11 0.82837 2.3857× 10−14 0.76212 1.8006× 10−16

0.9 2.16140 5.9916× 10−11 1.86383 5.3677× 10−14 1.71477 4.0513× 10−16

1.00 0.3 0.31373 2.1553× 10−10 0.26775 3.8243× 10−13 0.24465 4.5546× 10−15

0.6 1.25491 8.6213× 10−10 1.07098 1.5297× 10−12 0.97858 1.8218× 10−14

0.9 2.82355 1.9398× 10−09 2.40970 3.4419× 10−12 2.20181 4.0991× 10−14

Table 2. The absolute error of the L-RPS solution obtained for Application 5 compared with various
methods at α = 1.

VIM [18] and S-LCM [15] JTM [14] L-RPSM

t x ADM [17] N = 15 N = 25 N = 10 N = 15 k = 15 k = 17

0.25 0.3 1.54× 10−5 1.09× 10−6 9.92× 10−8 2.26× 10−16 1.05× 10−16 1.12× 10−17 1.12× 10−17

0.6 6.16× 10−5 2.96× 10−5 2.70× 10−6 4.20× 10−16 3.09× 10−17 4.49× 10−17 4.49× 10−17

0.9 1.38× 10−4 9.94× 10−5 1.02× 10−5 1.51× 10−15 3.54× 10−16 1.37× 10−16 1.37× 10−16

0.50 0.3 2.60× 10−4 6.45× 10−6 5.56× 10−7 4.08× 10−16 1.02× 10−16 1.64× 10−17 1.64× 10−17

0.6 1.03× 10−3 5.24× 10−5 4.87× 10−6 2.47× 10−16 1.17× 10−16 6.57× 10−17 6.56× 10−17

0.9 2.34× 10−3 1.47× 10−4 1.30× 10−5 2.66× 10−16 2.45× 10−16 6.65× 10−17 6.59× 10−17

0.75 0.3 1.39× 10−3 1.40× 10−5 1.14× 10−6 6.24× 10−16 4.70× 10−17 3.60× 10−17 9.16× 10−18

0.6 5.56× 10−3 7.67× 10−5 6.90× 10−6 9.62× 10−16 1.74× 10−16 1.44× 10−16 3.67× 10−17

0.9 1.25× 10−2 2.01× 10−4 1.59× 10−5 1.61× 10−15 1.43× 10−17 4.82× 10−16 7.67× 10−17

1.00 0.3 4.64× 10−3 1.83× 10−5 9.83× 10−7 1.77× 10−14 3.11× 10−16 4.56× 10−15 7.71× 10−18

0.6 1.85× 10−2 9.40× 10−5 6.40× 10−6 7.23× 10−14 2.25× 10−16 1.83× 10−14 3.08× 10−17

0.9 4.18× 10−2 4.26× 10−4 2.58× 10−5 1.62× 10−13 1.80× 10−16 4.08× 10−14 1.86× 10−16

5. Conclusions

The main objective of this manuscript is to find exact and accurate ASs for the TFRDEs.
We noticed during our research that the L-RPSM could be applied under the same condi-
tions that must be met in the RPSM. It requires that the solution has a fractional expansion
as in Equation (8). Without this condition, the L-RPSM cannot be used. However, the mech-
anism of the technique can be applied or adapted for applicability if a suitable expansion is
available to the solution of the differential equation. The L-RPSM is generally simple in
manual calculations and also fast in the case of using mathematical programs as it depends
mainly on calculating the limit at infinity, unlike other methods that need to calculate the
fractional derivative in all stages of the solution, resulting in a high cost in terms of effort
and speed. So far, the presented technique has been used on limited classes of ordinary and
partial differential equations of fractional order. Therefore, the field is open for researchers
to adapt the method to apply it to other forms and types of equations, for example, integral
equations, integrodifferential equations, and algebraic equations.
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