
Citation: Burqan, A. A Novel Scheme

of the ARA Transform for Solving

Systems of Partial Fractional

Differential Equations. Fractal Fract.

2023, 7, 306. https://doi.org/

10.3390/fractalfract7040306

Academic Editor: Carlo Cattani

Received: 20 February 2023

Revised: 28 March 2023

Accepted: 29 March 2023

Published: 31 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

A Novel Scheme of the ARA Transform for Solving Systems of
Partial Fractional Differential Equations
Aliaa Burqan

Department of Mathematics, Zarqa University, Zarqa 13110, Jordan; aliaaburqan@zu.edu.jo

Abstract: In this article, a new analytical scheme of the ARA transform is introduced to solve systems
of fractional partial differential equations. The principle of the proposed technique is based on
combining the ARA transform with the residual power series method to create an approximate
series solution for a system of partial differential equations of fractional order on the form of a rapid
convergent series. To illustrate the effectiveness, accuracy, and validity of the suggested technique,
an Attractive physical system, the fractional neutron diffusion equation with one delayed neutrons
group, is discussed and solved. Two different neutron flux initial conditions are presented numerically
to clarify various cases in order to ensure the theoretical results. The necessary Mathematica codes
are run using vital nuclear reactor cross-section data, and the results for various values of time are
tabulated and graphically represented.

Keywords: fractional calculus; ARA-residual power series; approximate solutions; systems of partial
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1. Introduction

Fractional calculus is a parallel area of calculus that cannot be viewed as an expanded
form of integer order. In many areas, fractional order systems are preferable to integer order
systems because they may explain phenomena that are related to memory and affected by
inherited traits [1–8]. Many definitions of the derivative and integral of fractional order
have been created since the seventeenth century, when fractional calculus first appeared.
The definitions of fractional operators that are most significant are Caputo and Riemann-
Liouville definitions [9–12]. The fractional derivative and fractional integral have just been
given new definitions, the Atangana–Baleanu definition and the conformable fractional
derivative definition are the two most significant ones [13–16]. By creating fractional
models, many researchers have used them. Nevertheless, Caputo’s definition is still
considered to be acceptable and desirable by the majority of scholars.

There have been numerous contributions made to the research area for solving systems
of fractional partial differential equations (FPDEs). Finding analytical solutions for systems
of FPDEs can occasionally involve complicated calculations, so analytical and numerical
techniques have been created and improved to obtain solutions of linear and nonlinear
systems of FPDEs [17–21].

The KdV-Burgers equations [22], the nonlinear Schrodinger equations [23], the neutron
diffusion equations [24] are just a few examples of fractional order differential equations
for which the residual power series technique (RPST) has proven to be successful and
accurate in creating approximate series solutions. Moreover, many systems of linear and
nonlinear equations that have appeared in a variety of engineering and science domains
have been solved analytically using RPST [25–27]. Without linearization, perturbation,
or discretization, the RPST is a powerful technique for creating power series solutions of
differential equations. RPST does not need comparing the coefficients of the related terms,
in contrast to the standard power series approach. By using a series of equations with one
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or more variables, this technique calculates the power series coefficients. On the other hand,
many powerful methods for solving differential equations have been presented [28–31].

The ARA residual power series technique (ARA-RPST) is used in this investigation,
which was first published in [32], to create analytical and approximate solutions for the
linear and nonlinear systems of FPDEs. This method combines the ARA transform [33,34]
and RPST.

One of the most interesting physics problems that are expressed through partial
differential equations is the neutron diffusion equations with delayed neutrons system
(NDEDNS) of the form [35–38]:

1
vu

zt(x, t) = Dzxx(x, t) +
(
γ∑ f −∑a

)
z(x, t) + λu(x, t),

ut(x, t) = βγ∑ f z(x, t)− λu(x, t),
(1)

with initial conditions:

z(x, 0) = z0(x), u(x, 0) =
βγ∑ f

λ
z0(x), (2)

where z(x, t) is the neutron flux, u(x, t) is the delayed neutron density, vu is neutron velocity,
∑a is the macroscopic absorption cross-section, D is the neutron diffusion coefficient and β,
λ, and γ are the fraction of the delayed fission neutrons, the radioactive decay constant,
and the average number of neutrons produced per fission, respectively.

The coupled fractional neutron diffusion equations with delayed neutrons with one
group of delayed neutrons were solved by Adomian decomposition method (ADM) to get
an analytical approximation solution [35]. Furthermore, an exact solution in the case of one-
dimensional neutron diffusion kinetic equation with one delayed precursor concentration
in Cartesian geometry was studied in [36].

In this article, we are interested in implementing the ARA-RPST to find the approxi-
mate series solution of one group of neutron diffusion equations when delayed neutrons
are averaged by one group of delayed neutrons [35]:

1
vu
Dα

t z(x, t) = Dzxx(x, t) +
(

γ ∑ f −∑a

)
z(x, t) + λu(x, t),

Dα
t u(x, t) = βγ ∑ f z(x, t)− λu(x, t),

(3)

0 < α < 1, with the initial conditions

z(x, 0) = z0(x), u(x, 0) =
βγ∑ f

λ
z0(x). (4)

To achieve our goal, we operate the ARA transform on the equations in (3) and then we
formulate the new system’s solution as a series expansion, with the expansion coefficients
coming from the idea of the limit at infinity. After that, we apply the ARA transform
inverse on the obtained solution to transform it to the original space. When compared to
the residual power series approach, ARA-RPST requires fewer calculations to obtain the
coefficients because instead of using a fractional derivation such as in RPST, it depends
on the concept of the limit. The current method is speedy, uses little computer memory.
Additionally, the power series coefficients are computed using a set of equations involving
more than one variable, indicating that the present method has a rapid convergence.

The format of this study is as follows: Definitions, concepts, and properties related
to the ARA transform and fractional derivatives are covered in further detail in the next
section. In Section 3, we formulate series solutions for fractional neutron diffusion equations
with one delayed neutrons group using the ARA-RPST. The current methodology has been
applied to investigate a number of fractional equations, as shown in Section 4. Finally, the
conclusion section includes a summary of our findings.
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2. Fundamental Concepts and Properties

This section includes the definition of the Caputo fractional operator. Additionally,
some theorems and properties pertaining to the ARA-RPST are provided.

Definition 1. For n to be the smallest integer that exceeds α, the Caputo fractional derivatives of
order α > 0 is given by

Dα
t z(x, t) = Jn−α

t Dn
t z(x, t), n− 1 < α < n, n ∈ N, x ∈ I, t > 0,

where I is an interval and Jβ
t isthe time-fractional Riemann–Liouville integral operator of order

α > 0, defined as

Jβ
t z(x, t) =


1

Γ(β)

t∫
0
(t− τ)β−1z(x, τ)dτ, β > 0, t > τ ≥ 0

z(x, t), β = 0.

Definition 2 ([33]). The ARA transform of order mof the continuous function z(x, t) on I × [0, ∞ )
for the variable t, is given by

Am[z(x, t)](s) = s
∞∫

0

tm−1e−stz(x, t)dt, s > 0.

For m = 1, The ARA transform A1 is defined as

A1[z(x, t)](s) = s
∞∫

0

e−stz(x, t)dt.

For m = 2, The ARA transform A2 is defined as

A2[z(x, t)](s) = s
∞∫

0

te−stz(x, t)dt.

Definition 3 ([32]). The ARA transform inverse is defined as

z(x, t) = A−1
m+1[Am+1[z(x, t)]]

= (−1)m

2πi

c+i∞∫
c−i∞

est

(
(−1)m

(
1

sΓ(m−1)

s∫
0
(s− w)m−1Am+1[z(x, t)](w)dw +

m−1
∑

k=0

sk

k!
∂kZ(x,0)

∂sk

))
ds,

where

Z(x, s) =
∞∫

0

e−stz(x, t)dt,

is (m− 1) times differentiable.

The following lemma contains some of the ARA transform properties that are essential
to our investigation.

Lemma 1 ([32–34]). Let z(x, t)and u(x, t) be continuous functions. Then

1. Am[p z(x, t) + q u(x, t)](s) = p Am[z(x, t)](s) + q Am[u(x, t)](s), where p and q are
nonzero constants.

2. lim
s→∞

sA2[u(x, t)](s) = u(x, 0), x ∈ I, s > 0.
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3. A2[D
α
t u(x, t)](s) = sαA2[u(x, t)](s) − αsα−1A1[u(x, t)](s) + (α− 1)sα−1u(x, 0),

s > 0, 0 < α ≤ 1.

4. A1[D
nα
t u(x, t)](s) = snαA1[u(x, t)](s) −

n−1
∑

k=0
s(n−k)αDkα

t u(x, 0), where

Dnα
t = Dα

t D
α
t · · ·Dα

t︸ ︷︷ ︸
n−times

5. A2[tα](s) = Γ(α+2)
sα+1 , sb > 0, α > 0.

The reader can refer [32–34] for further details about the ARA transform.

Theorem 1 ([32]). Suppose that the ARA transform A2 of the continuous function z(x, t) for the
variable t exists and has the fractional expansion

A2[z(x, t)](s) = ∑∞
n=0

hn(x)
snα+1 , x ∈ I, s > 0, 0 < α ≤ 1. Then (5)

hn(x) = (nα + 1)Dnα
t z(x, 0). (6)

Remark 1 ([32]).

i. The jth truncated series of the fractional expansion (5) is given by

A2[z(x, t)]j(s) =
j

∑
n=0

hn(x)
snα+1 . (7)

ii. If A2[z(x, t)](s) has the fractional expansion (5), then A1[z(x, t)](s) can be expressed as

A1[z(x, t)](s) =
∞

∑
n=0

hn(x)

(nα + 1)snα′
(8)

and the jth truncated series is given by

A1[z(x, t)]j(s) =
j

∑
n=0

hn(x)
(nα + 1)snα . (9)

iii. The ARA transform invers of order two A−1
2 of the fractional expansion (5) is defined as

z(x, t) = A−1
2

[
∞

∑
n=0

hn(x)
snα+1

]
(t) =

∞

∑
n=0

Dnα
t z(x, 0)

Γ(nα + 1)
tnα. (10)

The convergence conditions of the expansion shown in Theorem 1 forA2[z(x, t)](s) are
included in the following theorem, which is based on the relationship betweenA1[z(x, t)](s)
and A2[z(x, t)](s) and the properties of Taylor’s series.

Theorem 2. Assume that z(x, t) is continuous on I × [0, µ] where the ARA transform for the
variable texists. LetA1[z(x, t)](r)has the expansion

A1[z(x, t)](s) =
∞

∑
n=0

Dnα
t z(x, 0)

snα
.
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If
∣∣∣A1

[
D

(n+1)α
t z(x, t)

]∣∣∣ ≤ K on 0 < s ≤ b, then Rn(x, s) satisfies

|Rn(x, s)| ≤ K(x)
s(n+1)α

, x ∈ I, 0 < s ≤ b.

Proof. Assume that A1[D
mα
t z(x, t)](s) exists on 0 < s ≤ b for m = 0, . . . , n. The definition

of the remainder implies

Rn(x, s) = A1[z(x, t)](s)−
n

∑
m=0

Dmα
t z(x, 0)

smα
.

Multiplying the previous equation by s(n+1)α, part (4) of Lemma 1 yields that

s(n+1)αRn(x, s) = s(n+1)αA1[z(x, t)](s)−∑n
m=0

Dmα
t z(x,0)

smα s(n+1)α =

A1

[
D

(n+1)α
t z(x, t)

]
(s).

Thus, ∣∣∣s(n+1)αRn(x, s)
∣∣∣ = ∣∣∣A1

[
D

(n+1)α
t z(x, t)

]
(s)
∣∣∣ ≤ K.

This yields that

|Rn(x, s)| ≤ K
s(n+1)α

, 0 < s ≤ b.

�

3. Formulating Series Solutions of Fractional Neutron Diffusion Equations with One
Delayed Neutrons Group

The main goal of the current section is to construct a series solution to the fractional
neutron diffusion equations with one delayed neutrons group using the ARA-RPST. It
should be noted that the ARA transform is ineffective at solving nonlinear equations
unless the power series method is applied. Thus, nonlinear FPDEs can be solved using
this strategy. The core idea behind the ARA-RPST is to use the power series approach to
solve the given FPDEs in the ARA space; nevertheless, this approach needs an appropriate
expansion that shows the solutions in their final form. In addition, we carefully apply a
novel method to calculate the expansion coefficients in this section.

Now, the algorithm of the ARA-RPST is demonstrated to solve the fractional NDEDNS
of the form

1
vu
Dα

t z(x, t) = Dzxx(x, t) +
(

γ ∑ f −∑a

)
z(x, t) + λu(x, t),

Dα
t u(x, t) = βγ ∑ f z(x, t)− λu(x, t),

(11)

with the initial conditions

z(x, 0) = z0(x), u(x, 0) =
βγ ∑ f

λ
z0(x), (12)

Replacing B = βγ ∑ f and ∑ =γ ∑ f −∑a, the coupled equations in (11) can be written as

Dα
t z(x, t) = vuDzxx(x, t) + vu ∑ z(x, t) + vuλu(x, t),

Dα
t u(x, t) = Bz(x, t)− λu(x, t),

(13)

with the initial conditions

z(x, 0) = z0(x), u(x, 0) =
B
λ

z0(x). (14)



Fractal Fract. 2023, 7, 306 6 of 12

To get the ARA-RPS solution (ARA-RPSS) of the coupled equations in (13), we operate
the ARA transform A2 on the coupled equations to obtain

A2[D
α
t z(x, t)](s)

= vuDA2[zxx(x, t)](s) + vu ∑A2[z(x, t)](s)
+vuλA2[u(x, t)](s),

A2[D
α
t u(x, t)](s) = BA2[z(x, t)](s)− λA2[u(x, t)](s).

(15)

Lemma 1 part (3) yields that

sαA2[z(x, t)](s)−αsα−1A1[z(x, t)](s) + (α− 1)sα−1z(x, 0)
= vuD∂xxA2[z(x, t)](s) + vu ∑A2[z(x, t)](s)
+vuλA2[u(x, t)](s),

sαA2[u(x, t)](s)− αsα−1A1[u(x, t)](s) + (α− 1)sα−1u(x, 0)
= BA2[z(x, t)](s)− λA2[u(x, t)](s).

(16)

So, the Equations in (16) can be expressed after using the given initial conditions on
the form

A2[z(x, t)](s)− α
sA1[z(x, t)](s) + (α−1)

s z0(x)
= vuD

sα ∂xxA2[z(x, t)](s) + vu ∑
sα A2[z(x, t)](s)

+ vuλ
sα A2[u(x, t)](s),

A2[u(x, t)](s)− α
sA1[u(x, t)](s) + (α−1)

s
B
λ z0(x) = B

sαA2[z(x, t)](s)−
λ
sαA2[u(x, t)](s)

(17)

Regarding to the ARA-RPST, we assume the ARA-RPSSs of the coupled equations in
(17) have the following series representations:

A1[z(x, t)](s) =
∞
∑

n=0

hn(x)
(nα+1)snα ,A2[z(x, t)](s) =

∞
∑

n=0

hn(x)
snα+1 ,

A1[u(x, t)](s) =
∞
∑

n=0

ln(x)
(nα+1)snα ,A2[u(x, t)](s) =

∞
∑

n=0

ln(x)
snα+1

(18)

Using the fact that lim
s→∞

sA2[z(x, t)](s) = z(x, 0), lim
s→∞

sA2[u(x, t)](s) = u(x, 0) and the

given initial conditions, we obtain that h0(x) = z0(x), l0(x) = B
λ z0(x) and so the jth

ARA-RPSSs of the coupled equations in (17) have the form:

A1[z(x, t)]j(s) = z0(x) +
j

∑
n=1

hn(x)
(nα+1)snα ,

A2[z(x, t)]j(s) =
z0(x)

s +
j

∑
n=1

hn(x)
snα+1 ,

A1[u(x, t)]j(s) =
B
λ z0(x) +

j
∑

n=1

ln(x)
(nα+1)snα ,

A2[u(x, t)]j(s) =
Bz0(x)

λs +
j

∑
n=1

ln(x)
snα+1 .

(19)

Next, in order to determine the series’ unknown coefficients, the ARA-residual func-
tions (ARA-RFs) of the Equations in (17) are defined as

A2Resz(x, s) = A2[z(x, t)](s)− α
sA1[z(x, t)](s) + (α−1)

s z0(x)
− vuD

sα ∂xxA2[z(x, t)](s)− vu ∑
sα A2[z(x, t)](s)

− vuλ
sα A2[u(x, t)](s),

A2Resu(x, s) = A2[u(x, t)](s)− α
sA1[u(x, t)](s) + (α−1)

s
B
λ z0(x)

− B
sαA2[z(x, t)](s) + λ

sαA2[u(x, t)](s)

(20)
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The jth ARA-RFs are given by

A2Resz(x, s)j = A2[z(x, t)]j(s)− α
sA1[z(x, t)]j(s) +

(α−1)
s z0(x)

− vuD
sα ∂xxA2[z(x, t)]j(s)−

vu ∑
sα A2[z(x, t)]j(s)

− vuλ
sα A2[u(x, t)]j(s),

A2Resu(x, s)j = A2
[u(x, t)]j(s)− α

sA1[u(x, t)]j(s) +
(α−1)

s
B
λ z0(x)

− B
sαA2[z(x, t)]j(s) +

λ
sαA2[u(x, t)]j(s)

(21)

To get the ARA-RPSSs, we need the following facts.

• A2Resz(x, s)j = 0,
• lim

j→∞
A2Resz(x, s)j = A2Resz(x, s),

• lim
s→∞

sA2Resz(x, s) = 0 and lim
s→∞

sA2Resz(x, s)j = 0,

• lim
s→∞

sjα+1A2Resz(x, s) = lim
s→∞

sjα+1A2Resz(x, s)j = 0,

for 0 < α < 1, x ∈ I, s > 0, j = 1, 2, . . . .
To find h1(x) and l1(x) of the series expansions (19), we substitute

A1[z(x, t)]1(s),A1[u(x, t)]1(s), A2[z(x, t)]1(s) and A2[u(x, t)]1(s) into the first ARA-RFs
A2Resz(x, s)1 and A2Resu(x, s)1, to get

A2Resz(x, s)1 = z0(x)
s + h1(x)

sα+1 − α
s

(
z0(x) + h1(x)

(α+1)sα

)
+ (α−1)

s z0(x)

− vuD
sα ∂xx

(
z0(x)

s + h1(x)
sα+1

)
− vu ∑

sα

(
z0(x)

s + h1(x)
sα+1

)
− vuλ

sα

(
Bz0(x)

sλ + l1(x)
sα+1

)
A2Resu(x, s)1 = Bz0(x)

sλ + l1(x)
sα+1 − α

s

(
B
λ z0(x) + l1(x)

(α+1)sα

)
+ (α−1)B

sλ z0(x)

− B
sα

(
z0(x)

s + h1(x)
sα+1

)
+ λ

sα

(
Bz0(x)

sλ + l1(x)
sα+1

)
.

(22)

Which is equivalent to

A2Resz(x, s)1 = 1
sα+1 (h1(x)− α

α+1 h1(x)− vuDz′′0 (x)− vu ∑ z0(x)
−vuBz0(x)) + 1

s2α+1

(
−vuDh′′1 (x)− vu ∑ h1(x)− vuλl1(x)

)
,

A2Resu(x, s)1 = 1
sα+1

(
l1(x)− α

α+1 l1(x)
)
+ 1

s2α+1 (−Bh1(x) + λl1(x)).
(23)

By taking the limit as s→ ∞ after multiplying equations in (23) by sα+1, the facts
lim
s→∞

(
sα+1A2Resz(x, s)1

)
= 0 and lim

s→∞

(
sα+1A2Resu(x, s)1

)
= 0 yield that

h1(x) = (α + 1)
(
vuDz′′0 (x) + vu ∑ z0(x) + vuBz0(x)

)
,

l1(x) = 0.
(24)

Similarly, the coefficients of h2(x) and l2(x) in the expansions (19) can be determined
by substituting A1[z(x, t)]2(s),A1[u(x, t)]2(s), A2[z(x, t)]2(s) and A2[u(x, t)]2(s) into the
second ARA-RFs A2Resz(x, s)2 and A2Resu(x, s)2, to get

A2Resz(x, s)2 = z0(x)
s + h1(x)

sα+1 + h2(x)
s2α+1 − α

s

(
z0(x) + h1(x)

(α+1)sα + h2(x)
(2α+1)s2α

)
+ (α−1)

s z0(x)− vuD
sα ∂xx

(
z0(x)

s + h1(x)
sα+1 + h2(x)

s2α+1

)
− vu ∑

sα

(
z0(x)

s + h1(x)
sα+1 + h2(x)

s2α+1

)
− vuλ

sα

(
Bz0(x)

sλ + l1(x)
sα+1 + l2(x)

s2α+1

)
,

A2Resu(x, s)2 = Bz0(x)
sλ + l1(x)

sα+1 + l2(x)
s2α+1

− α
s

(
B
λ z0(x) + l1(x)

(α+1)sα + l2(x)
(2α+1)s2α

)
+ (α−1)

s
B
λ z0(x)

− B
sα (z0(x) + h1(x)

(α+1)sα + h2(x)
(2α+1)s2α

)
+ λ

sα

(
Bz0(x)

sλ + l1(x)
sα+1 + l2(x)

s2α+1

)
.

(25)



Fractal Fract. 2023, 7, 306 8 of 12

Then, taking the limit as s→ ∞ after multiplying the obtained equations by
s2α+1 to get

h2(x) = (2α + 1)
(
vuDh′′1 (x) + vu ∑ h1(x)

)
,

l2(x) = (2α + 1)Bh1(x).
(26)

Again, substitute the third truncated expansions A1[z(x, t)]3(s),A1[u(x, t)]3(s),
A2[z(x, t)]3(s) andA2[u(x, t)]3(s) into the third ARA-RFsA2Resz(x, s)3 andA2Resu(x, s)3,
then we multiply the obtained equations by s3α+1 and evaluating the limit as
s→ ∞ to obtain

h3(x) = (3α + 1)
(
vuDh′′2 (x) + vu ∑ h2(x) + vuλl2(x)

)
,

l3(x) = (3α + 1)(Bh2(x)− λl2(x)).
(27)

If we keep acting the same way, the coefficients hn(x), ln(x) for n ≥ 1 can be obtained
by the following recurrence relations with considering h0(x) = z0(x), l0(x) = B

λ z0(x).

hn(x) = (nα + 1)
(
vuDh′′n−1(x) + vu ∑ hn−1(x) + vuλln−1(x)

)
,

ln(x) = (nα + 1)(Bhn−1(x)− λln−1(x)),
(28)

Consequently, the series solutions of the coupled equations in (17) are

A2[z(x, t)](s) = z0(x)
s +

∞
∑

n=1

hn(x)
snα+1 , x ∈ I, s > δ ≥ 0,

A2[u(x, t)](s) = B
λs z0(x) +

∞
∑

n=1

ln(x)
snα+1 , x ∈ I, s > δ ≥ 0.

(29)

Consequently, by applying the ARA transform inverse to the obtained solution in
(29) to return it to its original space, the series solution of the fractional neutron diffusion
equations (11) can be achieved.

z(x, t) = z0(x) +
∞
∑

n=1

hn(x)tnα

Γ(nα+1) , t ≥ 0, x ∈ I.

u(x, t) = B
λ z0(x) +

∞
∑

k=3

ln(x)tnα

Γ(nα+1) , t ≥ 0, x ∈ I,
(30)

where

hn(x) = (nα + 1)
(
vuDh′′n−1(x) + vu ∑ hn−1(x) + vuλln−1(x)

)
,

ln(x) = (nα + 1)(Bhn−1(x)− λln−1(x)), n = 1, 2, 3, . . .
h0(x) = z0(x), l0(x) = B

λ z0(x)
(31)

4. Numerical Results

In order to validate the driving theories using ARA-RPST, we succeeded in solving
NDEDNS. After that, the solutions were validated using the numerical values of the next
nuclear reactor cross-section [35].

In this section, we consider vu = 220, 000 cm/s, D = 0.356, B = 0.000735 cm−1,
λ = 0.08 s−1, Σ = 0.005 cm−1.

Numerical results at different values of α are shown in Table 1. We compare our
technique to another existing numerical approach, for α = 0.1, α = 0.3 and α = 0.5.
Comparisons are made between the approximate solutions produced by ADM [35] and the
approximate solutions produced by ARA-RPST.
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Table 1. Numerical results of neutron flux at different values of α, z0(x) = 1.

t(s)
α=0.1 α=0.3 α=0.5

ARA-RPST ADM ARA-RPST ADM ARA-RPST ADM

0.0001 1.07571× 108 1.04535× 108 4.05001× 105 3.58370× 105 1302.5 1137.4
0.00039 1.61768× 108 1.59662× 108 1.37130× 106 1.22266× 106 9415.6 8236.4
0.00068 1.91108× 108 1.89937× 108 2.25808× 106 2.02159× 106 21,346.4 18,694.4
0.00097 2.12584× 108 2.12264× 108 3.10591× 106 2.78898× 106 36,086.6 31,632.6
0.00126 2.29927× 108 2.30390× 108 3.92798× 106 3.53571× 106 53,165.1 46,640.0
0.00155 2.44660× 108 2.45852× 108 4.73090× 106 4.26719× 106 72,290.4 63,462.9
0.00184 2.57571× 108 2.59449× 108 5.51864× 106 4.98668× 106 93,259.2 81,923.8
0.00213 2.69125× 108 2.71652× 108 6.29385× 106 5.69632× 106 115,919.1 101,889.9
0.00242 2.79625× 108 2.82770× 108 7.05841× 106 6.39764× 106 140,150.0 123,256.5
0.00271 2.89277× 108 2.93014× 108 7.81373× 106 7.09176× 106 165,854.5 145,938.8

0.003 2.98231× 108 3.02536× 108 8.56090× 106 7.77958× 106 192,951.2 169,865.8

Figure 1 shows the neutron fluxe z(x, t) with the initial condition z0(x) = 1 and
Figure 2 shows the neutron fluxe z(x, t) with the initial condition z0(x) = x2.
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Figure 2. 3D graphs of neutron flux z(x, t) for α = 0.1, 0.2, 0.3, 0.4 and z0(x) = 1.

The introduced figures of the neutron fluxes for various values of α in case z(x, 0) = 1
and case z(x, 0) = x2 demonstrate that the results matched those of the ADM [35].

Finally, as can be seen from the tables and figures, the ARA-RPST gives us more details
regarding the neutron flux in non-Gaussian diffusion for a variety of chosen times.

5. Conclusions

The ARA-RPST is introduced to construct a fractional series solution of NDEDNS. Two
different nuclear physics numerical case studies have validated the theoretical presentation
of the method, and additionally, the results are validated when they are compared with
the ADM. It should be mentioned that the suggested technique is envisaged to be used in
research on many nuclear reactor theories and other scientific phenomena.
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