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Abstract: This article uses the Yang transform decomposition method and the homotopy perturbation
transform method to study the seventh-order time-fractional Sawada–Kotera–Ito equation. The
fractional derivative is taken into account in the Caputo sense. We used the Yang transform with
the Adomian decomposition process and homotopy perturbation procedure on the time-fractional
Sawada–Kotera–Ito problem to obtain the solution. We looked at a single case and contrasted it
with the actual result to validate the methodologies. These techniques create recurrence relations
representing the proposed problem’s solution. We then produced graphical representations that
allowed us to visually check all of the outcomes in the proposed case for various fractional order
values. The results of applying the current methodologies revealed strong connections to the precise
resolution of the problem under investigation. The present study also illustrates error analysis. The
numerical results obtained using the suggested techniques show that the methods are both simple
and have excellent computational merit.

Keywords: Yang transform; Caputo operator; time-fractional Sawada–Kotera–Ito equation; Adomian
decomposition method; homotopy perturbation method

1. Introduction

The general extension of the integer-order calculus to arbitrary order is known as
fractional calculus, which includes integration and differentiation with noninteger order.
The origins of fractional calculus can be found in a letter from l’Hopital to Leibniz in 1695, in

which he speculated on the meaning of the symbol d
1
2 x(t)

dt
1
2

, which denotes the semiderivative

of x(t) with respect to t. Fractional calculus has recently developed into a potent tool as
a result of its advantageous characteristics. The foundation for fractional calculus [1–4] was
laid by numerous innovative investigations that provided various definitions of fractional
calculus. With the swift growth in digital computer knowledge, many researchers began to
work on the theory and applications of fractional calculus. The theory of fractional-order
calculus has been used for practical applications, being applied to signal processing [5],
chaos theory [6], optics [7], noisy environments [8], and other areas.

Researchers have been drawn to fractional differential equations because they can be
used to model a wide range of phenomena, including those relating to epidemic diseases,
biomedical applications, viscoelasticity, biology, hydrology, electricity, chemical physics,
electrochemistry, probability theory, dynamical systems, heat conduction, and others [9–13].
Classical integer-order differential equations are not capable of capturing the property of
memory. As a result, derivatives having an order fraction can be utilised to model memory
and inherited traits across a range of domains in terms of fractional-order differential
equations. Sun et al. [14] presented a number of real-world applications for fractional
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calculus in engineering and science. Nonlinear equations are crucial for describing a wide
variety of events, with applications in solid state physics, electromagnetic radiation, optical
fibers, plasma physics, fluid dynamics, as well as in the disciplines of biology and chem-
istry. Very few problems in physics, or in fact in any discipline of natural science, can be
solved directly. Numerous techniques have been developed to examine the precise and
computational solutions of fractional differential equations as a result of their significance
in many different domains. The divergence and convergence of the solutions, in addition
to the modelling, are equally significant.

Finding analytical solutions to fractional differential equations can be exceedingly
challenging in some instances. The importance of creating numerical solutions to these
problems has increased as a result. The literature contains many successful strategies for
developing semi-analytical and computational methods for fractional differential equations,
including the extended direct algebraic method [15], the first integral method [16], the finite
difference method [17], the modified Kudryashov method [18], the Adomian decomposi-
tion method [19], the optimal homotopy asymptotic method (OHAM) [20], the homotopy
perturbation transform technique [21], the standard reductive perturbation method [22], the
Haar wavelet method [23], the Elzaki transform decomposition method [24], the differential
transform method [25], the fractional sub-equation method [26], and the variational iteration
procedure with transformation [27].

A nonlinear PDE called the Kortweg–de Vries (KdV) equation is used to simulate
travelling waves in shallow water and harmonic crystal. Boussinesq proposed the KdV
hypothesis in 1877 and Kortweg–de Vries provided a conclusion around 1895. In addition,
Pomeau et al. [28] introduced the well-known KdV equation of order seven in a study to in-
vestigate its stability in the presence of a unique (restricted) perturbation. The seventh-order
time-fractional Sawada–Kotera–Ito form of the equation has been addressed as follows:

Dλ
t F (x, t) = −252F 3(x, t)Fx(x, t)− 63F 3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126F 2(x, t)Fxxx(x, t)

− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t), 0 < λ ≤ 1,
(1)

subjected to initial source

F (x, 0) =
4
3

ρ2(2− 3 tanh2(ρx)). (2)

Recently, various approaches have been used to treat the seventh-order time-fractional
Sawada–Kotera–Ito equations, namely, the homotopy analysis scheme [29], the Adomian
decomposition method [30], the fractional reduced differential transform technique [31],
the q-homotopy analysis approach [32], Lie symmetry analysis [33], the (G′

G )-expansion
method [34], the exp-function method [35], and so forth. The major goal of this paper is to
apply the Yang transform decomposition method and the homotopy perturbation transform
method to the seventh-order time-fractional Sawada–Kotera–Ito equation (TFSKIE) in the
context of the Caputo derivative. The Yang transform and the decomposition method are
combined to generate YTDM. Xiao-Jun Yang presented the Yang transform, which can be
utilized to solve various differential equations having constant coefficients [36]. In contrast
to the standard Adomian process, the proposed method does not involve the computation
of the fractional derivative or fractional integrals in the recursive mechanism, which makes
it easier to estimate the series terms. Round-off errors are avoided by YTDM since they do
not require prescribed assumptions, linearization, discretization, or perturbation. YTDM
is used in the literature to solve a variety of differential equations, such as, the fractional
Belousov–Zhabotinskii reaction [37], the time-fractional Fisher’s equation [38] and many
more. The HPTM combines He’s polynomials, the Yang transform, and the homotopy
perturbation method. He’s polynomials can be used to handle the nonlinear terms with
simplicity. The proposed method’s analytical results demonstrate how easily implemented
and highly desirable the method is computationally.



Fractal Fract. 2023, 7, 299 3 of 13

The present work is arranged as follows: In Section 2, we begin with the basic concept
of the fractional calculus. In Sections 3 and 4, we present the basic idea of the proposed
methods. In Section 5, we apply these methods to solve the Sawada–Kotera–Ito equation
with the given initial conditions. Finally, the conclusions are provided in Section 6.

2. Basic Concept

In this framework, FC and the Yang transform (YT) will be used. We provide a reminder
of their definitions and notations.

Definition 1. The Caputo operator fractional derivative is defined by [39]

Dλ
t F (x, t) =

1
Γ(k− λ)

∫ t

0
(t− λ)k−λ−1F (k)(x, λ)dλ, k− 1 < λ ≤ k, k ∈ N. (3)

Definition 2. The YT of the function is represented by

Y{F (t)} = M(u) =
∫ ∞

0
e
−t
u F (t)dt, t > 0, (4)

here u is the transform variable.
Some important functions with YT are stated as.

Y[1] = u,

Y[t] = u2,

Y[tq] = Γ(q + 1)uq+1.

(5)

and inverse YT is
Y−1{M(u)} = F (t). (6)

Definition 3. The YT of the nth derivative function is represented by

Y{Fn(t)} = M(u)
un −

n−1

∑
k=0

F k(0)
un−k−1 , ∀ n = 1, 2, 3, · · · (7)

Definition 4. The YT of the fractional derivative function is represented by

Y{Fλ(t)} = M(u)
uλ

−
n−1

∑
k=0

F k(0)
uλ−(k+1)

, 0 < λ ≤ n. (8)

3. Fundamental Concept of HPTM

Here, the general methodology of HPTM is given to solve FPDE.

Dλ
t F (x, t) = P1[x]F (x, t) +Q1[x]F (x, t), 1 < λ ≤ 2, (9)

subjected to initial sources

F (x, 0) = ξ(x),
∂

∂t
F (x, 0) = ξ

′
(x).

Here, Dλ
t = ∂λ

∂tλ is the Caputo type operator, P1[x] is linear andQ1[x] is a nonlinear function.
By utilizing YT, we get

Y[Dλ
t F (x, t)] = Y[P1[x]F (x, t) +Q1[x]F (x, t)], (10)
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1
uλ
{M(u)− uF (0)− u2F ′(0)} = Y[P1[x]F (x, t) +Q1[x]F (x, t)]. (11)

On simplifying the above Equation, we get

M(F ) = uF (0) + u2F ′(0) + uλY[P1[x]F (x, t) +Q1[x]F (x, t)]. (12)

On utilizing the inverse YT, we get

F (x, t) = F (0) +F ′(0) + Y−1[uλY[P1[x]F (x, t) +Q1[x]F (x, t)]]. (13)

According to the standard homotopy perturbation method, the solution F (x, t) can be
expanded into infinite series as [40]

F (x, t) =
∞

∑
k=0

εkFk(x, t). (14)

with parameter ε ∈ [0, 1].
The nonlinear term is considered as

Q1[x]F (x, t) =
∞

∑
k=0

εk Hn(F ). (15)

In addition, Hk(F ) represents He’s polynomials [41] and is as

Hn(F0,F1, ...,Fn) =
1

Γ(n + 1)
Dk

ε

(
Q1

(
∞

∑
k=0

εiFi

))∣∣∣∣∣
ε=0

. (16)

where Dk
ε = ∂k

∂εk .
By putting (14) and (15) in (12), we have

∞

∑
k=0

εkFk(x, t) = F (0) +F ′ (0) + ε×
(

Y−1

[
uλY{P1

∞

∑
k=0

εkFk(x, t) +
∞

∑
k=0

εk Hk(F )}
])

. (17)

By comparing the coefficient of ε, we obtain

ε0 : F0(x, t) = F (0) +F ′(0),

ε1 : F1(x, t) = Y−1
[
uλY(P1[x]F0(x, t) + H0(F ))

]
,

ε2 : F2(x, t) = Y−1
[
uλY(P1[x]F1(x, t) + H1(F ))

]
,

.

.

.

εk : Fk(x, t) = Y−1
[
uλY(P1[x]Fk−1(x, t) + Hk−1(F ))

]
,

k > 0, k ∈ N.

(18)

Lastly, the solution of Fk(x, t) is stated as

F (x, t) = lim
ε→1

∞

∑
k=0

εkFk(x, t). (19)
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4. Fundamental Concept of YTDM

Here, the general methodology of YTDM is given to solve FPDE.

Dλ
t F (x, t) = P1(x, t) +Q1(x, t), 0 < λ ≤ 1, (20)

subjected to initial sources

F (x, 0) = ξ(x),
∂

∂t
F (x, 0) = ξ

′
(x).

Here, Dλ
t = ∂λ

∂tλ is the Caputo type operator, P1 is a linear and Q1 is a non-linear function.
By utilizing YT, we get

Y[Dλ
t F (x, t)] = Y[P1(x, t) +Q1(x, t)],

1
uλ
{M(u)− uF (0)− u2F ′(0)} = Y[P1(x, t) +Q1(x, t)].

(21)

On simplifying the above Equation, we get

M(F ) = uF (0) + u2F ′(0) + uλY[P1(x, t) +Q1(x, t)], (22)

On utilizing the inverse YT, we get

F (x, t) = F (0) +F ′(0) + Y−1[uλY[P1(x, t) +Q1(x, t)]. (23)

The Adomian decomposition method defines the unknown function F (x, t) by an infinite
series [42]. Thus, by YTDM

F (x, t) =
∞

∑
m=0
Fm(x, t). (24)

The nonlinear term is considered as

Q1(x, t) =
∞

∑
m=0
Am. (25)

with

Am =
1

m!

[
∂m

∂`m

{
Q1

(
∞

∑
k=0

`kxk,
∞

∑
k=0

`ktk

)}]
`=0

, (26)

By putting (24) and (26) into (23), we get

∞

∑
m=0
Fm(x, t) = F (0) +F ′(0) + Y−1uλ

[
Y

{
P1(

∞

∑
m=0

xm,
∞

∑
m=0

tm) +
∞

∑
m=0
Am

}]
. (27)

Thus, we can write
F0(x, t) = F (0) + tF ′(0), (28)

F1(x, t) = Y−1
[
uλY+{P1(x0, t0) +A0}

]
,

Hence, in general for m ≥ 1, we have

Fm+1(x, t) = Y−1
[
uλY+{P1(xm, tm) +Am}

]
.
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5. Application
5.1. Example

Let us apply the seventh order Sawada–Kotera–Ito equation, which has the follow-
ing form:

Dλ
t F (x, t) = −252F3(x, t)Fx(x, t)− 63F3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126F2(x, t)Fxxx(x, t)

− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t), 0 < λ ≤ 1,
(29)

subjected to initial source

F (x, 0) =
4
3

ρ2(2− 3 tanh2(ρx)).

Case I: Implementation of HPTM

By utilizing YT, we get

Y

[
∂λF
∂tλ

]
= Y

[
− 252F3(x, t)Fx(x, t)− 63F3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126F2(x, t)Fxxx(x, t)

− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t)

]
,

(30)

On simplifying the above Equation, we get

1
uλ
{M(u)− uF (0)} = Y

[
− 252F3(x, t)Fx(x, t)− 63F3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126F2(x, t)

Fxxx(x, t)− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t)

]
,

(31)

M(u) = uF (0) + uλ

[
− 252F 3(x, t)Fx(x, t)− 63F 3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126F 2(x, t)

Fxxx(x, t)− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t)

]
.

(32)

On utilizing the inverse YT, we get

F (x, t) = F (0) + Y−1

[
uλ

{
Y

(
− 252F3(x, t)Fx(x, t)− 63F3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126

F2(x, t)Fxxx(x, t)− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t)

)}]
,

F (x, t) =
4
3

ρ2(2− 3 tanh2(ρx)) + Y−1

[
uλ

{
Y

(
− 252F3(x, t)Fx(x, t)− 63F3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)−

126F2(x, t)Fxxx(x, t)− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t)

)}]
.

(33)

Thus, by HPM, the non-linear terms are used in the form of He’s polynomial Hk(F ) as

∞

∑
k=0

εkFk(x, t) =
4
3

ρ2(2− 3 tanh2(ρx)) + ε

(
Y−1

[
uλY

[
− 252

(
∞

∑
k=0

εk Hk(F )
)
− 63

(
∞

∑
k=0

εk Hk(F )
)
−

378

(
∞

∑
k=0

εk Hk(F )
)
− 126

(
∞

∑
k=0

εk Hk(F )
)
− 63

(
∞

∑
k=0

εk Hk(F )
)
− 42

(
∞

∑
k=0

εk Hk(F )
)
− 21

(
∞

∑
k=0

εk Hk(F )
)
−(

∞

∑
k=0

εkFk(x, t)

)
xxxxxxx

]])
.

(34)
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On comparing the coefficient of ε, we have

ε0 : F0(x, t) =
4
3

ρ2(2− 3 tanh2(ρx)),

ε1 : F1(x, t) = −2048ρ9tλ tanh(ρx) sech2(ρx)
Γ(λ + 1)

,

ε2 : F2(x, t) =
524, 288ρ16t2λ(cosh(2ρx)− 2) sech4(ρx)

9Γ(2λ + 1)
,

...

The obtained solution can be taken in series form as

F (x, t) = F0(x, t) +F1(x, t) +F2(x, t) + · · ·

F (x, t) =
4
3

ρ2(2− 3 tanh2(ρx))− 2048ρ9tλ tanh(ρx) sech2(ρx)
Γ(λ + 1)

+
524, 288ρ16t2λ(cosh(2ρx)− 2) sech4(ρx)

9Γ(2λ + 1)
+ · · ·

Case II: Implementation of YTDM

By utilizing YT, we get

Y
{

∂λF
∂tλ

}
= Y

[
− 252F 3(x, t)Fx(x, t)− 63F 3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126F 2(x, t)Fxxx(x, t)

− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t)

]
,

(35)

On simplifying the above Equation, we get

1
uλ
{M(u)− uF (0)} = Y

[
− 252F 3(x, t)Fx(x, t)− 63F 3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126

F 2(x, t)Fxxx(x, t)− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t)

]
,

(36)

M(u) = uF (0) + uλY

[
− 252F 3(x, t)Fx(x, t)− 63F 3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126

F 2(x, t)Fxxx(x, t)− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t)

]
.

(37)

On utilizing the inverse YT, we get

F (x, t) = F (0) + Y−1

[
uλ

{
Y

[
− 252F3(x, t)Fx(x, t)− 63F3

x (x, t)− 378F (x, t)Fx(x, t)Fxx(x, t)− 126

F2(x, t)Fxxx(x, t)− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−Fxxxxxxx(x, t)

]}]
,

F (x, t) =
4
3

ρ2(2− 3 tanh2(ρx)) + Y−1

[
uλ

{
Y

[
− 252F3(x, t)Fx(x, t)− 63F3

x (x, t)− 378F (x, t)Fx(x, t)

Fxx(x, t)− 126F2(x, t)Fxxx(x, t)− 63Fxx(x, t)Fxxx(x, t)− 42Fx(x, t)Fxxxx(x, t)− 21F (x, t)Fxxxxx(x, t)−

Fxxxxxxx(x, t)

]}]
.

(38)
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Thus, the solution in series form is taken as

F (x, t) =
∞

∑
m=0
Fm(x, t). (39)

Let us solve the nonlinear terms using the Adomian polynomial as F 3(x, t)Fx(x, t) =

∑∞
m=0Am,F 3

x (x, t) = ∑∞
m=0 Bm, F (x, t)Fx(x, t)Fxx(x, t) = ∑∞

m=0 Cm,F 2(x, t)Fxxx(x, t) =

∑∞
m=0Dm,Fxx(x, t)Fxxx(x, t) = ∑∞

m=0 Em,Fx(x, t)Fxxxx(x, t) = ∑∞
m=0 Fm,F (x, t)Fxxxxx

(x, t) = ∑∞
m=0 Gm. Hence, we have

∞

∑
m=0
Fm(x, t) = F (x, 0) + Y−1

[
uλY

[
− 252

∞

∑
m=0
Am − 63

∞

∑
m=0
Bm − 378

∞

∑
m=0
Cm − 126

∞

∑
m=0
Dm−

63
∞

∑
m=0
Em − 42

∞

∑
m=0
Fm − 21

∞

∑
m=0
Gm −Fxxxxxxx(x, t)

]]
,

∞

∑
m=0
Fm(x, t) =

4
3

ρ2(2− 3 tanh2(ρx)) + Y−1

[
uλY

[
− 252

∞

∑
m=0
Am − 63

∞

∑
m=0
Bm − 378

∞

∑
m=0
Cm−

126
∞

∑
m=0
Dm − 63

∞

∑
m=0
Em − 42

∞

∑
m=0
Fm − 21

∞

∑
m=0
Gm −Fxxxxxxx(x, t)

]]
.

(40)

On comparing both sides, we have

F0(x, t) =
4
3

ρ2(2− 3 tanh2(ρx)),

On m = 0

F1(x, t) = −2048ρ9tλ tanh(ρx) sech2(ρx)
Γ(λ + 1)

,

On m = 1

F2(x, t) =
524, 288ρ16t2λ(cosh(2ρx)− 2) sech4(ρx)

9Γ(2λ + 1)
,

So, in the same sense, the other terms for (m ≥ 3) are easy to obtain

F (x, t) =
∞

∑
m=0
Fm(x, t) = F0(x, t) +F1(x, t) +F2(x, t) + · · ·

F (x, t) =
4
3

ρ2(2− 3 tanh2(ρx))− 2048ρ9tλ tanh(ρx) sech2(ρx)
Γ(λ + 1)

+
524, 288ρ16t2λ(cosh(2ρx)− 2) sech4(ρx)

9Γ(2λ + 1)
+ · · ·

By taking λ = 1, we get

F (x, t) =
4
3

ρ2(2− 3 tanh2(ρ(
256ρ6t

3
+ x))) (41)

5.2. Numerical Simulation Studies

An approximate analytical solution to the F (x, t) is provided in this section. The
method’s applicability is demonstrated by the numerical results, and its correctness is
assessed in comparison to exact results. Application of our method produces a good
performance and simple results that can be easily implemented. The exact solution plot,
which is shown in Figure 1, was compared to the solution plot of F (x, t). Figure 2 displays
the graphical representations of F (x, t) for λ = 0.8 and 0.6. Similarly, Figure 3 displays
the plots of F (x, t) for various values of λ = 0.25, 0.50, 0.75, 1, while Figure 4 displays the
behaviour of the absolute error for the same equation derived using both methodologies.
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The approximate solution to the equation F (x, t) is shown in Table 1 for various values of x
and t, while the absolute error comparison is shown in Table 2 for various values of x and t.
It should be mentioned that we obtained a good approximation with the exact solution of
the stated problems and that we employed third-order approximate solutions throughout
the computations. If we increased the order of the approximation, which would increase
the number of terms in the solution, better approximation solutions would be found.

Figure 1. The proposed techniques’ and accurate solution graphically depicted.

Figure 2. The proposed techniques’ solution graphically depicted at λ = 0.8, 0.6.

Figure 3. Graphical representation of the proposed techniques’ solution for various orders of λ.
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Figure 4. Graphical representation in terms of the error of the proposed techniques’ solution.

Table 1. Behavior of the accurate solution and our techniques’ solution for various orders of λ.

t x λ = 0.4 λ = 0.6 λ = 0.8 λ = 1
(Approx)

λ = 1
(Exact)

0.2 0.323702 0.323892 0.324081 0.324269 0.324269
0.4 0.316067 0.316439 0.316809 0.317179 0.317179

0.01 0.6 0.304051 0.304591 0.305129 0.305666 0.305666
0.8 0.288099 0.288788 0.289474 0.290159 0.290159
1 0.268775 0.269588 0.270399 0.271207 0.271207

0.2 0.323695 0.323886 0.324076 0.324265 0.324265
0.4 0.316052 0.316427 0.316800 0.317172 0.317172

0.02 0.6 0.304029 0.304574 0.305116 0.305656 0.305656
0.8 0.288072 0.288766 0.289457 0.290145 0.290145
1 0.268742 0.269562 0.270378 0.271191 0.271191

0.2 0.323688 0.323880 0.324071 0.324262 0.324262
0.4 0.316038 0.316416 0.316791 0.317164 0.317164

0.03 0.6 0.304009 0.304558 0.305103 0.305645 0.305645
0.8 0.288046 0.288745 0.289440 0.290132 0.290132
1 0.268712 0.269538 0.270358 0.271175 0.271175

0.2 0.323681 0.323874 0.324067 0.324258 0.324258
0.4 0.316025 0.316405 0.316782 0.317157 0.317157

0.04 0.6 0.303990 0.304542 0.305090 0.305634 0.305634
0.8 0.288022 0.288725 0.289423 0.290118 0.290118
1 0.268684 0.269514 0.270339 0.271159 0.271159

0.2 0.323674 0.323869 0.324062 0.324254 0.324254
0.4 0.316012 0.316394 0.316773 0.317150 0.317150

0.05 0.6 0.303972 0.304526 0.305077 0.305624 0.305624
0.8 0.287999 0.288705 0.289407 0.290104 0.290104
1 0.268656 0.269491 0.270319 0.271143 0.271143
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Table 2. Behavior of our techniques’ solution in terms of absolute error for various orders of λ.

t x λ = 0.4 λ = 0.6 λ = 0.8 λ = 1 (HPT M) λ = 1 (YTDM)

0.2 5.6701120000 × 10−4 3.7742650000 × 10−4 1.8847270000 × 10−4 1.4000000000 × 10−9 1.4000000000 × 10−9

0.4 1.1121106000 × 10−3 7.4026790000 × 10−4 3.6966280000 × 10−4 1.4000000000 × 10−9 1.4000000000 × 10−9

0.01 0.6 1.6151616000 × 10−3 1.0751203000 × 10−3 5.3687630000 × 10−4 1.2000000000 × 10−9 1.2000000000 × 10−9

0.8 2.0593399000 × 10−3 1.3707844000 × 10−3 6.8452050000 × 10−4 1.1000000000 × 10−9 1.1000000000 × 10−9

1 2.4322300000 × 10−3 1.6189960000 × 10−3 8.0846870000 × 10−4 1.0000000000 × 10−9 1.0000000000 × 10−9

0.2 5.7087240000 × 10−4 3.7973100000 × 10−4 1.8950170000 × 10−4 5.7000000000 × 10−9 5.7000000000 × 10−9

0.4 1.1196883000 × 10−3 7.4479250000 × 10−4 3.7168560000 × 10−4 5.5000000000 × 10−9 5.5000000000 × 10−9

0.02 0.6 1.6261692000 × 10−3 1.0816936000 × 10−3 5.3981620000 × 10−4 4.9000000000 × 10−9 4.9000000000 × 10−9

0.8 2.0733762000 × 10−3 1.3791670000 × 10−3 6.8827050000 × 10−4 4.2000000000 × 10−9 4.200000000 × 10−9

1 2.4488091000 × 10−3 1.6288977000 × 10−3 8.1289880000 × 10−4 3.5000000000 × 10−9 3.5000000000 × 10−9

0.2 5.7415440000 × 10−4 3.8172350000 × 10−4 1.9040430000 × 10−4 1.3000000000 × 10−8 1.3000000000 × 10−8

0.4 1.1261329000 × 10−3 7.4870780000 × 10−4 3.7346340000 × 10−4 1.2300000000 × 10−8 1.2300000000 × 10−8

0.03 0.6 1.6355328000 × 10−3 1.0873838000 × 10−3 5.4240200000 × 10−4 1.1000000000 × 10−8 1.1000000000 × 10−8

0.8 2.0853172000 × 10−3 1.3864244000 × 10−3 6.9156990000 × 10−4 9.6000000000 × 10−9 9.6000000000 × 10−9

1 2.4629143000 × 10−3 1.6374712000 × 10−3 8.1679760000 × 10−4 7.8000000000 × 10−9 7.8000000000 × 10−9

0.2 5.7708370000 × 10−4 3.8352100000 × 10−4 1.9122570000 × 10−4 2.3200000000 × 10−8 2.3200000000 × 10−8

0.4 1.1318886000 × 10−3 7.5224370000 × 10−4 3.7508470000 × 10−4 2.1900000000 × 10−8 2.1900000000 × 10−8

0.04 0.6 1.6438970000 × 10−3 1.0925244000 × 10−3 5.4476190000 × 10−4 1.9700000000 × 10−8 1.9700000000 × 10−8

0.8 2.0959854000 × 10−3 1.3929824000 × 10−3 6.9458240000 × 10−4 1.7000000000 × 10−8 1.7000000000 × 10−8

1 2.4755170000 × 10−3 1.6452195000 × 10−3 8.2035840000 × 10−4 1.3800000000 × 10−8 1.3800000000 × 10−8

0.2 5.7976140000 × 10−4 3.8517720000 × 10−4 1.9198680000 × 10−4 3.6100000000 × 10−8 3.6100000000 × 10−8

0.4 1.1371537000 × 10−3 7.5550530000 × 10−4 3.7659070000 × 10−4 3.4100000000 × 10−8 3.4100000000 × 10−8

0.05 0.6 1.6515506000 × 10−3 1.0972681000 × 10−3 5.4695580000 × 10−4 3.0800000000 × 10−8 3.0800000000 × 10−8

0.8 2.1057483000 × 10−3 1.3990351000 × 10−3 6.9738420000 × 10−4 2.6500000000 × 10−8 2.6500000000 × 10−8

1 2.4870511000 × 10−3 1.6523716000 × 10−3 8.2367100000 × 10−4 2.1700000000 × 10−8 2.1700000000 × 10−8

6. Conclusions

In the current work, we successfully applied two unique techniques termed YTDM and
HPTM to find the solution for TFSKIE in a Caputo derivative manner. The Yang transform
was combined with He’s polynomials and the homotopy perturbation method in the first
technique, while the Adomian polynomials and the decomposition method were combined
in the second method. The solution graphs display the different helpful dynamics of the
problem at various fractional orders of the derivatives. The concept that fractional solutions
converge to the integer-order solution was tested using numerical results and graphs. The
investigation has demonstrated the best connection of the suggested methods with the
precise solutions of the problem. These novel methods give results that are more accurate
numerically and require less time and computational effort. The research described leads
to the conclusion that the suggested techniques can be simply adapted to handle other
scientific and engineering problems.
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