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Abstract: The two-dimensional Maccari nonlinear system performs the energy and wave dynamical
features in fiber communications and modern physical science as hydrodynamic and space plasma.
Several new forms of solutions for the Maccari’s model are constructed by a unified solver method
that mainly depends on He’s variations method. The obtained solutions identify new wave stochastic
structures with important features in energy physics such as rational explosive, breather, dispersive,
explosive dissipated, dark solitons and blow-up (shock structure). It was elucidated that the random
effects amend the energy wave strength or the collapsing due to model medium turbulence. Finally,
the produced stochastic structures may be vital in some of these relationships between dispersions,
nonlinearity and dissipative effects. The predominant energy waves that are collapsing or being
forced may be applied to electrostatic auroral Langmuir structures and energy-generating ocean
waves.

Keywords: Maccari system; nonlinearity structures; hyperbolic functions; physical parameters
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1. Introduction

Nonlinear partial differential equations (NPDEs) are frequently utilized to characterize
different complex phenomena of applied sciences, such as plasma physics, optical fiber
communications, fluid mechanics, biochemistry, networked systems, etc. [1–5]. Solving
these equations results in a relatively correct recognition of the researchers from the out-
lined process, allowing them to learn about some truths that cannot be grasped through
normal observation. In the contemporary scientific and technological period, numerous
researchers have been hired to develop numerous analytical procedures to obtain solitary
wave solutions for NPDEs [6–10].

A stochastic process represents an observation at a specific time where the result is a
random variable. The Brownian motion process, commonly known as the Wiener process,
is a frequent stochastic process that is both a martingale and a Markov process [11]. As the
cornerstone of stochastic calculus, the Brownian process is crucial for modeling stochastic
processes. The Brownian process is a frequently utilized stochastic process in dispersive
situations [12,13]. We believe that recent advances in stochastic calculus via stochastic
partial differential equations (SPDEs), will provide a foundation for modeling real life
systems in a comprehensive way. The phrase “stochastic dynamics” refers to the temporal
dynamics of random variables, which comprises the body of knowledge that includes
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stochastic processes, SPDEs, and applications of such knowledge to real-world systems [12].
The SPDEs and stochastic processes are still a domain where mathematicians more than
anybody else are comfortable in applying to natural models.

Maccari’s system (MS) denotes a type of NPDEs that is frequently used to depict the
dynamics of isolated waves in a smallness area of space in various domains of superfluid,
physics of plasmas, nonlinear optics, quantum mechanics, and so on [14–19]. This system
was obtained from the Kadomtsev–Petviashvili equation by Maccari using a reduction
strategy depending on spatiotemporal rescaling [20]. Some recent studies offered new
original conceptions in wave dynamics in the survey of nonlinear unanticipated crucial
behaviors; such acoustics waves in fluid and electrostatic noise in auroras [21–24]. Maccari
[25] showed how the MS accurately characterized the very important characteristics of
rogue waves and how they might be used to study different nonlinear forms in the form
of standing waves, nonlinear optical fibers, and fluid mechanics. It was reported that the
(2+1)-dimensions of rogue waves in the laboratory enabled controlled experimentation in
optics and water waves. Moreover, it was suggested that the MS system may be used for
more complex systems to study the dynamics of water waves and the production of energy
waves. Additionally, the nonlinear auroral Langmuir electrostatic waveforms have been
observed and discussed for collapsing energy and electrostatic waves [26,27]. Furthermore,
all of these previous studies were taken from a deterministic point of view.

We consider the coupled MS [15,28,29] via Brownian motion process, given as follows:

i Qt + Qxx + ΨQ− i δ Q Ξt = 0 ,

Ψt + Ψy + (| Q |2)x = 0,
(1)

where Q = Q(x, y, t) represents the complex scalar field and Ψ = Ψ(x, y, t) represents the
real scalar field. The noise Ξt is a Brownian times derivative of Ξ(t) and δ denotes noise
amplitude [30]. Zhao [31] introduced some general solitary wave solutions for model (1).
Moreover, a number of periodic and solitons of the aforementioned system have lately
been reported [15,28,29,32]. All these papers are conducted for the coupled MS without
the stochastic influence. It is appropriate to present a formulation of the Brownian motion
process {Ξ(t)}t≥0 that satisfies the following requirements:

(i) Ξ(t); t ≥ 0 is a continuous function of t,
(ii) Ξ(r)− Ξ(t) is independent of increments, for r < t,
(iii) Ξ(t)− Ξ(r) follows a normal distribution with mean 0; variance t− r.

To ensure that the investigation of Brownian motion is thorough, Xi(t). The distribu-
tional derivative of Brownian motion Ξ̇ = Ξt =

dΞ
dt is the white noise in time. It is a delta

correlated in the sense that
E(Ξ̇(t)Ξ̇(r)) = δt−r,

δ is the Dirac mass. It is common to view white noise as a mathematical idealization of
events such as abrupt and enormous fluctuations. Additionally, there have been numerous
numerical and analytical studies on NPDEs through the Brownian motion process [33,34].

In the ongoing work, we extract some new stochastic solutions for MS constrained
by multiplicative noises in Itô sense via a unified technique. The suggested technique has
a number of advantages over the majority of existing methods, including the avoidance
of laborious and time-consuming computations and the production of accurate results. It
is straightforward, reliable, and effective. This approach presents some types of solitary
waves based on the physical parameters. These solutions allow for crucial applications in
hydrodynamic, optical fiber communications, and plasma physics [35,36]. The presented
method can be implemented as a box-solver for several systems in natural science. Fur-
thermore, we introduce the potential form related to the energy equation of Equation (1).
To the best of our knowledge, the proposed technique for solving the MS has never been
used before.
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In Section 3, we introduce new stochastic solutions for MS in Itô sense. Section 2 briefly
describes the method that is used to find the solitary wave solutions to the two-dimensional
nonlinear Maccari’s model. In Section 4, we present the potential model that corresponds
to the energy equation of model (1). We also illustrate the physical interpretation of the
presented solutions and the influence of the noise term on the behavior of these solutions.
Additionally, some graphs of some acquired answers are shown. The concluding remarks
and future directions are provided in Section 5.

2. Description of the Method

Consider the NLPDEs in the form

G(Φ, Φx, Φt, Φy, Φxx, Φtt, Φyy, Φxt, . . . ) = 0. (2)

Using the wave transformation:

Φ(x, y, t) = Φ(ξ), ξ = x + y− 2ct, (3)

c is the velocity of the wave, Equation (2) converted to the following ODE:

H(Φ, Φ′, Φ′′, Φ′′′, . . . ) = 0. (4)

Several applied science models of the form (2) were translated to the following ODE:

AΦ′′ + BΦ3 + CΦ = 0. (5)

Based on the main model’s constants and the wave speed, A, B, and C are specific constants.
The closed form solutions of Equation (5) are [19]:

2.1. Family 1

The first family of solutions is

Φ(ξ) = ±
√
−2C

B
sech

(
±
√
−C

A
ξ

)
. (6)

2.2. Family 2

The second family of solutions is

Φ(ξ) = ±
√
−35 C
18 B

sech2

(
±
√
− 5 C

12 A
ξ

)
. (7)

2.3. Family 3

The third family of solutions is

Φ(ξ) = ±
√
−C
B

tanh

(
±
√

C
A

ξ

)
. (8)

3. Solutions of MS

Using the transformation:

Q(x, y, t) = q(ξ) ei(cx+α y+γ t)+δ Ξ(t)−δ2 t , Ψ(x, y, t) = Ψ(ξ), ξ = x + βy− 2ct, (9)
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c, α, γ and β are constants, the Equation (1) becomes

q′′(ξ) + Ψ(ξ)q(ξ)− (γ + c2)q(ξ) = 0,

2e2δ(Ξ(t)−δt)q(ξ)q′(ξ)− (2c− β)Ψ′(ξ) = 0 .
(10)

Taking expectations on both sides for the second equation of (10) yields

2e−2δ2t E(e2δΞ(t))q(ξ)q′(ξ)− (2c− β)Ψ′(ξ) = 0 , (11)

since E(e2δΞ(t)) = e2δ2t, Equation (11) is reduced to

2q(ξ)q′(ξ)− (2c− β)Ψ′(ξ) = 0.

Integrating the last equation with an integration constant equals zero and solving the result
gives

Ψ(ξ) =

(
1

2c− β

)
q2 (ξ). (12)

Substituting Equation (12) into the first equation of system (10) yields:

K1q′′(ξ) + K2q3(ξ) + K3q(ξ) = 0 , (13)

where
K1 = 1, K2 =

1
2c− β

, K3 = −(γ + c2). (14)

In view of solver method [19], Equation (1) stochastic forms of are:

The First Family of Solutions

q1,2(ξ) = ±
√

2(2c− β)(γ + c2) sech
(
±
√

γ + c2 ξ

)
. (15)

Thus:

Q1,2(x, y, t) = ± ei(cx+α y+γ t)+δΞ(t)−δ2t
√

2(2c− β)(γ + c2) sech
(
±
√

γ + c2 (x + βy− 2ct)
)

. (16)

Ψ1,2(x, y, t) = 2(γ + c2) sech2
(
±
√

γ + c2 (x + βy− 2ct)
)

. (17)

The Second Family of Solutions

q3,4(ξ) = ±
√

35(γ + c2)(2c− β)

18
sech2

(
±
√

5(γ + c2)

12
ξ

)
. (18)

Thus:

Q3,4(x, y, t) = ±ei(cx+α y+γ t)+δΞ(t)−δ2t

√
35(γ + c2)(2c− β)

18
sech2

(
±
√

5(γ + C2)

12
(x + βy− 2ct)

)
. (19)

Ψ3,4(x, y, t) =
35(γ + c2)

18
sech4

(
±
√

5(γ + c2)

12
(x + βy− 2ct)

)
. (20)
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The Third Family of Solutions

q5,6(ξ) = ±
√
(γ + c2)(2c− β) tanh

(
±i

√
(γ + c2)

2
ξ

)
. (21)

Thus:

Q5,6(x, y, t) = ± ei(cx+α y+γ t)+δΞ(t)−δ2t
√
(γ + c2)(2c− β) tanh

(
±i

√
γ + c2

2
(x + βy− 2ct)

)
. (22)

Ψ5,6(x, y, t) = (γ + c2) tanh2

(
±i

√
γ + c2

2
(x + βy− 2ct)

)
. (23)

4. Results and Discussion

We have implemented the unified technique for finding new considerable stochastic
forms for the coupled nonlinear Maccari’s equations with multiplicative noises in Itô sense.
This system, which can arise in domains such as plasma physics, superfluids, and optical
fiber communications, is a complicated nonlinearly mode that characterizes the dynamics
of isolated waves, confined in a smallness of parts of space [15,37].

This random Maccari model is converted to nonlinear ordinary differential equations
via Ξ(t) function. The expectations of this model with E(e2δΞ(t)) = e2δ2t converts the model
to Equation (13) that symbolizes the model of motion for potential form

V = −1
2

(
γ + c2

)
q(ξ)2 − 1

4(2c− β)
q(ξ)4. (24)

The dynamical potential equation has an exact solution for a nonlinear Maccari system in
the form

q(x, y, t) =
2
√

2c2
√

2c−β

c2+γ
e
√

c2+γ(x+βy−2ct)

e2
√

c2+γ(x+βy−2ct) + 1
+

2
√

2γe
√

γ+c2(x+βy−2ct)
√

2c−β

γ+c2

e2(x+βy−2ct)
√

c2+γ + 1
, (25)

with complex scalar field

Q(x, y, t) = ± ei(cx+α y+γ t)+δΞ(t)−δ2t(
2
√

2c2
√

2c−β

c2+γ
e
√

c2+γ(x+βy−2ct)

e2
√

c2+γ(x+βy−2ct) + 1

+
2
√

2γe
√

γ+c2(x+βy−2ct)
√

2c−β

γ+c2

e2(x+βy−2ct)
√

c2+γ + 1
), (26)

and real scalar field Ψ(x, y, t) in the form

Ψ(x, y, t) =

(
1

2c− β

)
(

2
√

2c2
√

2c−β

c2+γ
e
√

c2+γ(x+βy−2ct)

e2
√

c2+γ(x+βy−2ct) + 1

+
2
√

2γe
√

γ+c2(x+βy−2ct)
√

2c−β

γ+c2

e2(x+βy−2ct)
√

c2+γ + 1
)2. (27)

The proposed Maccari model was considered in most standard articles in the determin-
istic situation. In contrast to our method, we study this model in the stochastic situation,
that is, one that is forced by multiplicative noise in the Itô sense. A unified theoretical
solver approach has been used to identify some novel random solutions for the Maccari
model in the Itô sense, which produced a variety of dissipative and dispersive structures
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in the form solutions of Equation (13). The discovered solutions are hyperbolic function
results that accounted for a number of intriguing physical phenomena in diverse fields
of engineering and new applied theoretical physics, e.g., the hyperbolic secant appears
in laminar jet profiles, while the hyperbolic tangent appears in magnetic moment stud-
ies. Furthermore, the acquired solutions are not only bright, rational explosive, breather,
dispersive, explosive dissipated and dark solitons, but also blow-up and shock structure
solutions of the proposed model.

The solution (26) expresses a random structural representation as shown in Figure 1.
This figure shows the symmetric random variations in the phase trajectory. The intense
randomness coefficient’s influence on structure, amplitude, band width, and energy is
shown in Figure 2. It was noted that the increasing δ causes an increasing ability of
randomness effectiveness to produce rabid wave collapsing. The solution (19) makes
distinct the envelope periodic wave in time t. The random noise effect δ on the wave
picture is introduced in Figures 3 and 4. As δ increased, the rate of fluctuations increased
and the wave tends to behave as a dissipative wave as in Figure 4. In the same manner,
the variations of dissipative solution (22) with space x, time t and the noise effect δ are
shown in Figures 5–7. By increasing δ, the rate forcing wave increases with production of
the shock random wave with high amplitude as in Figure 7.

In the absence of a noise term, the solution (26) describes both breather envelope and
stationary soliton waves as in Figures 8 and 9. Additionally, the breather envelopes of
solution (15) are plotted in Figure 10. The solution (19) may be formed by two kinds of
important waves, the first is periodic envelope solitons and the other is the bell soliton
shape as in Figures 11 and 12. On the other hand, The solution (22) is regarded as one of
the related to planning applications in the investigation of dissipative and explosive waves
in physics. The creation of the dissipated oscillatory waves is depicted with x and y axes
in Figure 13. The oscillating form becomes a high-energy, rational explosive structure by
changing the x axis. Finally, Figure 14 depicts a dissipative blow-up wave.

In summary, the important features of random structures of Maccari’s system with
noise effect produced new structures with different energy properties of the obtained
envelopes, solitary and explosive waves.

Figure 1. Trajectory of exact solution (26).
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Figure 2. Change of solution (26) with x, δ.

Figure 3. Trajectory of solution (19).

Figure 4. Change of solution (26) with t, δ.
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Figure 5. Trajectory of solution (22) with x.

Figure 6. Trajectory of solution (22) with δ.

Figure 7. Change of solution (22) with t, δ.
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Figure 8. Change of solution (26) with x, t.

Figure 9. Change of |Q(x, y, t)| with x, t.

Figure 10. Change of ReQ1(x, y, t) with x, t.
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Figure 11. Change of ReQ3(x, y, t) with x, y at t = 1.

Figure 12. Change of |Q3(x, y, t)| with x, y at t = 1.

Figure 13. Change of ImQ5(x, y, t) with x, y.
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Figure 14. Change of |Q5(x, y, t)| with x, y.

5. Conclusions

In this work, the two-dimensional nonlinear Maccari’s model was studied via a unified
approach. Some important new solitary waves are produced. These waves admit vital
physical aspects in several branches of science such in the form of bright periodic, explosive
rational, breathers, dispersive, blow-up and shock structure solutions. The randomness
parameters influence the envelope and solitonic structures and energy properties. It was
reported that the increase of random parameters produced both rabid solitonic collapsing
or forcing shock wave amplitudes. Additionally, the method used here can be applied in
various nonlinear systems for new energy trends in natural science. Finally, the derived
stochastic solutions may be crucial in limited relationships between nonlinearity, disper-
sions, and dissipative effects for predominant energy waves from collapsing or being forced,
which applies to auroral electrostatic waves, Langmuir solar winds, and energy-generating
water waves. In future work, we will use other analytical methods to obtain other forms
of solutions. Additionally, we can analyze the bifurcation and chaotic patterns for the
Maccari model.
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