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Abstract: In recent years, cellular neural networks (CNNs) have become a popular apparatus for
simulations in neuroscience, biology, medicine, computer sciences and engineering. In order to create
more adequate models, researchers have considered memory effects, reaction–diffusion structures,
impulsive perturbations, uncertain terms and fractional-order dynamics. The design, cellular aspects,
functioning and behavioral aspects of such CNN models depend on efficient stability and control
strategies. In many practical cases, the classical stability approaches are useless. Recently, in a
series of papers, we have proposed several extended stability and control concepts that are more
appropriate from the applied point of view. This paper is an overview of our main results and focuses
on extended stability and control notions including practical stability, stability with respect to sets
and manifolds and Lipschitz stability. We outline the recent progress in the stability and control
methods and provide diverse mechanisms that can be used by the researchers in the field. The
proposed stability techniques are presented through several types of impulsive and fractional-order
CNN models. Examples are elaborated to demonstrate the feasibility of different technologies.

Keywords: cellular neural networks; stability; control; delay; maturation; reaction–diffusion terms;
impulses; fractional-order dynamics; control

1. Introduction

In the last 80 years, there has been tremendous activity and development in the for-
mulation of artificial neural network (ANN) models as a framework in the study of human
brain function, mental or behavioral phenomena and brain structural plasticity. Researchers
have proposed numerous ANN models to imitate human brain structures and study crucial
aspects of information processing that meet new requirements and challenges. For example,
the authors in [1] used ANNs to model brain responses and investigate human brain function.
In [2], an ANN approach has been applied to study the achievement of stable dynamics in
neural circuits. The paper [3] is devoted to continual lifelong learning with neural networks.
Well-established and emerging research motivated by lifelong learning factors such as struc-
tural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and
multisensory integration have been discussed. The authors in [4] investigated the molecular
transport in the human brain by physics-informed neural networks. All results cited above
are very recent contributions in the area of modeling of the brain’s neural networks and the
study of their dynamics via ANNs. The book [5] provides a broad collection of articles that
offer a comprehensive introduction to the world of brain and different modeling methods,
including neural networks.

Recently, ANNs have become advantageous tools applied in pattern recognition,
decision making, classification, optimization and linear and nonlinear programming, and
they have attracted the attention of researchers in biology, medicine, computer sciences,
engineering sciences and business sciences. Hence, the research on artificial intelligence
approaches is becoming increasingly important in numerous emerging areas of science,
medicine and engineering [6,7].
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One of the most popular and appropriate neural network approaches is cellular neural
networks (CNNs) in the form of differential equations. In fact, in modeling applications,
mathematical models are essential. The explicit structure imposed by these models helps
practitioners to overcome a major difficulty in the estimation of network connectivity from
experiments: the fact that only some representative subsets of neurons can be measured
simultaneously. The mathematical models lead to predictions of the effects of connections
from all (even unmeasured) neurons.

CNNs are an important class of ANNs whose design was inspired by the design and
functioning of the human brain and its components. The main feature of such a neural
network model is that it is composed of a massive aggregate of regularly spaced circuit
clones, called cells, which communicate with each other directly only through their nearest
neighbors. Introduced in 1988 by Chua and Yang [8,9], this class of information-processing
systems processes signals in real time and has been widely used to study numerous
phenomena in the learning and modeling of nonlinear and complex relationships.

In their attempts to create more realistic neural network models, researchers have also
considered memory effects. Taking into account delay effects is essential to study how current
patterns of neural activity impact future patterns of activity, which is a key point in the study
of brain plasticity [3]. Delayed CNNs (DCNNs) have had remarkable success in modeling
neuron and brain maturation processes. The properties of their units have been found to
mimic the properties of real neurons in their functions, necessary for working memory and
response inhibition [10]. In fact, time delay performs an important role in many applied
dynamical systems, including dynamical processes of neuronal maturation in the infant and
adult brain, in which processes’ time delays critically affect the stable or unstable outcomes
of the cell dynamics and neural circuit efficacy. Therefore, there has been enormous interest
in the area of DCNNs among many researchers in the neurosciences, chemical technologies,
population dynamics, biotechnologies, molecular sciences and robotics [11–14]. Delay effects
are also important in numerous other applications of CNNs [15–17].

Another fruitful line of research has been considering reaction–diffusion terms in
CNNs. Indeed, such terms can appropriately represent spatial growth and time. Moreover,
diffusion phenomena arise naturally in various fields when working with neural network
models. This is why various reaction–diffusion CNNs have been proposed as modeling
approaches in neurosciences to study the molecular transport in the human brain from
magnetic resonance images [5], to study the human brain’s development [18], to simulate
the formation processes of dendritic spines, which show high plasticity and are related
to learning [19], to understand the early developmental changes at the whole brain and
regional levels [20], to model the relationship between structural and functional brain
connectivity networks [21], to study the synaptic plasticity [22] and much more [23–25].

The Cohen–Grossberg neural networks (CGNNs) introduced in 1983 [26] also attracted
more research interest since they are advantageous in global pattern formation and partial
memory storage [27–30]. This class of neural network models is a generalization of various
CNNs, including Hopfield-type neural network models [31], and can develop a composite
dynamical attitude [32,33].

The Bidirectional Associative Memory (BAM) type of neural network is another group
of CNNs whose design is inspired by the associative phenomena existing in the human
brain [34–36]. It extends the single-layer auto-associative correlation to two-layer hetero-
associative circuits [37], which is essential in numerous applied problems [38–40]. Because
of its expansion, it has been intensively studied.

The fractional-order modeling approach has been a consideration of numerous in-
vestigators, because of the universality provided and the large scope of the application
areas [41–44]. The fact that the memory is integrated in fractional derivatives is the fun-
damental superiority in using fractional models [45]. Such memory is known as ‘intrinsic
memory’. It is proven that fractional-order networks can provide a flexible framework
in the study of deep brain stimulation processes [46]. Neural network models of frac-
tional order have superiority in the understanding of the rich dynamics in the neurons’
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activities [47], which justifies research activities in the fractional-order formulation of ANN
models, including results concerning biological neurons [48]. Hence, a comprehensive sci-
entific field of production is focused on the study of ANNs with fractional-order dynamics
and their applications [33,49–53].

Furthermore, the tool of impulsive neural networks has been extensively used in
the accurate description of neuronal processes with short-term perturbations during their
evolution [54–59]. The design and properties of such networks are based on the theory
of impulsive differential equations [60–63]. Such systems are also adapted to impulsive
control problems [64,65]. In fact, impulsive control arises naturally in a wide variety of
applications [66–72]. The main advantage of impulsive control is in the fact that it is applied
only in some discrete times and can reduce the amount of transmitted information and,
hence, the control cost drastically. Neuroscientists are also aware of the impulsive control
disorder phenomena [73]. Impulse control mechanisms are considered in models derived
from brain activity [74]. Creating impulsive control architectures for neural network models
opens up the possibility of successfully pursuing long-term goals despite short-term attacks
and shocks.

The stability problem is one of the most important in the understanding of the internal
mechanisms that stabilize and modulate neural activity [2,3]. Indeed, the study of stability
also has inspired a broad range of neural network approaches. Stability and control
methods provide diverse strategies to investigate the qualitative behavior of the neuronal
states [75–78].

However, in many practical situations, classical stability concepts are useless. This
motivates researchers to further expand the stability notions and introduce new stability
concepts such as practical stability, stability of sets, stability with respect to manifolds
and Lipschitz stability. See, for example, [79] and the references therein. Such extended
stability notions allow us to determine which movement mechanisms can support stability
strategies that are acceptable from the practical point of view, where the classical strategies
do not allow mathematically ideal stable behavior. As such, they have powerful practical
applications in emerging areas such as biology, medicine, optimal control, mechanics,
bio-technologies, economics, electronics, etc. [62].

This article reviews some authors’ results and recent progress in the application of the
extended stability concepts to different classes of impulsive and fractional neural network
models. This survey also provides a reference for further research on stability and control
strategies for such models.

The remaining part of this paper is organized as follows. In Section 2, materials and
methods are presented. Various classes of impulsive neural network models, including
fractional-order cases, are given. Extended stability notions are justified. Section 3 is
devoted to a review of the results in extending stability and control strategies for impulsive
and fractional DCNNs. The significance of the extended criteria is discussed and demon-
strated via examples. The effect of uncertain terms is also considered. Section 4 discusses
open problems and future research directions on these topics. Finally, some conclusions are
included in Section 5.

The following notations will be used: R+ = [0, ∞), R denotes the set of all real numbers,
and Rn is the n-dimensional real space with the Euclidean norm ||x|| of an x ∈ Rn.

2. Materials and Methods

The McCulloch–Pitts neuron, introduced by Warren McCulloch and Walter Pitts in
1943 [80], is considered the first mathematical model of a neural network. Since then, the
attention to neural network models and their applications has greatly increased [6,7,81–83].

2.1. CNNs

CNNs form an important class of NNs that model human cognition using local real-
time signal information processing [8,9]. Such NNs can be represented as
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ẋi(t) = −cixi(t) +
n

∑
j=1

wij(t) f j(xj(t)) + Ii, i = 1, 2, . . . , n, (1)

where n represents the number of the neurons; n ≥ 2, t ∈ R+, xi(t) represents the state
of the i−th cell (neuron) at time t; ẋi(t) is the first-order derivative of xi with respect to t,
which represents the rate of change in the ‘activation’ xi of neuron i with respect to time; f j
is the activation function of the j−th neuron at time t; wij are the weight coefficients, which
are continuous functions; in general, ci is a constant that represents the rate with which the
i−th unit will reset its potential to the resting state in isolation when disconnected from the
network and external inputs; Ii is an external input.

2.2. Hopfield NNs

The classical Hopfield-type neural networks originating from the model introduced in [31]
can be considered as a specific case of CNNs for a particular choice of the constants ci. Such
NNs are given by the following system:

ẋi(t) = −
1
CiRi

xi(t) +
n

∑
j=1

wij(t) f j(xj(t)) + Ii, t > 0, (2)

with i = 1, 2, . . . , n,, where n ≥ 2 denotes the number of nodes in the network;
x(t) = (x1(t), . . . , xn(t))T is the state vector at time t; the constants Ci > 0,Ri > 0 de-
note, respectively, the capacitance and the resistance for the node i at time t, and the rest of
the parameters are as in (1).

For the description of the next CNN models, in order to avoid repetition, we will use
unified notations of the models’ parameters.

2.3. CNNs with Delays

In numerous neural networks’ applications, the state vectors of the designed models
depend on stored information. In biological CNNs, delay describes the maturation process
of neuronal cells. Hence, the structure of the current network cells depends on their
maturity and on the natural evolution rate of the proceeding generations. In fact, the cell-
intrinsic transcription factors are required to generate and promote the survival of newborn
neurons [84]. Moreover, delay effects may be accompanied by oscillation, divergence or
instability, which may be damaging to the neuronal system. In order to study how time
delays affect the dynamics of a CNN model, DCNNs of various types have been proposed.
One of the most investigated types is the type of DCNNs with time-varying transmission
delays given by [85]:

ẋi(t) = −cixi(t) +
n

∑
j=1

wij(t) f j(xj(t)) +
n

∑
j=1

hij(t)gj(xj(t− τj(t))) + Ii, i = 1, 2, . . . , n, (3)

where t ∈ R+, xi(t) denotes the state of the i-th cell at time t; hij denotes the strength of the
j−th unit on the i−th unit at time t− τj(t); gj are activation functions that determine the
output of the j−th node at time t− τj(t), and τj(t) are transmission delays, 0 ≤ τj(t) ≤ τ.

In fact, due to presence of a multitude of parallel pathways with a variety of axon
sizes and lengths, DCNNs have a spatial extent. This is why it is common to consider
time-varying delays [86–88]. The particular case of constant delays τj is also studied [89].
Recently, there have been many findings on DCNNs in which the effects of constant
delays, time-varying delays, distributed delays and bounded and unbounded delays have
been investigated. Since distributed and unbounded delays are more realistic, there is an
extended interest in such DCNNs, which can be given as [90]

ẋ(t) = −x(t) + a f
(

x(t)− b
∫ ∞

0
K(s)x(t− s) ds− c

)
, t > 0 (4)
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where x : R+ → R, K : R+ → R+ is the delayed kernel function; a, b, c are constants; the
activation function f : R→ R.

2.4. CNNs with Reaction–Diffusion Terms

In numerous applications of CNNs and DCNNs, the design and effective performance
of the neural network model not only rely on the progression in time of the states but also
exclusively depend on its location (area) [91]. In such applications, formulating models of
the reaction–diffusion type and evaluating the effects of the reaction–diffusion parameters
on the neural network dynamics is crucial.

A DCNN model with reaction–diffusion terms is given by [92,93]

∂ui(t, x)
∂t

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ciui(t, x) +

m

∑
j=1

wij f j
(
uj(t, x)

)

+
m

∑
j=1

hijgj
(
uj(t− τj(t), x)

)
+ Ii, i = 1, 2, . . . , m, (t, x) ∈ (0, ∞)×Ω,

(5)

where ui(t, x) represents the state of the ith neuron (cell) at time t ∈ (0, ∞) and space x ∈ Ω;
Ω ⊂ Rn is a bounded open set containing the origin with smooth boundary ∂Ω; ∂ui(t,x)

∂t is
the partial derivative of ui(t, x) with respect to time t, which represents the rate of change in
cell density with respect to time; the continuous functions Diq = Diq(t, x) ≥ 0 correspond
to the transmission diffusion coefficients along the ith neuron, q = 1, 2, . . . , n.

2.5. Cohen–Grossberg DCNNs

The effects of time delays are also considered for the specific class of Cohen–Grossberg
CNNs represented by [26]

ẋi(t) = −ai(xi(t))

[
bi(t, xi(t))−

n

∑
j=1

wij(t) f j(xj(t))−
n

∑
j=1

hij(t)gj(xj(t− τj(t)))− Ii(t)

]
, (6)

where t ≥ 0, ai denote the amplification functions, and bi correspond to appropriately
behaved functions, i = 1, 2, . . . , n.

Some generalizations of the model (6) considering mixed time-varying delays and
distributed delays are investigated in [29,30,94–96].

It is well seen that some very applicable NN models, such as CNNs and Hopfield neural
networks, can be examined as particular cases of NNs of the Cohen–Grossberg type [31].

2.6. DCNNs with Reaction–Diffusion Terms of Cohen–Grossberg Type

The hybrid class of DCNNs with reaction–diffusion terms of Cohen–Grossberg type
is also a major topic of interest because of the great opportunities for their applications in
science, medicine and engineering. Such NN models can be given as

∂ui(t, x)
∂t

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ai(ui(t, x))

[
bi(ui(t, x))

−Ii(t, x)−
m

∑
j=1

wij(t) f j
(
uj(t, x)

)
−

m

∑
j=1

hij(t)gj
(
uj(t− τj(t), x)

)]
,

(7)

where i = 1, 2, . . . , m, t ≥ 0.
For more detailed results on DCNNs with reaction–diffusion terms of the Cohen–

Grossberg type and their possible applications, we refer to [97–99].
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2.7. Bidirectional Associative Memory (BAM) Neural Networks

Numerous classes of BAM neural network models are also studied in the existing
literature. BAM NNs are generalizations of single-layer CNNs that can store bipolar vector
pairs. Such NNs are composed of neurons arranged in two layers, the X-layer and Y-layer.
A two-way associative search for stored bipolar vector pairs is performed by applying
an iterative approach to the forward and backward information flows between the two
layers [34–38,40,100].

As a generalization of the most applied BAM neural network models, we will present
the Cohen–Grossberg-type BAM neural networks [101–103] given by

ẋi(t) = −ai(xi(t))

[
bi(xi(t))−

m

∑
j=1

wji f j(yj(t))−
m

∑
j=1

hjigj(yj(t− τj(t)))− Ii

]
,

ẏj(t) = −âj(yj(t))

[
b̂j(yj(t))−

n

∑
i=1

ŵij f̂i(xi(t))−
n

∑
i=1

ĥij ĝi(xi(t− τ̂i(t)))− Jj

]
,

(8)

where t ≥ 0, xi(t) and yj(t) correspond to the states of the ith neuron in the X-layer
and jth neuron in the Y-layer, respectively, at time t; f j f̂i, gj, ĝi are activation functions;
τj(t), τ̂i(t) are interneuronal transmission delays; 0 < τj(t) < τ, 0 < τ̂i(t) < τ̂, ai, âj

denote amplification functions; bi, b̂j denote well-behaved functions; wji, ŵij, hji, ĥij are the
connection weights, and Ii, Jj are external inputs, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

2.8. Impulsive DCNNs

The impulsive control approach in neural network modeling addresses the case
wherein short-term perturbations at some moments of time affect the dynamical behavior
of the neuronal models. This approach is closely related to the brain plasticity–stability
dilemma, which is essential also in other biological aspects [3,66,72–74]. By means of impul-
sive control neural networks, it is possible to analyze how impulses can be used to preserve
the stability properties of the model or to design efficient impulsive controllers. Abrupt
changes are very often caused by changes in the environment, external stimuli or may be
inherent to the system due to the cell-intrinsic potential for structural change [75]. Indeed,
adding a mass of new cells to an already trained network can slow down the old memory
that has been trained. In such a case, using external perturbations, it can be returned to the
trained state. Hence, with the development of impulsive control theory [64,65], increasing
attention has been paid to the study of impulsive CNN models.

Let tk, k = 1, 2, . . . be the impulsive points and satisfy 0 < t1 < t2 < . . . , lim
k→∞

tk = ∞.

An impulsive control DCNN model can be represented as [62]
ẋi(t) = −cixi(t) +

n

∑
j=1

wij f j
(

xj(t)
)
+

n

∑
j=1

hij f j
(

xj(t− τj(t))
)
+ Ii, t 6= tk, t ≥ 0,

∆xi(tk) = xi(t+k )− xi(tk) = Pik(xi(tk)), k = 1, 2, . . . ,

(9)

where i = 1, 2, . . . , n, tk, (k = 1, 2, . . . ) are the instances of impulsive perturbations at
which the density xi(t) of a neuronal cell shifts from the amount of xi(tk) = xi(t−k ) into
the number xi(t+k ), and Pik are functions that characterize the size of the impulsive control
effects of the states xi(t) at the moments tk. A graph of the trajectory of a state xi(t) is
shown in Figure 1.
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t1 t2 t3

t

x (t )1i

x (t )1i

P  (x (t  ))
1 i 1

xi

-

+
i

P  (x (t  ))
2 i 2i2 2

P  (x (t  ))
3 i 3i

Figure 1. The trajectory of a mature state xi(t) of the impulsive control model (9).

The control model (9) generalizes many existing type (3) DCCN models to the impulsive
case. It can be applied to impulsively control the behavior of the neurons in type (3) neu-
ronal networks using appropriate impulsive functions Pik. Moreover, by adding impulsive
controllers to the nodes in model (3), we can synchronize the trajectories of all nodes.

As generalizations of the above models, we will consider impulsive reaction–diffusion
DCNNs of Cohen–Grossberg type given as [104]

∂ui(t, x)
∂t

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ai(ui(t, x))

[
bi(ui(t, x))

−Ii(t, x)−
m

∑
j=1

wij(t) f j
(
uj(t, x)

)

−
m

∑
j=1

hij(t)gj
(
uj(t− τj(t), x)

)]
, t 6= tk,

ui(t+k , x) = ui(tk, x) + Pik(ui(tk, x)),

(10)

in which the points tk, k = 1, 2, . . . again represent instants (impulsive) where short-term
perturbations on the node ui(t, x) from the level ui(t−k , x) = ui(tk, x) toward the level
ui(t+k , x) are observed, and the functions Pik(ui(t, x)) determine the controlled outputs
ui(t+k , x), which measure the effects of the impulsive controllers on the states ui(t, x) at
the moments tk.

The impulsive model (10) admits the use of a suitable impulsive control strategy
to a class of reaction–diffusion delayed CNNs that appear naturally in a broad range of
applications. For example, several therapeutic impulsive control strategies have been
recommended for some recently developed epidemic models of great interest for the
contemporary world [105–107].

In the absence of reaction–diffusion terms, the model (10) is reduced to an impulsive
Cohen–Grossberg-type model [108].

For the DCNN model (10), a more general type of impulsive control using impulsive
jumps that are not performed at fixed instants also can be studied [109]. In this case,
the impulsive moments tlk occur when the integral surface of the solution u(t, x) meets
hypersurfaces defined as

θk =
{
(t, u) ∈ [0, ∞)×Rm : t = σk(u(t, x))

}
,

where σk are continuous functions and k 6= lk, in general [62,109]. Moreover, as a result of
the features of short-term/impulsive perturbations at non-fixed moments of time, distinct
neuronal states corresponding to distinct initial data may have distinct impulsive moments.
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This makes the analysis of models with non-fixed impulsive perturbations more complicated
due to the potentiality for the loss of the autonomy property, bifurcation, “merging” of
solutions, meeting one and the same hypersurface several or infinitely many times, etc. [110].
A suitable choice of the impulsive forces for such models is essential.

The Cohen–Grossberg-type model (10) has been also generalized to the BAM case
with and without reaction–diffusion terms [111–113]. A BAM impulsive control Cohen–
Grossberg-type model with n neurons (i = 1, 2, . . . , n) in the X-layer and m neurons
(j = 1, 2, . . . , m) in the Y-layer, impulsive perturbations at non-fixed moments and time-
varying delays is given as

ẋi(t) = −ai(xi(t))

[
bi(xi(t))−

m

∑
j=1

wji f j(yj(t))

−
m

∑
j=1

hjigj(yj(t− τj(t)))− Ii

]
, t 6= σk(x(t), y(t)),

ẏj(t) = −âj(yj(t))

[
b̂j(yj(t))−

n

∑
i=1

ŵij f̂i(xi(t))

−
n

∑
i=1

ĥij ĝi(xi(t− τ̂i(t)))− Jj

]
, t 6= σk(x(t), y(t)),

xi(t+) = xi(t) + Pik(xi(t)), t = σk(x(t), y(t)),

yj(t+) = yj(t) + Qjk(yj(t)), t = σk(x(t), y(t)),

(11)

for t > 0, where σk : Rn+m → R+, k = 1, 2, . . . .

2.9. Fractional-Order Impulsive CNNs

The contemporary approaches in network theory have led to the introduction of more
multiplex models. The fractional-order scheme, which is more relevant in the description of
accurate CNNs, has achieved increased attention in recent years [41,44,47,48,50,52,53,63,72].
A variety of investigations have studied the long-term dependence of the current activities
in neuronal states [45,46]. To better model the long-term memory processes, numerous
existing neural network models have been generalized to the fractional-order case.

Moreover, the influence of the fractional-order derivatives on the stability and syn-
chronization performance of the neurons is recognized [52].

Let us consider a fractional-order delayed impulsive CNN of the type [63]
CDα

t xi(t) = −cixi(t) +
n

∑
j=1

wij(t) f j(xj(t)) +
n

∑
j=1

hij(t)gj(xj(t− τj(t))) + Ii, t 6= tk,

∆xi(tk) = xi(t+k )− xi(tk) = Pikxi(tk), k = 1, 2, . . . ,
(12)

i = 1, 2, . . . , n, where

CD
α
t l(t) =

1
Γ(1− α)

∫ t

0

l′(σ)
(t− σ)α

dσ

is the Caputo fractional derivative of order α, 0 < α < 1 with the lower limit 0 for a
continuously differentiable function l ∈ R and Γ(z) =

∫ ∞
0 e−ttz−1dt is the standard Gamma

function [114].
Indeed, fractional-order derivatives of Caputo type are the most applied in modeling

applications since they have the superiority of handling initial conditions that are defined
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in a form similar to the form used in the cases of integer-order derivatives. This situation is
observed in most natural phenomena [115,116].

Another direction for generalizations of the model (12) is considering finite and infinite
delays [117]. In this case, the corresponding impulsive control model will be represented as

CDαxi(t) = −cixi(t) +
n

∑
j=1

wij f j(xj(t)) +
n

∑
j=1

hijgj(xj(t− τj(t)))

+
n

∑
j=1

wij

∫ t

−∞
mj(t, s)gj

(
xj(s)

)
ds + Ii, t 6= tk,

∆xi(tk) = Pik(xi(tk)), i = 1, 2, . . . , n, k = 1, 2, . . . ,

(13)

where 0 ≤ τj(t) ≤ τ, j = 1, 2, . . . , n, are the finite transmission delays and the delay kernel
mj(t, s) = mj(t− s) (j = 1, 2, . . . , n) is of the convolution type.

To reflect the fact that, in numerous neural network models, the activations depend
on time and on space, the model (12) can be generalized to a fractional-order model with
reaction–diffusion terms given as [118–120]

∂αui(t, x)
∂tα

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ciui(t, x)

+
m

∑
j=1

wij(t) f j
(
uj(t, x)

)
+

m

∑
j=1

hij(t)gj
(
uj(t− τj(t), x)

)
, t 6= tk,

ui(t+k , x) = ui(tk, x) + Pik(ui(tk, x)), k = 1, 2, . . . ,

(14)

where [41,114]

∂αui(t, x)
∂tα

=
1

Γ(1− α)

∫ t

0

∂ui(s, x)
∂s

ds
(t− s)α

, t > 0, i = 1, 2, . . . , m.

Impulsive control fractional-order models of Cohen–Grossberg type [121,122] and
impulsive BAM neural network models of fractional-order with and without reaction–
diffusion setting [123,124] can be also applied as extended fractional CNN models of
natural processes influenced or controlled by short-lived forces at some points in time.
Indeed, the great attention to and the huge number of existing publications on neural
network models of the impulsive type with fractional dynamics are an indication of their
considerable significance. Impulsive control fractional-order models of Cohen–Grossberg
type are described by [121]

CDαxi(t) = −ai(xi(t))

[
bi(t, xi(t))−

n

∑
j=1

wij(t) f j(xj(t))− Ii(t)

]
, t 6= tk,

xi(t+k ) = xi(tk) + Pik(xi(tk)), k = 1, 2, . . . ,

(15)

and fractional BAM reaction–diffusion neural network models are given as [123]
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

∂αui(t, x)
∂tα

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ciui(t, x) +

l

∑
j=1

wij(t) f j
(
vj(t, x)

)

+
l

∑
j=1

hij(t)
∫ t

−∞
Kij(t− s) f j

(
vj(s, x)

)
ds, t 6= tk,

∂αvj(t, x)
∂tα

=
n

∑
q=1

∂

∂xq

(
D∗jq

∂vj(t, x)
∂xq

)
− c∗j vj(t, x) +

m

∑
i=1

ŵji(t)gi
(
ui(t, x)

)

+
m

∑
i=1

ĥji(t)
∫ t

−∞
Nji(t− s)gi

(
ui(s, x)

)
ds, t 6= tk,

∆ui(tk, x) = ui(t+k , x)− ui(tk, x) = Pik(ui(tk, x)),

∆vj(tk, x) = vj(t+k , x)− vj(tk, x) = Qjk(vj(tk, x)),

(16)

where (u, v) ∈ RmRl is the state vector; Kij, Nji are the delay kernels; Pik, Qjk determine the
level of the states’ changes at the impulsive moments tk; the numbers ui(tk, x) = ui(t−k , x)
and ui(t+k , x) correspond, respectively, to the levels of the ith and jth neurons before and
after an impulsive jump at the moment tk, and the numbers vj(tk, x) = vj(t−k , x) and
vj(t+k , x) are, respectively, the states of the jth neuron of the second layer before and after
an impulsive perturbation at the moment tk.

Fractional-order BAM neural network models can be efficiently used in many applied
problems where the associative study of pairs of states designed in two layers through
iterating information back and forth between the layers is fundamental. This class of CNNs
is also a compelling tool for modeling in neuroscience. For example, the gene regulatory
networks (GRNs) that model the regulation of genes’ expression in the process of managing
molecular-level organisms is one particular class of BAM neural networks [72,125–127]. A
fractional-order delayed impulsive GRN model studied in [128] has been given as

CD
α
mi(t) = −aimi(t) +

n

∑
j=1

wij(t) f j(pj(t− τ̂j(t))) + Bi(t), t 6= tk,

CD
α
pi(t) = −cipi(t) + di(t)mi(t− τi(t)), t 6= tk,

mi(t+k ) = mi(tk) + Pik(mi(tk)), pi(t+k ) = pi(tk) +Qik(pi(tk)),

(17)

with i = 1, 2, . . . , n, t ≥ 0, where the i−th mRNA state at time t is represented by mi(t);
the i− th protein’s concentration at time t is represented by pi(t); the degradation rates
in the i−th mRNA and i− th protein’s molecule are denoted by the constants ai, ci ∈ R,
respectively; di denote the translation rates; the regulatory function f j, j = 1, 2, . . . , n is of
the particular Hill form

f j(x) =
(x/β j)

Hj

1 + (x/β j)
Hj

in which β j denote positive constants and the Hill coefficients Hj are real constants; the
function Bi(t) = ∑j∈Ii

bij(t) denotes the basal rate of the repressor of gene i under the set
Ii of all its repressors j; the weight coefficients wij(t) are determined by bij(t) or by −bij(t)
depending on whether j is an activator of gene i or j is a repressor of gene i; wij(t) = 0
only when there is no connection between the node j and the gene i; the distinct functions
τi(t) and τ̂j(t) denote time-varying bounded delay functions for mRNA i and protein
concentration j, respectively; i, j = 1, 2, . . . , n, the i−th mRNA state and the i− th protein’s
concentration at time tk are given by the values mi(t−k ) = mi(tk) and pi(t−k ) = pi(tk),
respectively; mi(t+k ) and pi(t+k ) correspond to i−th mRNA and i− th protein concentration,
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respectively, at t+k , i.e., after an impulsive short-term effect on them at tk; and the impulsive
functions Pik and Qik denote the amounts of the abrupt deviation from mi(t) and pi(t),
respectively, at the point tk for k = 1, 2, . . . and i = 1, 2, . . . , n.

2.10. Extended Stability Concepts

Stability is among the most essential questions in the investigation of neural networks.
Hence, research on stability strategies that regulate the neuronal stability properties has
attracted tremendous attention. Moreover, stability characteristics are closely related to
synchronization and control issues [116,120,126].

For CNNs, the most applied stability concept in the existing literature is that of
global asymptotic stability [7,29,59,79,85,89,92,98,127]. Despite the great possibilities of
application, this concept is not comprehensive. In numerous particular problems, even if a
CNN is globally asymptotically stable, it is actually impractical in implementations because
of some inappropriate features. Moreover, there are CNNs that are not asymptotically
stable in the classical case; however, their behavior is acceptable. For such cases, some
extended stability concepts, which we will review below, are more appropriate.

2.10.1. Practical stability

The specific conception of practical stability is distinct from the classical asymp-
totic stability and, as a result of its benefits, it has been studied for various applied
systems [62,79,129–133], including NNs [57,134–136]. This extended stability concept
is useful in many applied models when the states’ trajectories are contained within specific
constraints during a fixed time interval. In such cases, the global asymptotic notion is not
applicable. The practical stability strategy is also very efficient when a neuronal state is
unstable in the classical sense and yet state trajectories may oscillate sufficiently near the
desired state such that its behavior is admissible, which does not imply stability or the
convergence of trajectories. In addition, there are many applied systems that are stable or
asymptotically stable in the classical sense, but are in fact meaningless in practice due to a
small or inappropriate stability or attraction domain.

Let x(t) = x(t; 0, φ) be a solution of the impulsive DCNN model (9) corresponding to
the initial function φ that is bounded and piecewise continuous on [−τ, 0] with points of
jump discontinuities at which the one-sided limits exist and the functions are continuous
from the left. We will denote the norm of the function φ : [−τ, 0]→ Rn that corresponds to
the norm || · || by ||φ||τ = sups∈[−τ,0] ||φ(s)||.

Let (λ, A) with 0 < λ < A be given.

Definition 1 ([79,130]). The impulsive DCNN (9) is called
(a) practically stable with respect to (λ, A), if ||φ||τ < λ implies ||x(t; 0, φ)|| < A, t ≥ 0;
(b) practically asymptotically stable with respect to (λ, A), if (a) holds and lim

t→∞
||x(t; 0, φ)|| = 0.

Definition 1 can be also adapted to other types of impulsive DCNNs. It again restates
the noted circumstance that the concept of practical stability is fairly autonomous from the
basic notion of asymptotic stability and both notions are neither presumptive nor purely
mutually exclusive [62,79,129–133]. In reality, the practical stability can be achieved in a
set time and this is why it seems more appropriate for neural network models from an
applied point of view [134–136]. This is due to the fact that the practical stability requires
the trajectories of the investigated model to be examined when the boundaries of the initial
conditions and the region where the trajectories must remain as the independent variable
evolves over a fixed interval are set in advance.

2.10.2. Stability of Sets

One of the most important aspects of the stability theory of differential equations is
the so-called stability of sets. It is an extension of the stability of single trajectories notion,
which is related to the study of the stability properties of a region of solutions. Such a
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concept seems to be very appropriate in population dynamics and biology, including the
stability of cell populations across different brain regions. Such an extended stability notion
is also of ample interest to networks able to approach not only one state of interest.

The introduction of the stability of sets notion is related to the following question:
How far can initial data be allowed to vary without disordering the stability properties es-
tablished in the immediate proximity of the specific states? On this question, scientists have
proposed to study stable sets [137]. Some demonstrated applications for the use of stability
of sets are delay systems [137], the biological control of invasive species [138], Rosenblatt
processes [139], planar homeomorphisms [140], maneuver systems [141] and Kolmogorov-
type systems that generalize various models studied in population dynamics [142].

Because of the considerable opportunities for the application of the extended stability
of sets approach, it has been developed for Cohen–Grossberg impulsive DCNNs with
reaction-diffusion terms of the type (10) [104].

LetM be a set,
M⊂ [−τ, ∞)×Ω×Rm (18)

and introduce the setM(t, x) of all u ∈ Rm such that (t, x, u) ∈ M, (t, x) ∈ R+ ×Ω, and
the setM0(t, x) of all z ∈ Rm for which (t, x, z) ∈ M for (t, x) ∈ [−τ, 0]×Ω.

Denote the distance between a u ∈ Rm andM(t, x) by

d(u,M(t, x)) = inf
v∈M(t,x)

||u− v||2,

where

||u(t, x)||2 =

[ ∫
Ω

m

∑
i=1

u2
i (t, x)dx

]1/2

is the norm defined for a u(t, x) = (u1(t, x), u2(t, x), . . . , um(t, x))T ∈ Rm, and set an
ε- neighborhood ofM(t, x) as

M(t, x)(ε) = {u ∈ Rm : d(u,M(t, x)) < ε} (ε > 0).

Set
d0(ϕ,M0(t, x)) = sup

ξ∈[−τ,0]
d(ϕ(ξ, x),M0(ξ, x)), ϕ ∈ PC,

where PC denotes the set of all functions ϕ = (ϕ1, ϕ2, . . . , ϕm)T from [−τ, 0]×Ω to Rm,
which are piecewise continuous and for which ϕi(ξ

+, x) and ϕi(ξ
−, x) exist and satisfy

ϕi(ξ
−, x) = ϕi(ξ, x), i = 1, 2 . . . , m, for a finite number of points ξ ∈ [−τ, 0], x ∈ Ω.
We assume also that the setM(t, x) 6= ∅ for any t ≥ 0, x ∈ Ω, and the setM0(t, x) 6=

∅ for any t ∈ [−τ, 0) and x ∈ Ω.
The following stability of sets definition in regard to the reaction–diffusion impulsive

DCNN of Cohen–Grossberg type (10) is presented in [104].

Definition 2. The set M is called uniformly globally exponentially stable with respect to the
impulsive control reaction–diffusion DCNN (10), if there exist real constants k > 0 and υ > 0
such that

d(u(t, x; ϕ0),M(t, x)) ≤ kd0(ϕ0,M0(t, x))e−υt, ϕ0 ∈ PC, t ≥ 0, x ∈ Ω.

Other stability of sets notions for the system (10) are also introduced in [104]. These
extended stability concepts can be applied to numerous types of impulsive DCNNs, such
as BAM DCNNs and fractional-order DCNNs. As is seen from Definition 2, the stability of
sets concept is more general than the stability of a single neuronal trajectory and includes,
as special cases, the stability of steady states, stability of periodic trajectories and stability
of integral manifolds or other manifolds that can represent regions of neuronal states.
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2.10.3. Stability with Respect to Manifolds

Stability with respect to manifolds notions are specific cases of stability of sets concepts
for particular sets. While, in stability of sets definitions, sets of a sufficiently general type
contained in some domain are considered, stability of manifolds notions consider sets
defined by specific conditions, which is common in most of the biological DCNNs. Such
stability notions are also known as conditional stability [79]. One of the most applied
stability with respect to manifolds concepts treats manifolds that are defined by a function
that describes specific constraints on the determination of the manifold [113,119]. The
introduction of this notion is directed by the evidence that the stability behavior of neurons
depends on limitations or restrictions that can be represented by a function. Another
stability with respect to manifolds notion is related to integral manifolds defined by the
system trajectories [58,109].

For quantifying the stability of manifolds determined by constraints, a particular
function h is defined in the extended phase space of the CNN with values in Rl , l ≤ n.
For stability of integral manifolds, the set (18) is defined as a setM in the extended phase
space [−τ, ∞)×Ω×Rm of (10) such that (ξ, x, ϕ(ξ, x)) ∈ M, (ξ, x) ∈ [−τ, 0]×Ω implies
(t, x, u(t, x)) ∈ M, (t, x) ∈ R+ ×Ω for any solution u(t, x) = u(t; x; ϕ).

For example, in order to study the stability with respect to a manifold of the im-
pulsive fractional-order model with reaction–diffusion terms (14), in [119], a function
h = h(t, u), h : [−τ, ∞)×Rm → Rl , l ≤ m is defined together with the following manifolds
related to it:

Mt(m− l) = {u ∈ Rm : h(t, u) = 0, t ∈ R+},
Mt,τ(m− l) = {u ∈ Rm : h(t, u) = 0, t ∈ [−τ, 0]},

Mt(m− l)(ε) = {u ∈ Rm : ||h(t, u|| < ε, t ∈ R+}, ε > 0.

The following definition is introduced in [119] for the stability of the trajectories of the
CNN (14) with respect to the manifoldMt(m− l) determined by the function h.

Definition 3. The fractional-order DCNN model (14) is globally Mittag–Leffler stable with respect
to the function h if, for ϕ0 ∈ PC, there exists a constant η > 0 such that

u(t, x) ∈ Mt(m− l)
(

M̄(ϕ0)Eα(−ηtα)
)
, t ≥ 0,

where Eα, 0 < α < 1, is the corresponding Mittag–Leffler function, defined as

Eα(z) =
∞

∑
κ=0

zκ

Γ(ακ + 1)
,

M̄(0) = 0, M̄(ϕ) is Lipschitz continuous with respect to ϕ ∈ PC, and M̄(ϕ) ≥ 0.

Note that the Mittag–Leffler stability concepts are extensions of the exponential stabil-
ity notions to the fractional-order case [41,44,63,72,116,117,123,124].

The numerous application possibilities of the stability with respect to manifolds
concepts foster their intensive development [123,143–147]. These extended stability notions
have been recently applied in the study of the brain’s stability behavior [148–150]. Indeed,
fractional-order systems are intensively used in the study of biological phenomena [151].
For fractional-order DCNN models, the concept is combined with the Mittag–Leffler
stability definitions, which are as important as exponential stability definitions for the
integer-order cases.

2.10.4. Practical Stability with Respect to Manifolds

The extended concept of practical stability with respect to manifolds also has received
considerable attention recently and has been applied to different classes of impulsive control
DCNNs. See, for example, [108,152,153] and the references therein. Such a stability concept
is more appropriate for applied neuronal models, since it combines the generalization
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provided by the manifolds stability concept and the flexibility of the practical stability
when some behavioral characteristics are not worthwhile.

The combined practical stability notion with respect to a ĥ-manifold

Mt(n + m− l) = {z ∈ Rn+m : ĥ(t, z) = 0, t ∈ [0, ∞)} (19)

defined by a function ĥ = ĥ(t, z), ĥ : [−ν, ∞)×Rn+m → Rl , where ν = max{τ, τ̂} and
z = (x, y) ∈ Rn+m, is successfully applied in [108] for the BAM impulsive Cohen–Grossberg
model (11) using the following hybrid definition.

Definition 4. The impulsive control neural network model (11) is globally practically exponentially
stable with respect to the function ĥ, if, given A > 0 and ψ0 = (ϕ0, φ0)

T ∈ PC, there exist positive
constants γ, µ such that

(x(t; 0, ϕ0), y(t; 0, φ0))
T ∈ Mt(n + m− l)

(
A + γ||ĥ(0, ψ0)||νe−µt)

for t ≥ 0, whereMt(n + m− l)(ε) is the manifold of all z ∈ Rn+m such that ||ĥ(t, z)|| < ε.

If, in Definition 4, A = 0, then it is reduced to the global exponential stability with
respect to the ĥ-manifold case.

2.10.5. Lipschitz Stability

The extended Lipschitz stability concept introduced in [154] is also appropriate for
different applied models [155–158]. For linear systems, the notion of Lipschitz stability is
equivalent to that of uniform stability, which is not the case for nonlinear systems [154,159].
The Lipschitz stability concept is adopted for impulsive control models in [62,79,159] and
for fractional-order models in [160]. The problem of Lipschitz stability seems more relevant
in the neural network approach, because the Lipschitz nonlinearity and Lipschitz continuity
are typical for most of the neural network models [161].

The notion is applied to impulsive reaction–diffusion fractional Cohen–Grossberg-
type neural network models for the first time in [162], where the investigated model is a
generalization of the model (14) and is defined as

∂αui(t, x)
∂tα

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ai(ui(t, x))

[
bi(ui(t, x))

−
m

∑
j=1

wij(t) f j
(
uj(t, x)

)
−

m

∑
j=1

hij(t)gj
(
uj(t− τj(t), x)

)]
, t 6= tk,

ui(t+k , x) = ui(tk, x) + Pik(ui(tk, x)), i = 1, 2, . . . , m,

(20)

where m ≥ 2.
For the above impulsive control DCNN model, the Lipschitz stability definition is

given as follows.

Definition 5. The fractional impulsive reaction–diffusion CNN model (20) of Cohen–Grossberg
type is globally uniformly Lipschitz stable, if there exists a constant M > 0 such that, for any
ϕ0 ∈ PC, we have

||u(t, x; 0, ϕ0)||2 ≤ M||ϕ0||τ , t ≥ 0, x ∈ Ω,

where ||ϕ0||τ is the norm of the initial function ϕ0 ∈ PC corresponding to the norm ||u(t, x; 0, ϕ0)||2.

2.10.6. Lyapunov Approach

To establish the extended stability result, we adapt the Lyapunov approach and
use appropriate Lyapunov functions [62,63,79,87]. In the case of DCNNs and impulsive
CNNs, some modifications are proposed. More precisely, in the case of DCNNs, the
Razumikhin technique is applied, which requires us to estimate the derivatives of the
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Lyapunov candidate functions only on specific sets of trajectories [62,137], and in the
impulsive control case, piecewise continuous Lyapunov functions are considered [62]. For
fractional-order systems, the fractional Lyapunov method is applied [63].

3. Results

Using a Lyapunov-based analysis, numerous extended stability criteria have been
proposed for different types of impulsive and fractional-order DCNNs. Most of the authors’
earlier results are collected in [62,63,79]. After the publication of these books, many new
impulsive neural network models and corresponding stability strategies were developed
by the authors [57,58,72,104,108,109,113,119,123,128,162]. The primary aim of this review
article is to present most of these recent results. The proposed results are in the form of
bounds on the system’s parameters, including synaptic weights and impulsive control
functions. The practical meaning of the introduced criteria is that if the system’s parameters
and impulsive controls are driven to these bounds, this will reflect the extended stability
behavior of the applied models.

3.1. Stability of Sets

To present some recent results related to the stability of sets concept, we will consider
the impulsive control reaction–diffusion DCNN of Cohen–Grossberg type (10). Since the
model (10) is more general and includes some of the special cases of impulsive DCNNs,
the established results are more comprehensive.

To guarantee the existence and uniqueness of solutions, the activation functions are
considered to be bounded, the impulsive functions are continuous, and the neural network’s
parameters are assumed to satisfy the following assumptions [104].

A1. There exist constants ai and ai such that, for the continuous amplification functions
ai, i = 1, 2, . . . , m, we have

1 < ai ≤ ai(ι) ≤ ai

for ι ∈ R.
A2. There exist constants Bi > 0 such that, for the continuous functions bi, i = 1, 2, . . . , m,

we have
bi(ι1)− bi(ι2)

ι1 − ι2
≥ Bi > 0

for ι1, ι2 ∈ R, ι1 6= ι2.
A3. There exist Lipschitz constants Lj > 0, Mj > 0, j = 1, 2, . . . , m, such that

| f j(ι1)− f j(ι2)| ≤ Lj|ι1 − ι2|, |gj(ι1)− gj(ι2)| ≤ Mj|ι1 − ι2|

for all ι1, ι2 ∈ R, ι1 6= ι2.
A4. The transmission diffusion functions Diq are nonnegative and there exist constants

diq ≥ 0, such that

Diq(t, x) ≥ diq, i = 1, 2, . . . , m, q = 1, 2, . . . , n, t > 0, x ∈ Ω.

Let x ∈ Ω, and Ω be an n-dimensional domain determined by the inequalities |xq| < lq,

where lq > 0, q = 1, 2 . . . , n. Set d̃i =
n

∑
q=1

diq

l2
q

, w+
ij = sup

t∈R+

|wij(t)|, h+ij = sup
t∈R+

|hij(t)|,

i, j = 1, 2, . . . , m.
To define a setM of trajectories related to the model (10), we consider two constant

solutions of the impulsive control model (10) denoted as u∗ ∈ Rm
+ and u∗ ∈ Rm

+.
Then, the following criteria for stability with respect to M = [−τ, ∞) × Ω × D,

where D ⊂ Rm
+, u = (u1, u2, . . . , un)T ∈ D, when u∗i ≤ ui ≤ u∗i , i = 1, 2, . . . , m, are

established in [104].
Under the assumptions A1–A4, if the system parameters satisfy
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λ1 = min
1≤i≤m

[
2
(
d̃i + aiBi

)
− ai

m

∑
j=1

(
Ljw+

ij + Mjh+ij + Liw+
ji
)]

> max
1≤i≤m

(
Mi

m

∑
j=1

ajh+ji
)
= λ2 > 0 (21)

and the impulsive control functions Pik are such that there exist constants γik, 0 < γik < 2,
such that

Pik(ui(tk, x)) = −γikui(tk, x), i = 1, 2, . . . , m, k = 1, 2, . . . , (22)

then the set M is uniformly globally exponentially stable with respect to the reaction–
diffusion impulsive Cohen–Grossberg DCNN (10).

The setM considered in the above result consists of all trajectories that are between
two constant solutions and generalize a single state stability concept. A setM of a more
general nature can also be considered. The proposed result and the extended stability
concept are useful in the cases wherein the consideration of attractors other than single
steady states is essential.

The impulsive reaction–diffusion Cohen–Grossberg DCNN (10) is the relevant closed-
loop system to the model (7), and can be also represented as a control system

∂ui(t, x)
∂t

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− ai(ui(t, x))

[
bi(ui(t, x))

−Ii(t, x)−
m

∑
j=1

wij(t) f j
(
uj(t, x)

)
−

m

∑
j=1

hij(t)gj
(
uj(t− τj(t), x)

)]
+ vi(t, x),

(23)

where i = 1, 2, . . . , m, t ≥ 0, and

vi(t, x) =
∞

∑
k=1

Pik(ui(tk, x))δ(t− tk), i = 1, 2, . . . , m (24)

represent the control contribution, and δ(t) is the impulsive Dirac function (Figure 2). The
addition of the controller v(t, x) = (v1(t, x), . . . , vn(t, x))T leads to sudden changes in the
neuronal states of (7) at the time moments tk due to which the states ui(t, x) of neuronal
units momentarily shift from ui(tk, x) into the state ui(t+k , x), and Pik are the impulsive
functions. Thus, the above result establishes a generic design method of the impulsive
control strategy (24) for the impulse-free DCNN model (7). The constants γik define the
control sizes of the synchronizing impulses. Therefore, the proposed criteria can be used to
design impulsive control techniques with which the trajectories of the impulsive neural
networks (10) (including those from the setM) can be uniformly globally exponentially
synchronized onto those of system (7).

Example 1 ([104]). For n = m = 2 and Ω = {x ∈ R2 : |xq| < 1, q = 1, 2}, an impulsive CNN
model of the type (10) is considered in [104] with the model’s parameters defined as ai(ui) = 1,

b1(ui) = ui, b2(ui) = 3ui, i = 1, 2, fi(ui) = gi(ui) =
1
2
(|ui + 1| − |ui − 1|), I1 = I2 = 0,

τ1(t) = τ2(t) = et/(1 + et), 0 ≤ τi(t) ≤ 1,

(wij)2×2(t) =
(

0.6− 0.4 sin(t) 0.1− 0.4 cos(t)
0.2− 0.4 cos(t) 0.2− 0.3 sin(t)

)
, (hij)2×2(t) =

(
0.3 sin(t) 0.4 cos(t)
0.4 cos(t) 0.6 sin(t)

)
,

(Dik)2×2 =

(
D11 D12
D21 D22

)
=

(
1 + 2 sin t 0
0 cos t

)
, or (dik)2×2 =

(
3 0
0 1

)
under impulsive controls defined by

u(t+k , x)− u(tk, x) =
(
−2/5 0
0 −1/7

)
u(tk, x), k = 1, 2, . . . . (25)
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For this particular choice of the neuronal parameters, we have that L1 = L2 = M1 = M2 = 1,
ai = ai = 1, i = 1, 2, and

4.2 = min
1≤i≤2

[
2
(
d̃i + aiBi

)
− ai

2

∑
j=1

(
Ljw+

ij + Mjh+ij + Liw+
ji
)]

> max
1≤i≤2

(
Mi

2

∑
j=1

ajh+ji
)
= 1.

Since assumptions A1–A4 and conditions (21) and (22) are all satisfied, if u∗ = (u∗1 , u∗2)
T

is a unique steady state of the model, then the set M = [−τ, ∞) × Ω × {R2 : ui ≤ u∗i ,
i = 1, 2, . . . , m} is uniformly globally exponentially stable with respect to the considered impulsive
DCNN of type (10).

 
Figure 2. The Dirac impulsive function.

3.2. Stability with Respect to Manifolds

To demonstrate a stability with respect to h-manifolds result, we consider the DCNN
of fractional order (14) with reaction–diffusion terms. In [119], a h-manifold stability result
has been established as follows.

If, in addition to (21) and (22), the function h(t, u) satisfies

||h(t, u)|| ≤
∫

Ω

1
2

m

∑
i=1

u2
i (t, x)dx ≤ Λ(H)||h(t, u)||, (t, u) ∈ R+ ×Rm,

where Λ(L) ≥ 1 exists for any 0 < H ≤ ∞, then the fractional-order DCNN model (14) is
globally Mittag–Leffler stable with respect to the function h.

When investigating the stability of a neural network, it is important to characterize the
effects of uncertain terms. In fact, a real-world neural network system always involves un-
certainties, which may give rise to the instability of the network trajectories [119,163–165].
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To study how some uncertain parameters can affect the stability behavior of the
model (14), we consider the next uncertain reaction–diffusion impulsive delayed neural
network related to the system (14):

∂αui(t, x)
∂tα

=
n

∑
q=1

∂

∂xq

(
Diq

∂ui(t, x)
∂xq

)
− (ci + c̃i)ui(t, x)

+
m

∑
j=1

(
wij(t) + w̃ij(t)

)(
f j(uj(t, x)) + f̃ j(uj(t, x))

)

+
m

∑
j=1

(
hij(t) + h̃ij(t)

)(
gj
(
uj(t− τj(t), x)) + g̃j

(
uj(t− τj(t), x))

)
, t 6= tk,

ui(t+k , x) = ui(tk, x) + Pik(ui(tk, x)) + P̃ik(ui(tk, x)), k = 1, 2, . . . .

(26)

In (26), the constants c̃i ∈ R+ and the real-valued functions w̃ji, h̃ij, f̃ j, g̃j, P̃ik, i, j = 1, 2, . . . , m,
k = 1, 2, . . . denote the uncertainties. We set sup

t∈R+

|w̃ij(t)| = w̃+
ij , supt∈R+

|h̃ij(t)| = b̃+ij ,

i, j = 1, 2, . . . , m. To conduct a robust stability analysis of the model (26) with respect to the function
h, we assume that there exist constants L̃i > 0, M̃i > 0, H̃1

i > 0, H̃2
i > 0 such that

| f̃i(χ1)− f̃i(χ2)| ≤ L̃i|χ1 − χ2|, |g̃i(χ1)− g̃i(χ2)| ≤ M̃i|χ1 − χ2|, | f̃i(χ)| ≤ H̃1
i , |g̃i(χ)| ≤ H̃2

i

and f̃i(0) = 0, g̃i(0) = 0 for all χ1, χ2 ∈ R, χ1 6= χ2, i = 1, 2, . . . , m and the uncertain functions
P̃ik are such that P̃ik(ui) = γ̃ikui with −γik − 2 ≤ γ̃ik ≤ −γik, i = 1, 2, . . . , m, k = 1, 2, . . . .

Definition 6. The neural network model (14) is called globally robustly Mittag–Leffler stable
with respect to the function h, if, for any ϕ0 ∈ PC, any w̃ji, h̃ij, f̃ j, g̃j, P̃ik i, j = 1, . . . , m and
any c̃i ∈ R+, i = 1, 2, . . . , m, the model (26) is globally Mittag–Leffler stable with respect to the
function h.

We will denote by λ = λ1 − λ2 and µ = µ1 − µ2, where λ1, λ2 are from (21) and

µ1 = min
1≤i≤m

(
2c̃i −

m

∑
j=1

(
Ljw̃+

ij + L̃j
(
w+

ij + w̃+
ij
)
+ Mj h̃+ij + M̃j

(
h+ij + h̃+ij

)
+ Liw̃+

ji + L̃i
(
w+

ji + w̃+
ji
))

> 0,

µ2 = max
1≤i≤m

m

∑
j=1

(
M̃i
(
h+ji + h̃+ji

)
+ Mi h̃+ji

)
> 0.

We found that [119] if λ ≥ µ, then the model (14) is globally robustly Mittag–Leffler
stable with respect to the function h.

The above result can be useful as a tool to measure the effects of dynamic changes
in an uncertain environment on the stability behavior of neural networks. It can be also
applied to predict instabilities in neural network systems with multiple sources of structural
uncertain perturbations.

If the set Ω is defined by the real constants aq, bq, q = 1, 2, . . . , n as Ω = ∏n
q=1[aq, bq]

so that 0 = (0, 0, . . . , 0)T ∈ Ω, then [109] for the stability of an integral manifoldM of the
type (18) with respect to the model (10) with variable impulsive perturbations, the neural
network’s parameters are requested to satisfy

min
1≤i≤m

[
2

(
4nD
B2 + aiBi

)
− ai

m

∑
j=1

(
Ljw+

ij + Mjh+ij + Liw+
ji
)]

> max
1≤i≤m

(
Mi

m

∑
j=1

ajh+ji
)
> 0, (27)

where B = max{bq − aq}, for i = 1, 2, . . . , m, q = 1, 2, . . . , n, D = min{diq}, and the
continuous functions σk(u) satisfy 0 < σ1(ui) < σ2(ui) < . . . , and
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σk(ui)→ ∞ as k→ ∞

uniformly on ui ∈ R for all i = 1, 2, . . . , m.

Example 2 ([109]). Consider again the impulsive reaction–diffusion DCNN model (10) for
n = m = 2, Ω = [0, 1]× [0, 2], with activation functions and delays as in Example 1, ai(ui) = 1,
b1(ui) = 2ui, b2(ui) = ui, i = 1, 2, variable impulsive perturbations of type σk(ui) = |ui|+ k,
and an impulsive control defined by

u(t+, x) =

 1− 1
2k

0

0 1− 1
3k

u(t, x), t = σk(u(t, x)), k = 1, 2, . . . , (28)

where the rest of the parameters are

(wij)(t) =

(
0.5− 0.2 cos(t) 0.5− 0.1 sin(t)
0.6− 0.4 sin(t) 0.3− 0.2 cos(t)

)
, (hij)(t) =

(
0.1 + 0.3 cos(t) 0.2− 0.3 sin(t)
0.2− 0.1 sin(t) 0.5− 0.1 cos(t)

)
,

(Diq)2×2 =

(
3 + sin t 0
0 2 + cos t

)
.

Since the inequality (27) holds for L1 = L2 = M1 = M2 = 1, B = 2, D = 1 and ai = ai = 1,
i = 1, 2, and the impulsive controllers satisfy (22), then the manifold

M = [−1, ∞)×Ω× {u ∈ R2
+ : u ≤ uC}, (29)

determined by a constant solution uC = (uC
1 , uC

2 )
T of the considered model is globally exponentially

stable. This guarantees the global exponential synchronization of the master system (without im-
pulses) and the impulsive response system with respect to the manifoldM. Hence, the demonstrated
extended stability criteria could be used as impulsive synchronization criteria, which are useful for
various applied phenomena when some classical stability concepts cannot be used. Therefore, the
illustrated criteria clarify the understanding of the impulses as suitable stability strategies on the
dynamics of a neural network system.

3.3. Practical Stability with Respect to Manifolds

The conception of practical stability with respect to a manifold determined by a
specific function has been applied in [108] to the BAM model (11), and to the particular
case considering single-layer correlation. For the particular case, the paper [108] stud-
ies the global practical exponential stability of the impulsive control DCNN model of
Cohen–Grossberg type

ẋi(t) = −ai(xi(t))
[
bi(xi(t))− Ii −

m

∑
j=1

wij(t) f j
(
xj(t)

)

−
m

∑
j=1

hij(t)gj
(
xj(t− τj(t))

)]
, t 6= σk(x(t)),

xi(t+)− xi(t) = Pik(xi(t)), t = σk(x(t)),

(30)

where t > 0, i = 1, 2, . . . , n, σk : Rn → R, k = 1, 2, . . . with respect to a function
h : [−τ, ∞)×Rn → R, which defines a manifold of the type (19).

The global practical exponential stability criteria for the model (30) with respect to the
function h consist of the following assumptions:

• Pik(xi(t)) = −γikxi(t), |1− γik| ≤
a
a

, t = σk(x(t)),
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• a min
1≤i≤m

(
Bi −

n

∑
j=1
|wji|Li

)
> a max

1≤i≤m

( m

∑
j=1
|hji|Mi

)
> 0,

where a = min1≤i≤n ai, a = max1≤i≤n ai, and the existence of a real positive Q such that
∑n

i=1 |Ii| < AQ for a given A > 0.

Example 3. As an example, let us consider the model (30) with n = 2, where I1 = I2 = 0.03,
a1(x1) = 3 + 0.2 sin(x1), a2(x2) = 4− 0.1 cos(x2), bi(xi) = 3xi, i = 1, 2, activation functions
as in Example 1, 0 ≤ τi(t) ≤ 1, w11 = 1, w12 = 0.5, w21 = 0.6, w22 = 0.5, h11 = 0.2, h12 = 0.1,
h21 = 0.15, f22 = 0.1, σk(x) = |x|+ 2k, and γik =

1
3k , i = 1, 2, k = 1, 2, . . .

For the above choice of the model’s parameters and 0 < A < 0.025, the model (30) is practically
globally exponentially stable with respect to the function h = |x1|+ |x2| [108].

To give a better interpretation of the practical stability with respect to manifolds notion,
the graph of the function h = |x1|+ |x2| is shown in Figure 3. Instead, to consider a single
trajectory, the function h determines a manifold of trajectories whose stability behavior is
of interest. Hence, this extended notion is applicable when we have to study the stability
properties of a region of trajectories under some constraints defined by the function h. The
practical stability of the neural network model (30) with respect to the manifold defined
by h means that any neuronal state that starts close to the h-manifold oscillates around it
and is bounded by a particular bound defined by the constant A so that its behavior is
admissible from the practical point of view.

To further demonstrate the feasibility of the extended practical stability with respect
to the manifolds impulsive control strategy, we will apply it to the Cohen–Grossberg BAM
delay CNN model (11) considering the function ĥ = ĥ(t, z), ĥ : [−ν, ∞)×Rn+m → R,

ĥ =
√

x2
1 + x2

2 + · · ·+ x2
n + y2

1 + y2
2 + · · ·+ y2

m

which defines a ĥ manifold of the type (19).
It is proven in [108] that, for a given A > 0, if there exists a positive constant Q̂ such

that ∑n
i=1 |Ii|+ ∑m

j=1 |Jj| < AQ̂, the system’s parameters satisfy

p̂1 = A

(
min

1≤i≤n

(
B̄i −

m

∑
j=1
|ŵij|L̂i

)
+ min

1≤j≤m

(
¯̂Bj −

n

∑
i=1
|wji|Lj

))

> p̂2 = A

(
max

1≤j≤m

n

∑
i=1
|hji|Mj + max

1≤i≤n

m

∑
j=1
|ĥij|M̂i

)
, (31)

where

A = min( min
1≤i≤n

ai, min
1≤j≤m

âj), A = max( max
1≤i≤n

ai, max
1≤j≤m

âj), p̂ > q̂, p̂ = p̂1 − p̂2,

Lj, L̂i, Mj, M̂i are the Lipschitz constants of the activation functions, and the impulsive
functions Pik, Qjk are such that

Pik(xi(t)) = −γikxi(t), Qjk(yj(t)) = −µjkyj(t), max
(
|1− γik|, |1− µjk|

)
≤ A

A
, (32)

i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . . , then system (11) is practically globally exponen-
tially stable with respect to the function ĥ.

For A = 0, the global exponential stability of the impulsive BAM DCNN (11) has been
studied in [113].
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Figure 3. The graph of h = |x1|+ |x2|.

Example 4. If we consider the Cohen–Grossberg-type delayed BAM neural network (11) for
n = m = 2 for t > 0, where

x(t) =

 x1(t)

x2(t)

, y(t) =

 y1(t)

y2(t)

,

ai(ιi) = âj(ιj) = 1, b1(ιi) = 2ιi, b2(ιi) = 3ιi, b̂1(ιj) = b̂2(ιj) = 2ιj, i, j = 1, 2, I1 = I2 =
J1 = J2 = 1, 0 ≤ τj(t) ≤ 1, 0 ≤ τ̂i(t) ≤ 1,

f j(ιj) = gj(ιj) = f̂i(ιi) = ĝi(ιi) =
|ιj + 1| − |ιj − 1|

2
, i, j = 1, 2,

(wij)2×2 =

(
1 0.5
0.6 −0.5

)
, (hij)2×2 =

(
0.3 0.4
−0.4 0.2

)
,

(ŵij)2×2 =

(
0.7 −0.6
0.9 0.8

)
, (ĥij)2×2 =

(
0.2 −0.1
0.1 −0.2

)
,

under impulsive conditions in the form

x(t+)− x(t) =
(
−1 + 1

2k 0
0 1

2k

)
x(t), t = σk(x(t), y(t)), k = 1, 2, . . . ,

y(t+)− y(t) =
(
−1 + 1

3k 0
0 −1 + 1

3k

)
y(t), t = σk(x(t), y(t)), k = 1, 2, . . . ,

(33)

for σk(x, y) = |x|+ |y|+ k, k = 1, 2, . . . , then (31) holds for

ai = ai = 1, âi = âi = 1, B1 = 2, B2 = 3, B̂1 = B̂2 = 2,

L1 = L2 = 1, M1 = M2 = 1, L̂1 = L̂2 = 1, M̂1 = M̂2 = 1.

However, the condition (32) is not satisfied because

γ2k = −
1
2k

< 0, k = 1, 2, . . . .
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Hence, drawing a conclusion about the practical stability behavior of the neuronal states of (11)
is impossible using the results presented here. For example, for the particular choice of the models’

parameters and impulsive conditions, and the manifold build function ĥ =
√

x2
1 + x2

2 + y2
1 + y2

2,

the unstable trajectory of x2(t) with respect to ĥ is as illustrated in Figure 4.

t
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Figure 4. The unstable trajectory of the state variable x2(t) of the CNN in Example 4.

Examples 3 and 4 again illustrate the strength of the proposed criteria. These examples
also demonstrate how the extended stability dynamics of the states of the considered Cohen–
Grossberg BAM delayed CNNs may be controlled via suitable impulsive controllers. In
addition, the opportunity for the extension of the stability concepts to fractional-order
models is also demonstrated.

3.4. Lipschitz Stability

The extended notion of Lipschitz stability is gradually gaining popularity, receiving
more and more attention, especially in the fractional-order modeling approach [157,158,160].
Very recently, it has been also applied to some impulsive control fractional neural network
models [162].

For the model (20), some global uniform Lipschitz stability criteria are proposed
in [162] using appropriate Lyapunov-type functions. It is proven that the fractional reaction–
diffusion neural network model (20) of Cohen–Grossberg type is globally uniformly Lips-
chitz stable if the impulsive control is designed as in (22) and (24), and at least one of the
following criteria is satisfied for the models’ parameters.

• There exists a continuous for t ∈ (tk−1, tk] function β(t), k = 1, 2, . . . , such that

λ1 − λ2 ≥ β̄(t); (34)

• For Di =
n

∑
q=1

4ndiq

B2 ,

min
1≤i≤m

(
Di
a

+ Bi − Li

m

∑
j=1

w+
ji

)
>

a
a

max
1≤i≤m

(
Mi

m

∑
j=1

h+ji

)
(35)

and
|1− γik| ≤

a
a

, i = 1, 2, . . . , m, k = 1, 2, . . . . (36)
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As is seen, for β(t) = 0, t ∈ R+, the inequality (35) is reduced to (27). Hence, in this
case, the Lipschitz stability can be considered as a generalization of the uniform stability of
an integral manifold relevant to the model (20). For more detailed results, see [162].

Moreover, for α = 1, the established result may be applied to the impulsive control
neural network model (10).

Example 5. Consider the model (20) for m = 3, n = 2, Ω = {(x1, x2)
T : 0 ≤ x1, x2 ≤ 2} ⊂ R2,

ai(ι) = 1.5 + 0.5 sin(ι), i = 1, 2, 3, b1(ι) = 2.9ι, b2(ι) = 3.1ι, b3(ι) = 2.5ι, fi(ιi) = gi(ιi) =
0.5(|ιi + 1| − |ιi − 1|), 0 ≤ τi(t) ≤ 2,

(wij)(t) =

 0.5− 0.2 cos(t) 0.4 + 0.1 sin(t) 0.1 + 0.3 cos(t)
0.3 + 0.1 sin(t) 0.2− 0.1 cos(t) 0.2 + 0.4 sin(t)
0.3− 0.2 sin(t) 0.1− 0.2 sin(t) 0.3 + 0.4 cos(t)

,

(hij)(t) =

 0.4 1 −0.3
−0.2 0.3 0
−0.3 −0.5 1

, Diq = diq =

 0.8 0.85
1.125 0.9
0.9 1.05

.

If the impulsive control is regulated by the constants γik

γik = 1 +
cos(1 + k)

2i
, i = 1, 2, 3, k = 1, 2, . . . (37)

then (35) and (36) hold for B = 2, Li = Mi = 1, ai = 1, ai = 2, i = 1, 2, 3, B1 = 2.9, B2 = 3.1,
B3 = 2.5, D1 = 3.3, D2 = 4.05, D3 = 3.9, and, hence, the fractional impulsive reaction–diffusion
neural network (20) of the Cohen–Grossberg type is globally uniformly Lipschitz stable.

4. Discussion

Different classes of CNNs are intensively applied in numerous areas of science,
engineering and medicine to model and study relevant phenomena. One of the direc-
tions in the recent development of CNN modeling is connected to the use of impulsive
modeling approaches. As such, numerous impulsive control CNN models have been
introduced [54–59,61,67–72,107,108,112,113,116–124,128]. The use of the impulsive control
approach in neuroscience is motivated by efforts to more adequately model processes
in the presence of short-term disturbances caused by external interference, the natural
environment or inherent in neuronal activity.

CNNs under impulsive disturbances are represented by two–component systems that
consist of continuous and discrete components and are actually hybrid models under differ-
ent hypotheses on the dynamical characteristics of the continuous and discrete components.
Thus, the impulsive control modeling paradigm bridges the gap between continuous and
discrete CNN models and offers opportunities for refinements to applied neuronal systems.

Stability of neural network states is a key property necessary for the efficient appli-
cation of the CNN model. In the presence of impulsive effects, it is crucial to analyze
the effect of the impulsive perturbations on the stability manner of the neural network
model, and to determine how impulses can be used to manage the stability properties
of a neural network system. External and internal short-term (impulsive) perturbations
can be also appropriately used to create impulsive control strategies for the stability and
synchronization of CNN models.

Parallel to the development of the impulsive control modeling approach, the variety
of CNNs to which it is applied has been also expanded. Recently, the classes of CNN
models to which this approach has been applied include DCNNs, DCNNs with reaction–
diffusion terms, DCNNs of Cohen–Grossberg type, BAM DCNNs, fractional-order DCNNs
and some others. See, for example, [57,58,72,104,108,109,113,116–120,123,162] and the
references therein.

Although a number of classical global asymptotic stability [29,59,79,85,89,92,98,127]
results exist for some major classes of CNNs, this stability notion is not applicable in
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the cases where several steady states exist, or an entire region with neuronal states is
considered, or the classical stability criteria are not met, but the stability performance of
a CNN model is acceptable from an applied point of view. In such cases, some extended
stability notions, such as practical stability, stability with respect to a set or Lipschitz
stability, are of particular interest. In their recent research, the authors contributed to
the development of these stability notions and enhanced the rigorous understanding of
extended impulsive stability and control strategies for DCNN models, including models
with fractional dynamics.

This paper has overviewed the research area of the application of extended stability
criteria to some main classes of impulsive and fractional DCNNs. The main advantages of
using extended stability strategies are mainly demonstrated via examples in terms of their
implementation and usage in neural network models.

A chart of the existing results on extended stability strategies applied to impulsive
and fractional DCNNs is provided in Table 1.

It is seen from Table 1 that some stability concepts are still not applied to important
classes of neural network models. Hence, the framework of extended stability strategies
for impulsive control and fractional-order neural network models is far from completion
and needs more developments. The presented chart also emphasizes the future research
directions in this important topic.

Table 1. Recent results on extended stability concepts applied to impulsive control DCNNs.

NNs PS SS SRhM SRIM PSRhM PSRIM LS

DCNNs
√ √ √ √ √ √ √

RDDCNNs
√ √ √ √ √

×
√

CGDCNNs ×
√

×
√

× ×
√

RDCGDCNNs ×
√

×
√

× ×
√

BAMDCNNs
√

×
√

×
√ √

×
FDCNNs

√
×

√ √ √
×

√

FRDDCNNs × ×
√ √ √

×
√

FCGDCNNs × × × × × ×
√

FRDCGDCNNs × × × × × ×
√

FBAMRDDCNNs × ×
√

× × × ×

The abbreviations used in Table 1 are as follows:

• PS = Practical stability;
• SS = Stability of sets;
• SRhM = Stability with respect to h-manifolds;
• SRIM = Stability with respect to integral manifolds;
• PSRhM = Practical stability with respect to h-manifolds;
• PSRIM = Practical stability with respect to integral manifolds;
• LS = Lipschitz stability;
• DCNNs = Delayed cellular neural networks;
• RDDCNNs = Reaction–diffusion delayed cellular neural networks;
• CGDCNNs = Cohen–Grossberg delayed cellular neural networks;
• RDCGDCNNs = Reaction–diffusion Cohen–Grossberg delayed cellular neural networks;
• BAMDCNNs - BAM delayed cellular neural networks;
• FDCNNs = Fractional delayed cellular neural networks;
• FRDDCNNs = Fractional reaction–diffusion delayed cellular neural networks;
• FCGDCNNs = Fractional Cohen–Grossberg delayed cellular neural networks;
• FRDCGDCNNs = Fractional reaction–diffusion Cohen–Grossberg delayed cellular

neural networks;
• FBAMDCNNs = Fractional BAM delayed cellular neural networks.
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In conclusion, the presented impulsive control and fractional DCNN models provide
excellent perspectives and tools that would be extremely useful, as they would provide a
framework enabling control bioscientists to better design neural network models that are
resilient in the face of impulsive shocks, fractional dynamic and uncertainty. In addition,
the developed extended stability and control criteria for such DCNNs can be used by
neuroscientists to determine how the neurons respond to impulsive stimulation, and how
such stimulation can be used to stabilize the model. Such results are also important in
the process of the verification of DCNNs designed to demonstrate an optimal solution
regardless of the initial data.

5. Conclusions

Neural network modeling is a very vital research area with broad applications. This
research is an overview of the authors’ main results on impulsive control neural network
modeling applied to different classes of DCNNs, including fractional-order models. It
also presents the recent progress in the applied extended stability and control strategies
to such neural network models. The proposed studies would provide a better theoretical
understanding of various types of impulsive control neural network systems, such as
impulsive CNNs, impulsive DCNNs, impulsive BAM DCNNs, impulsive Hopfield neural
networks, impulsive Cohen–Grossberg DCNNs, impulsive reaction–diffusion DCNNs and
their fractional-order generalizations. The presented extended stability strategies can be
used to understand the extent to which the DCNNs change under the influence of internal
or external factors (for instance, external forces). The analysis developed may lead to a real
understanding of the modeling approach by identifying mechanisms responsible for the
stable model behavior.
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