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Abstract: Image encryption is increasingly becoming an important area of research in information
security and network communications as digital images are widely used in various applications
and are vulnerable to various types of attacks. In this research work, a color image cryptosystem
that is based on multiple layers is proposed. For every layer, an encryption key and an S-box are
generated and utilized. These are based on a four-dimensional (4D) dynamical Chen system of a
fractional-order, the Mersenne Twister, OpenSLL, Rule 30 Cellular Automata and Intel’s MKL. The
sequential application of Shannon’s ideas of diffusion and confusion three times guarantees a total
distortion of any input plain image, thereby, resulting in a totally encrypted one. Apart from the
excellent and comparable performance to other state-of-the-art algorithms, showcasing resistance to
visual, statistical, entropy, differential, known plaintext and brute-force attacks, the proposed image
cryptosystem provides an exceptionally superior performance in two aspects: a vast key space of
21658 and an average encryption rate of 3.34 Mbps. Furthermore, the proposed image cryptosystem is
shown to successfully pass all the tests of the NIST SP 800 suite.

Keywords: chaotic maps; cellular automata; cryptography; image encryption; Intel’s MKL; Mersenne
Twister; OpenSSL; S-box

1. Introduction

The growing use of digital imaging technology and the increasing importance of online
data storage and transmission have made research on image encryption both timely and
necessary. In turn, this has also lead to increased demands for image-encryption algorithms
in various aspects of life, including:

(a) Increased use of digital imaging technology and applications [1,2]. With the
widespread use of digital cameras, smartphones and other imaging devices, the amount
of sensitive and personal information stored in digital images has increased dramatically.
This has made image encryption an important area of research.

(b) Growth of online data storage and transmission [3]. The increasing use of online
data storage and transmission has made it easier for unauthorized parties to access confi-
dential image data. This has made encryption an essential tool for protecting image data in
transit and in storage.

(c) Threats to privacy and security [4]. As more sensitive and confidential informa-
tion is stored in digital images, the risk of unauthorized access, theft and tampering has
increased. Image encryption is needed to protect against these threats.

(d) Advancements in computing power [5]. As computing power continues to increase,
attackers are able to use more sophisticated cryptanalysis methods to break encryption
algorithms. This has made it important for researchers to continuously research and
propose novel security measures for sensitive data.
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While some researchers have focused their efforts into advancing cryptographic algo-
rithms [6–9], others have dedicated their efforts towards the field of steganography [10,11].
Moreover, the literature shows a third group that combines the use of cryptography with
steganography for added security [12–14]. Such efforts were realized because traditional
data encryption algorithms, such as DES [15], 3DES [16] and AES [17,18] were found to be
no longer best-suited for image encryption.

This is due to a number of reasons, such as (a) the large size of image data, which in-
creases the computational cost and time required for encryption and decryption; (b) different
properties of image data, such as redundancy, pixel-correlation and structure, which can
affect the security of traditional encryption techniques; (c) lack of adaptability, since tra-
ditional encryption techniques are not well suited to handle the unique challenges posed
by image data, such as the need to preserve image quality and the requirement for real-
time encryption in certain applications; and (d) vulnerability to attacks, because some
traditional encryption techniques, such as DES, have already been shown to be prone to
cryptanalysis [19].

To that end, scientists and engineers have been making use of various mathematical
constructs and ideas inspired by nature to design secure and robust image-encryption
algorithms. The recent literature shows the employment of cellular automata (CA) [20–22],
DNA coding [8,23–25], electric circuits [26,27] as well as heavy reliance on dynamical
functions of chaotic behavior [6,28–32]. The following paragraph highlights the utilization
of various such ideas in the development of pseudo-random number generators (PRNGs)
to build encryption keys and substitution boxes (S-boxes).

The development and deployment of PRNGs comprise the majority of cryptography
research efforts. This is because a randomly distributed bit stream benefits both key
generation and S-box design [20]. Numerous examples in the literature illustrate the usage
of PRNGs in image cryptosystems. The researchers in [33], for instance, employed the Lucas
sequence to construct an S-box for their proposed image cryptosystem. The authors of [34]
produced encryption keys using the Rossler chaotic system and a Recaman’s sequence.
Likewise, the authors of [35] constructed PRNGs as encryption keys utilizing the Fibonacci
sequence, a chaotic tan function and a Bessel function.

The researchers in [36] investigated elliptic curves and used them to create a PRNG,
which they then combined with the Arnold map to encrypt images. Rule 30 CA generates a
PRNG and was utilized as an encryption key in [20]. In [37], a field programmable gate
array (FPGA) implementation of a PRNG utilizing a memristive Hopfield neural network
with a specific activation gradient was proposed. The Mersenne Twister was deployed by
the researchers in [7] as one of the encryption keys in a multi-stage cryptosystem. An S-box
was designed and utilized as the core stage in a three-stage image cryptosystem in [8],
where the Lorenz system was numerically solved, and its solution was used to generate a
PRNG, which was then employed to generate the S-box.

In another multi-stage image cryptosystem, the authors of [38] employed a discretized
version of the chaotic sine map to create an S-box and the hyperchaotic Lu system as a
PRNG. On the other hand, thus far, the literature on image encryption does not feature
image cryptosystems where the PRNGs offered by Intel’s Math Kernel Library (MKL) or
OpenSSL are employed. Intel’s MKL is a library of optimized mathematical functions,
including a high-quality PRNG [39]. It is specifically optimized for use on Intel hardware
and can provide faster performance compared to other libraries, while OpenSSL is an
open-source cryptography library that provides various cryptographic functions, including
a random number generator [40].

The literature clearly shows that chaos theory has been extensively studied and applied
to image cryptosystems. This is due to the diversity of desirable traits exhibited by dynam-
ical functions of chaotic behavior. These traits include periodicity, pseudo-randomness,
sensitivity to initial values and ergodicity [41]. Broadly, these functions are categorized
as either low-dimensional (LD) or high-dimensional (HD) with each class having a set of
exclusive advantages [6].
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LD chaotic functions dramatically simplify software and hardware implementations;
however, their use in image cryptosystems could, in some cases, be insufficiently secure.
In contrast, HD chaotic functions, despite being more complex and needing more computa-
tional resources and circuitry, are capable of offering exceptionally high levels of security.
Furthermore, upon studying hyperchaotic functions, a wide number of control parameters
are readily apparent [42]. This implies that their use in image cryptosystems results in
a significantly wider key space, which reduces the likelihood of brute-force attacks ever
succeeding [8]. Attempting to solve hyperchaotic systems at a fractional-order permits a
further expansion of the number of control variables and, consequently, an even wider
key space.

Recently, the image processing community has developed an interest in chaotic
fractional-order dynamical systems [43]. Specifically, their applications in image cryptosys-
tems have gained traction due to their superior performance compared to their integer-order
counterparts [44–48]. The authors of [44] proposed a secure image cryptosystem that em-
ployed smoothed sliding modes state observers for fractional-order chaotic systems. In [45],
an image cryptosystem with a very large key space was proposed using a fractional-order
four-dimensional (4D) Chen hyperchaotic map in conjunction with a Fibonacci Q-matrix.

An efficient image cryptosystem was proposed in [46], where various fractional-
order systems were utilized in an alternating fashion. In [47], a fractional-order logistic
map was proposed by the authors for the implementation of an image cryptosystem,
where its performance was then compared to that attained by a conventional logistic map.
The authors of [48] presented a technique for image encryption that used the solutions of
chaotic fractional-order fuzzy cellular neural networks. However, it is easily observable
that the use of fractional-order chaotic and hyperchaotic functions in image encryption
makes for a rather new trend in the literature with only a few articles mentioning such
an application.

The previous paragraphs aimed at describing the need for research on image cryp-
tosystems, the reliance of scholars on PRNGs to generate encryption keys and robust
S-boxes as well as the emerging utilization of hyperchaotic functions of fractional-order in
this field of research. While the literature shows the prevalence of image cryptosystems
that involve the use of multiple stages, in most cases, these are limited to only three stages
that comprise a total of a permutation–substitution–permutation (as in [7–9,20,33]).

In the rare case of employing more stages, the execution times were not reported [45].
This is because of the increases in complexity and the need for longer execution times that
result from adding further encryption stages. To make use of multiple-layer-encryption
networks, while maintaining low complexity and short execution times, this research work
proposes and achieves the following:

• A highly efficient multiple layer image cryptosystem, where, in each layer, an en-
cryption key is generated and utilized by XORing it with the image data, and then
an S-box is generated and applied to the resulting image. This effectively allows
for bit-diffusion and bit-confusion, thereby, satisfying Shannon’s theory for secure
communications [49].

• In the first layer, a fractional-order hyperchaotic Chen map is employed for key gener-
ation, while a Mersenne Twister PRNG is utilized for S-box design and application.

• In the second layer, a Mersenne Twister PRNG is employed for key generation, while
an OpenSSL PRNG is utilized for S-box design and application.

• In the third layer, Rule 30 CA is employed for key generation, while an Intel’s MKL
PRNG is utilized for S-box design and application.

• By utilizing a dynamical system with hyperchaotic behavior as well as selecting three
S-boxes with specific criteria, a very large key space of 21658 is achieved, thus, fending
off brute-force attacks.

• By optimizing the code efficiency, a superior encryption rate is achieved by the pro-
posed image cryptosystem with an average encryption rate of 3.34 Mbps.
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This paper is organized as follows. Section 2 presents the preliminary constructs and
PRNGs utilized in the proposed image cryptosystem as well as the design and selection
criteria for the S-boxes in use. Section 3 describes the proposed image cryptosystem in
detail, along with algorithms and flow charts. Section 4 reports the attained numerical
results and presents a comparative study with other state-of-the-art algorithms. Finally,
Section 5 presents the conclusions of this research work and suggests plausible future
research directions that could be further pursued.

2. Preliminary Mathematical Constructs

This section presents the various mathematical constructs that are employed in the pro-
posed image cryptosystem for PRNG generation and S-box design. Next, a key-establishment
protocol is proposed based on the performance evaluation metrics of the S-boxes.

2.1. The Fractional-Order Hyperchaotic Chen System

The fractional-order 4D Chen system [50,51] is a differential system, which falls under
the hyperchaotic systems category. Hyperchaotic systems are systems of functions that are
able to produce more than one positive Lyapunov exponent. In turn, this promotes the
capability of producing more robust pseudo-random number sequences. Moreover, many
control variables are involved in the Chen system due to being a 4D system of equations,
which is beneficial for increasing the key space of the proposed image cryptosystem as
a whole. Furthermore, the adopted Chen system in this work provides a good balance
between high ergodicity, an improved distribution in phase space, as well as a tolerable
computation complexity, as opposed to the Lorenz system [20] with its comparatively
poor ergodicity or the hyperchaotic memristor circuit, which possesses transcendental
nonlinearities but is highly complex in software implementations [52].

The Chen system is mathematically described as follows:

Dα1 x = a(y− x) + u, (1)

Dα2 y = γx− xz + cy, (2)

Dα3 z = xy− bz, (3)

and
Dα4 u = yz + du. (4)

In (1)–(4), 13 control variables are utilized to specify the system. The first four variables
constitute the initial values for x, y, z and u (or x0, y0, z0 and u0), which are the initial point
in the 4D space. The second five variables, a, b, c, d and γ, are the scale factors for the
4 equations. The last four variables, α1, α2, α3 and α4, are the fractional differential orders.

To visually illustrate the hyperchaotic behavior of the fractional-order 4D Chen system,
Figure 1 displays example plots for the system. For demonstration purposes, the figure
shows the solution of the regular system; nevertheless, in application, the system is further
solved in fractional order. Further analysis of the system’s hyperchaotic behavior can be
conducted through examining its bifurcation plots against various parameters, as illustrated
in Figures 2 and 3 for b and c, respectively. Moreover, the 4 Lyapunov characteristic
exponents (LCEs), which give the rate of exponential divergence from perturbed initial
conditions, are plotted in Figure 4.
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(a) X–Y–Z axes.

(b) X–Y–U axes.

(c) X–Z–U axes. (d) Y–Z–U axes.
Figure 1. 3D plots utilizing various axes for the fractional order 4D Chen system. The values used are
{x, y, z, u} = 0.3, a = 35, b = 3, c = 12, γ = 28, d = 0.5 and α = 0.97 (since the system is calculated in
the 4D space, initial values are needed for the four axes. However, for visualization purposes, a single
axis is ignored in each plot). The color models the time factor representing initiations with cold colors
and ending with hot colors.

2.2. The Mersenne Twister

The Mersenne Twister (MT) is a deterministic, high-quality PRNG algorithm. It was
first introduced in 1997 by Makoto Matsumoto and Takuji Nishimura and is named after
the French mathematician Marin Mersenne, who studied prime numbers [53]. The MT is
considered to be one of the most advanced and widely used PRNG algorithms, and it is
used in a variety of applications, including simulations, games and cryptography.
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(a) x. (b) y.

(c) z. (d) u.

Figure 2. Bifurcation plots of the fractional order 4D Chen system for x, y, z and u against b.

(a) x. (b) y.

(c) z. (d) u.
Figure 3. Bifurcation plots of the fractional order 4D Chen system for x, y, z and u against c.
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Figure 4. A plot of the 4 Lyapunov characteristic exponents of the fractional order 4D Chen system.

The MT generates random numbers by using a linear feedback shift register (LFSR),
which is a simple mechanism for generating a sequence of binary numbers. The algorithm
uses a specific mathematical formula to determine the next number in the sequence based
on the current state of the LFSR and a constant seed value. The seed value is used to
initialize the state of the LFSR, and it determines the entire sequence of numbers generated
by the algorithm. The MT has several properties that make it an attractive choice for
random number generation:

• High-quality random numbers: The MT produces high-quality random numbers that
are evenly distributed across the range of possible values. This makes it well-suited for
use in simulations, games and other applications where randomness is important [54].

• Large period: The MT has a very large period of 219937 − 1, which means that the
sequence of numbers generated by the algorithm is very long before it begins to
repeat. This makes it useful for applications that require a large number of random
numbers [53].

• Fast generation: The MT is designed to be fast and efficient, and it can generate
random numbers quickly, even on low-end hardware [55].

• Easy to implement: The MT is easy to implement in a variety of programming lan-
guages and software (for example, MS Excel®, Mathworks Matlab® and Wolfram
Mathematica®), which makes it accessible to a wide range of developers [56].

2.3. OpenSSL

OpenSSL is an open-source cryptography library that provides a wide range of crypto-
graphic functions, including PRNG. The PRNG functionality in OpenSSL is designed to
provide the fast and reliable generation of high-quality random numbers for use in a variety
of applications, including simulations, games and cryptography. OpenSSL provides several
different PRNG algorithms, including the Fortuna PRNG [57], which is a well-known
and widely used PRNG. It also provides support for other PRNG algorithms, such as the
Dual-EC-DRBG PRNG, which is designed for use in cryptographic applications. One of the
key benefits of using OpenSSL for PRNG is its robustness and security.

Moreover, it is a widely used cryptography library that has undergone extensive
security and performance testing, which makes it well-suited for use in security-sensitive
applications, such as cryptography [58]. Additionally, the OpenSSL community is highly
active and provides regular updates to the library, which helps to ensure that the PRNG
algorithms in OpenSSL remain secure and reliable over time. OpenSSL also provides
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a comprehensive set of tools for controlling and configuring the PRNG, including the
ability to set the seed value, specify the range of values to be generated and control the
distribution of the random numbers. This makes it easy to use OpenSSL for PRNG in a
variety of applications and to tailor it to the specific needs of each application.

2.3.1. Rule 30 Cellular Automata

Rule 30 is a one-dimensional (1D) binary CA—a type of CA that uses a grid of cells
to generate patterns based on a set of simple rules. Each cell in the grid can be in one of
two states, either “on” or “off”, and the state of each cell is determined based on the states
of its neighbors according to the rule set. In the case of Rule 30, the rule set is simple: the
state of a cell in the next generation is determined based on the states of its two neighbors
in the current generation. Specifically, if the center cell is “off” and its two neighbors are
both “on”, the center cell will be “on” in the next generation. If the center cell is “on” and
its two neighbors are either both “on” or both “off”, the center cell will be “off” in the
next generation.

The behavior of Rule 30 can be visualized as a pattern of “on” and “off” cells that
evolves over time with each generation representing a new step in the evolution of the
pattern. Figure 5 provides a graphical view of Rule 30 CA. Despite its simple rule set, Rule
30 exhibits a complex and seemingly random behavior with patterns that can be difficult
to predict. Figure 6 demonstrates the application of Rule 30 to generate the first 10 steps,
while Figure 7 demonstrates the application of Rule 30 to generate the first 100 steps.

Figure 5. Rule 30 CA: The present state and next state for the center cell.

Figure 6. Rule 30 CA: A plot of the first 10 steps.
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Figure 7. Rule 30 CA: A plot of the first 100 steps.

Rule 30 has been the subject of extensive study by mathematicians and computer
scientists, who have been fascinated by its complex behavior and the seemingly random
patterns it generates. It has also been used in a variety of practical applications, including
cryptography, as the seemingly random patterns generated by Rule 30 can be used as the
basis for secure encryption algorithms.

For the sake of the proposed image cryptosystem; however, we are only interested in
the simplest nontrivial CA in which a cell’s neighborhood is defined as the nearby cells on
each side of it. Thus, any given cell, along with its two neighbors, would create a neigh-
borhood of three cells, yielding 23 = 8 different patterns (as illustrated in Figure 5). More
specifically, class three behavior is exhibited by rule 30 CA [20]. This indicates that simple
input patterns result in chaotic and unpredictable outputs. Rule 30 CA mathematically
determines the subsequent state of every cell through the following relation:

si(t + 1) = si−1(t)⊕ (si(t) + si+1(t)), (5)

such that ⊕ and + on the RHS of (5) are, respectively, the XOR and OR logical operators.
A PRNG is extracted from Rule 30 CA by examining the middle column of Figure 6 and
converting every black cell into a 1 and every white cell into a 0. This means that the first
10 bits are {1, 1, 0, 1, 1, 1, 0, 0, 1, 1}. In this work, we follow the technique proposed earlier
in [33] to augment a seed in the generation procedure of the Rule-30-CA-based PRNG.

2.3.2. Intel’s Math Kernel Library

Intel’s Math Kernel Library (MKL) is a numerical library that provides a variety of
mathematical functions and algorithms, including PRNG. The PRNG functionality in Intel
MKL is designed to provide the fast and reliable generation of high-quality random num-
bers for use in a variety of applications, including simulations, games and cryptography.
Intel’s MKL provides several different PRNG algorithms, including a parallel PRNG, which
is designed to generate random numbers in a parallel fashion across multiple processing
cores [59]. One of the key benefits of using Intel’s MKL for PRNG is its performance.

Intel’s MKL is optimized for Intel processors and can significantly improve the perfor-
mance of random number generation compared to other PRNG algorithms. This makes it
well-suited for applications that require large amounts of random numbers, such as Monte
Carlo simulations or cryptography. Additionally, Intel’s MKL provides a comprehensive
set of tools for controlling and configuring the PRNG, including the ability to set the seed
value, specify the range of values to be generated and control the distribution of the random
numbers. This makes it easy to use Intel’s MKL for PRNG in a variety of applications
and to tailor it to the specific needs of each application.
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2.3.3. S-Box Design

For the proposed image cryptosystem, a number of S-boxes were designed and em-
ployed to complete data confusion. This was performed by applying the following steps:

1. Assume a pseudo-randomly generated bit stream bPRNG of a sufficiently long length LPRNG.
2. Divide bPRNG into N shorter bit streams bPRNGi , i ∈ [1, N] of length LPRNG/N each.
3. Partition every bit stream bPRNGi into groups of 8 bits each.
4. Convert every group of 8 bits into a decimal number. This results in a list with

elements ej ∈ [0, 255].
5. Eliminate duplicates, such that the list only has 256 unique elements spanning [0, 255].

In case the size of the resulting list is less than 256, this list is discarded.
6. Repeat the above steps for the other N − 1 bit streams, obtaining a maximum of N

S-boxes.
7. For the (possibly) N S-boxes, assume a set of target performance metrics, where each

S-box is evaluated using the same performance evaluation metrics, and the selected
S-box is the one closer (in performance values) to the target metrics.

This procedure is provided as an algorithm in Algorithm 2.

2.3.4. Key-Establishment Protocol

Since the image cryptosystem that is proposed in this research work adopts symmetric-
key cryptography, it is essential for both the transmitting and receiving parties to have the
same sets of keys. While the first set of keys includes those that are used as seed values for
the various aforementioned PRNGs, as in the vast majority of image encryption literature,
these must be pre-shared over a secure channel prior to the exchange of any sensitive
data (i.e., the encrypted images). However, the second set of keys, which relates to the
generation and design of S-boxes, will not take on the traditional form. These will actually
be based on pre-shared specific values of S-box performance metrics.

In Section 2.3.3, with an arbitrary PRNG bit stream, it was shown how N S-boxes could
be obtained. For any S-box, a number of performance evaluation metrics may be computed
and utilized to assess its cryptographic properties and strength. Those metrics are described
in Section 4.13, and their ideal values are provided in Table 19 . In this research work, we
propose the communicating parties to agree on a specific set of values for the performance
evaluation metrics of the S-boxes to be utilized. This means that receiver will generate
N S-boxes, compute their metrics and then select the S-box with identical performance
evaluation metrics to those pre-shared by the transmitter. Implementing such a protocol
has a number of implications as follows:

1. It vastly increases the key space of the image cryptosystem, since every S-box in use
has five metrics. In the proposed image cryptosystem, three S-boxes are employed.
This leads to the introduction of 3× 5 = 15 new variables as part of the key and, thus,
a giant leap in resistivity to brute-force attacks.

2. Using a single arbitrary PRNG bit stream of sufficiently long length LPRNG, many
S-boxes can be generated and applied. Their use can be varied for subsequent trans-
missions, thus, increasing the complexity of any cryptanalysis efforts.

3. However, instead of generating a number of S-boxes and only selecting that with
the best-performing set of metrics, near-optimum S-boxes would be employed. Nev-
ertheless, this limitation is superseded by the fact that each of the utilized S-boxes
is only a single component of a larger multiple-layer-encryption network. Thus,
the performance of the encryption network, as a whole, is what really matters.

3. Proposed Image Cryptosystem

Section 3.1 outlines the encryption process, while Section 3.2 outlines the decryption
process. This is followed by the algorithms utilized in each of them as outlined in Section 3.3.
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3.1. The Encryption Process

The proposed image cryptosystem can be outlined through the following steps:

1. A plain RGB image I of dimensions M× N is selected and its pixels are converted
into a 1D bit stream of plaintext data bits d with length Ld.

2. Encryption Layer 1: Chen encryption key and Mersenne Twister S-box.

(a) The hyperchaotic Chen system of fractional-order is solved, and an encryption
key kChen is generated from its solution using Algorithm 1. The length Ld of
this key is given by

Ld = M× N × 3× 8. (6)

(b) An encryption process is applied, where the plaintext data bits d are XORed
with the first encryption key kChen as follows:

d1 = d⊕ kChen. (7)

(c) The bit stream d1 is reshaped back into an image I11.
(d) Algorithm 2 is applied to the Mersenne Twister PRNG, obtaining a Mersenne-

Twister-based S-box SMT , such as that displayed in Table 1.

Table 1. Proposed Mersenne-Twister-based S-box.

4 90 209 152 178 35 92 10 240 204 181 97 187 165 116 131

252 146 44 144 180 130 223 40 24 234 76 32 201 21 150 46

33 137 83 158 27 41 248 237 119 18 109 2 227 84 170 160

251 48 222 163 211 113 172 166 62 96 118 207 37 31 107 224

102 179 226 74 112 254 205 218 5 122 60 12 200 164 81 23

13 230 190 127 34 65 169 183 54 129 1 70 236 136 245 186

85 15 132 239 58 225 123 120 221 185 125 95 124 154 195 88

202 143 232 8 219 173 145 140 208 101 79 39 247 135 194 250

20 216 26 233 87 71 55 22 241 126 238 59 244 52 121 30

49 0 214 42 210 182 196 38 53 171 45 235 82 231 242 104

7 156 168 80 77 191 111 177 6 100 57 155 117 161 217 189

103 68 203 148 66 228 43 99 229 91 134 105 128 14 93 192

157 162 138 29 47 3 212 115 50 106 213 253 246 63 151 176

75 110 147 61 9 159 72 25 193 94 16 51 167 36 206 198

139 174 188 133 220 108 17 11 215 73 64 255 141 89 69 142

67 78 175 56 184 249 28 19 98 86 199 243 149 114 197 153

(e) A pixel value substitution process is applied on image I11 using SMT and ob-
taining image I12 as follows:

I12 = SMT(I11). (8)

(f) The pixels of the encrypted image I12 are converted into a 1D bit stream d12.

3. Encryption Layer 2: Mersenne-Twister encryption key and OpenSSL S-box.

(a) A Mersenne-Twister-based encryption key kMT is generated with length Ld.
(b) An encryption process is applied, where the bits of the encrypted image d12

are XORed with the second encryption key kMT as follows:

d21 = d12 ⊕ kMT . (9)
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(c) The encrypted data bits d21 are reshaped back into an image I21.
(d) Algorithm 2 is applied to the OpenSSL PRNG, obtaining an OpenSSL-based

S-box SOpenSSL, such as that displayed in Table 2.

Table 2. Proposed OpenSSL-based S-box.

73 202 161 243 4 252 40 165 168 36 74 253 169 21 238 34

8 29 232 66 111 102 210 71 195 247 32 164 82 58 196 151

62 59 166 112 244 49 193 241 240 200 39 91 228 48 47 137

220 204 50 146 178 245 30 100 117 221 35 107 206 194 149 182

16 52 88 122 205 109 224 67 68 186 158 172 80 86 0 144

118 65 72 199 94 108 251 9 150 99 45 27 159 104 185 249

246 63 17 188 212 95 218 56 152 96 209 44 132 89 76 11

175 113 174 57 128 234 26 79 61 190 2 98 142 207 69 14

123 37 53 18 87 31 124 147 231 84 19 83 145 133 85 106

120 198 46 239 177 155 230 235 43 201 20 78 28 135 163 23

3 125 127 121 139 116 254 171 13 77 7 140 176 170 250 119

208 131 25 225 115 153 75 101 219 237 217 216 10 187 215 189

92 55 38 191 248 143 192 227 197 41 97 70 54 141 12 24

5 33 236 81 22 154 51 130 233 64 60 203 103 15 148 90

181 157 6 138 129 134 126 229 114 242 184 160 42 226 183 222

105 1 110 213 180 223 93 136 179 255 156 167 211 162 214 173

(e) A pixel value substitution process is applied on image I21 using SOpenSSL and
obtaining image I22 as follows:

I22 = SOpenSSL(I21). (10)

(f) The pixels of the encrypted image I22 are converted into a 1D bit stream d22.

4. Encryption Layer 3: Rule-30-CA encryption key and Intel’s MKL S-box.

(a) A Rule-30-CA-based encryption key kCA is generated with length Ld.
(b) An encryption process is applied, where the bits of the encrypted image d22

are XORed with the third encryption key kCA as follows:

d3 = d22 ⊕ kCA. (11)

(c) The encrypted data bits d3 are reshaped back into an image I31.
(d) Algorithm 2 is applied to Intel’s MKL PRNG, obtaining an Intel’s MKL-based

S-box SMKL, such as that displayed in Table 3.
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Table 3. Proposed Intel’s MKL-based S-box.

137 9 202 234 125 23 241 219 250 77 132 47 99 44 208 230

100 91 238 149 213 117 56 135 185 10 63 174 78 227 43 61

178 119 183 104 81 19 52 186 72 32 248 48 193 115 133 28

8 4 155 206 172 175 192 187 36 235 200 136 199 191 170 247

55 180 130 83 45 64 159 215 39 240 211 58 102 62 224 232

214 12 251 65 90 46 201 217 145 162 116 212 141 50 189 143

166 198 128 177 74 84 22 103 226 233 209 105 131 29 150 154

184 237 156 176 228 147 153 53 142 89 20 26 38 148 169 182

67 239 35 146 194 165 210 71 97 76 107 220 171 158 11 27

41 101 244 225 88 190 113 110 204 229 112 111 161 98 252 164

16 236 195 24 120 106 114 205 68 96 163 138 129 14 157 18

231 3 0 242 152 243 95 173 75 34 121 221 245 188 2 216

66 123 181 109 167 31 49 54 6 17 7 51 179 249 118 108

255 30 15 33 60 73 139 79 168 93 223 82 87 1 69 197

218 140 253 5 42 92 207 124 196 57 85 203 127 151 160 25

21 222 246 126 86 134 144 80 37 40 94 13 59 70 122 254

(e) A pixel value substitution process is applied on image I31 using SMKL and
obtaining the final encrypted image I32 as follows:

I32 = SMKL(I31). (12)

Figure 8 displays a flow chart for the encryption process comprising all the layers.

Figure 8. Flow chart of the encryption process of the proposed image cryptosystem.

3.2. The Decryption Process

The decryption process takes the form of the inverse of the encryption process. It
can be outlined in a number of steps as follows—through applying each of the layers in a
reverse order:

1. Starting with the final encrypted image I32 of dimensions M× N.
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2. Decryption Layer 3: Intel MKL’s S-box and Rule-30-CA encryption key.

(a) A reverse pixel value substitution process is applied on image I32 using S−1
MKL

and obtaining image I31 as follows:

I31 = S−1
MKL(I33). (13)

(b) The pixels of the encrypted image I31 are converted into a 1D bit stream d3.
(c) A decryption process is applied, where the data bits d3 are XORed with the

third encryption key kCA as follows:

d22 = d3 ⊕ kCA. (14)

(d) The encrypted data bits d22 are reshaped back into an image I22.

3. Decryption Layer 2: OpenSSL S-box and Mersenne-Twister encryption key.

(a) A reverse pixel value substitution process is applied on image I22 using
S−1

OpenSSL and obtaining image I21 as follows:

I21 = S−1
OpenSSL(I22). (15)

(b) The pixels of the encrypted image I21 are converted into a 1D bit stream d2.
(c) A decryption process is applied, where the data bits d2 are XORed with the

second encryption key kMT as follows:

d12 = d2 ⊕ kMT . (16)

(d) The encrypted data bits d12 are reshaped back into an image I12.

4. Decryption Layer 1: Mersenne-Twister S-box and Chen hyperchaotic fractional-order
encryption key.

(a) A reverse pixel value substitution process is applied on image I12 using S−1
MT

and obtaining image I11 as follows:

I11 = S−1
MT(I12). (17)

(b) The pixels of the encrypted image I11 are converted into a 1D bit stream d1.
(c) A decryption process is applied, where the encrypted data bits d1 are XORed

with the first encryption key kChen as follows:

d = d1 ⊕ kChen. (18)

(d) The plaintext data bits d are reshaped back into a plain RGB image I.

Figure 9 displays a flow chart for the decryption process comprising all the layers in a
reverse order.
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Figure 9. Flow chart of the decryption process of the proposed image cryptosystem.

3.3. Utilized Algorithms

Algorithm 1 describes the generation of a PRNG from a chaotic system. Algorithm 2
describes the generation of an S-box given a pseudo-random bit stream generated using one
of the three proposed PRNGs suggested earlier in Section 2. As discussed in Section 2.3.3,
given a sufficiently long bit stream, a number of S-box trials and a set of target performance
metrics, Algorithm 2 aims at finding an S-box that is as close as possible to the provided
performance metric values. It may seem counter-intuitive to provide a set of less-than-
optimal performance metric values to such an algorithm; however, a near-optimal S-box can
be considered as sufficient for a sub-routine in a large-scale image cryptosystem in addition
to reducing the predictability factor (as a cryptanalyst would assume that an optimal S-box
must be applied).

Algorithm 1 Generate a PRNG bit stream given a chaotic system S of k dimensions and the
number of needed bits n

1. Solve S for the size of n
k + 1 generating the set of lists {L1, L2, . . . , Lk}

2. Flatten the set of lists into one list L = {L1[1], L2[1], . . . , Lk[1], L1[2], L2[2], . . . , Lk[2], . . . }
3. If |L| > n, drop the last |L| − n elements from L
4. λ = Median(L)

5. Return Lbits|Lbits[i] =

{
1, if L[i] > λ

0, otherwise
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Algorithm 2 Generate an S-box given a bit stream bPRNG, the number of S-box trials n
and target performance metric values M = {NL, SAC, BIC, LAP, DAP}

1. Sbits = {bPRNG1 , bPRNG2 , . . . , bPRNGn}|
⋃n

i=1(bPRNGi ) = bPRNG
2. SSbox =[]
3. For each Sj ∈ Sbits:

(a) Wj = Partition(Sj, 8), creating a list of lists of bits of dimensions L× 8
(b) Zj =

⋃L
i=1(ToDecimal(Wji ))

(c) Sboxj = RemoveDuplicates(Zj)

(d) Evaluate Sboxj creating Mj = {NLj, SACj, BICj, LAPj, DAPj}
(e) Append({Sboxj, Mj}, SSbox)

4. Sboxres = Ssbox(1,1)

5. SboxDi f f = Magnitude(M− Ssbox(1,2)
)

6. For each {Sboxj, Mj} ∈ Ssbox:

(a) SboxDi f f j
= Magnitude(M−Mj)

(b) If(SboxDi f f j
< SboxDi f f ):

i. SboxDi f f = SboxDi f f j

ii. Sboxres = Sboxj

7. Return Sboxres

4. Numerical Results and Performance Evaluation

This section aims at conducting a full performance evaluation analysis of the proposed
image cryptosystem as well as at performing a comparative study with other state-of-the-
art image-encryption algorithms. The conducted analyses will test the proposed image
cryptosystem’s ability to fend off attacks of various natures. Those include visual, statistical,
entropy and differential as well as brute-force attacks.

We further measure how wide the key space is, how fast the cryptosystem performs
image encryption and decryption and whether it can successfully pass all the tests in the
National Institute of Standards and Technology (NIST) test suite. The proposed image
cryptosystem and its testing were implemented in the Wolfram language, utilizing Wolfram
Mathematica® v.13.2. This was performed on a machine with the following specifications:
2.9 GHz 6-Core Intel® CoreTM i9 and 32 GB of 2400 MHz DDR4 RAM, running on macOS
Catalina v.10.15.7.

A number of commonly utilized images from the image processing community were
employed. These include Lena, Mandrill, Peppers, Sailboat, House, House2 and Tree, all of
dimensions 256× 256, unless otherwise specified. The following subsections present the
results of each of the conducted tests.

4.1. Human Visual System Examination and Histogram Analysis

The simplest performance evaluation of an image cryptosystem may be easily con-
ducted by examining a plain image and its encrypted version employing the human visual
system (HVS). Figures 10–15 (including sub-figures) showcase a number of plain images
and their encrypted versions as obtained through the application of the proposed image
cryptosystem. It is clear that no visual cues can be attained from the encrypted images as
to what their plain versions could be.
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(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 10. Mandrill image and histogram comparison pre- and post-encryption.

(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 11. Sailboat image and histogram comparison pre- and post-encryption.
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(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 12. Peppers image and histogram comparison pre- and post-encryption.

(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 13. House image and histogram comparison pre- and post-encryption.
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(a) Plain image. (b) Encrypted image.

(c) Histogram of the plain image. (d) Histogram of the encrypted image.

Figure 14. House2 image and histogram comparison pre- and post-encryption.

(a) Plain image. (b) Plain image DFT.
(c) Plain image co-occurrence.

(d) Encrypted image. (e) Encrypted image DFT.
(f) Encrypted image co-occurrence.

Figure 15. Tree image as well as its Fourier transformation and 3D plots of its co-occurrence matrix
pre- and post-encryption.
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Furthermore, by incorporating a statistical measure, the histograms of the plain im-
ages and their encrypted versions, which are provided in the same set of figures, also
showcase excellent performance. While the histograms of every plain image clearly depict
unique statistical characteristics, those of the encrypted images show an almost uniform
distribution, which cannot be traced back to any specific plain image. This signifies the
ability of the proposed image cryptosystem to fend off attacks of a statistical nature.

4.2. Mean Squared Error

The mean squared error (MSE) between two images is a widely used performance
evaluation metric for image-encryption algorithms. It is a measure of the difference be-
tween a plain image and its encrypted version. The purpose of any image cryptosystem
is to scramble the image data in such a way that it becomes extremely difficult for an
unauthorized third-party to access the original plain image. To evaluate the effectiveness
of an image cryptosystem, it is thus necessary to compare the encrypted image with the
plain image and to measure the difference between them.

The MSE is one of the most common methods of achieving this. It is basically a scalar
value that measures the average of the squared difference between the pixel values of
two images. The smaller the MSE value, the more similar the two images are. In image
encryption, the goal is to encrypt the image in such a way that the encrypted image is as
different from the original image as possible, while still being able to decrypt it back to its
original form.

A high MSE value between a plain image and its encrypted version indicates that
the encryption process has been successful. The MSE is calculated as follows: Given two
images I and I′ with the same dimensions M× N, the MSE is calculated by summing the
squared difference between each corresponding pixel in the two images and then dividing
by the total number of pixels in the image. Mathematically, it is expressed as:

MSE =
∑M−1

i=0 ∑N−1
j=0 (I(i,j) − I′(i,j))

2

M× N
. (19)

Table 4 displays the computed MSE values for different images. It also provides
a comparison with other image cryptosystems in the state-of-the-art. It is shown that
comparable performance is attained.

It is common to report the MSE and peak signal-to-noise ratio (PSNR) values jointly
upon assessing image cryptosystems. This is usually performed since the computation of
PSNR is based on the value of MSE. Nevertheless, the authors of [60] only provided PSNR
values without reporting MSE values. This is the reason Table 4 shows columns of N/A
under the heading of [60].

Table 4. Comparison of MSE values with the literature.

Image Proposed [8] [29] [30] [31] [20] [60]

Lena 8912.4 9112.1 8926.96 10,869.73 4859.03 8888.88 N/A
Mandrill 8320.41 8573.38 8290.84 10,930.33 6399.05 8295.21 N/A
Peppers 10,065.4 10,298.7 10,045.1 N/A 7274.44 10,092.3 N/A
House 8395.53 8427.04 8351.64 N/A N/A N/A N/A
House2 9142.54 9374.65 N/A N/A N/A N/A N/A
Girl 12,104.2 12,450.9 N/A N/A N/A N/A N/A
Sailboat 10,071.9 N/A N/A N/A N/A N/A N/A
Tree 9873.24 N/A N/A N/A N/A N/A N/A

Average 9610.65 9706.13 8903.64 10, 900 61, 77.51 9092.13 N/A

4.3. Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR) is based on the MSE discussed in Section 4.2.
It aims to connect the error margin to the peak value of a given signal. In this research
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work, such a peak signal value is determined as the highest pixel intensity in an image
(Imax = 255). Therefore, for a given image I, the PSNR is mathematically expressed as:

PSNR = 10 log
( I2

max
MSE

)
. (20)

It is clear in (20) that the PSNR is inversely proportional to the MSE . Thus, the lower
the PSNR value, the better. Table 5 displays the computed PSNR values for the image
cryptosystem proposed in this work as well as those reported in the literature by counterpart
algorithms. It is clear that the achieved PSNR values are comparable to the state-of-the-art.

Table 5. Comparison of PSNR values, in dB, with the literature.

Image Proposed [8] [29] [30] [31] [20] [60]

Lena 8.63086 8.53462 8.6237 7.7677 11.3 8.64233 8.5674
Mandrill 8.92936 8.79929 8.9448 7.7447 10.10 8.94253 10.0322
Peppers 8.10248 8.00296 8.11128 N/A 9.55 N/A N/A
House 8.89032 8.87405 8.91309 N/A N/A N/A N/A
House2 8.52013 8.41125 N/A N/A N/A N/A N/A
Girl 7.30144 7.17879 N/A N/A N/A N/A N/A
Sailboat 8.0997 N/A N/A N/A N/A N/A N/A
Tree 8.18621 N/A N/A N/A N/A N/A N/A

Average 8.33256 8.30016 8.64822 7.7562 10.3167 8.79243 9.2998

4.4. Mean Absolute Error

The mean absolute error (MAE ) between a plain image and its encrypted version
refers to the average difference between the intensity values of corresponding pixels in the
two images. It represents the average magnitude of the differences between the original
and encrypted pixels and is a measure of the quality of the encryption process in terms of
preserving the visual information of the original image. The higher the MAE, the greater
the difference of the encrypted image to the original plain image in terms of the pixel
intensity values and the better the image cryptosystem is at distorting the original plain
image information. It is represented mathematically as:

MAE =
∑M−1

i=0 ∑N−1
j=0 |I(i,j) − I′(i,j)|
M× N

, (21)

where I and I′ are two images. Table 6 displays the computed MAE values for the proposed
image cryptosystem in comparison to other state-of-the-art algorithms. It is clear that the
achieved MAE values are comparable to the state-of-the-art.

Table 6. Comparison of MAE values with the literature.

Image Proposed [8] [20] [30] [61] [60]

Lena 77.4877 78.3564 77.3752 87 77.35 77.96
Peppers 81.9832 82.3273 81.7740 N/A 74.71 N/A
Mandrill 75.1632 81.913 75.1659 92 73.91 67.85

House 75.4983 N/A N/A N/A N/A N/A
House 2 78.3327 N/A N/A N/A N/A N/A

Girl 89.9807 N/A N/A N/A N/A N/A
Sailboat 82.1003 N/A N/A N/A N/A N/A

Tree 81.1623 N/A N/A N/A N/A N/A

Average 80.2136 80.8656 78.105 89.5 75.3233 72.905



Fractal Fract. 2023, 7, 287 22 of 40

4.5. Information Entropy

In the realm of grayscale images, Shannon’s information entropy is used to quantify
the randomness of an image’s gray pixel value distribution. According to Shannon’s theory,
the formula for calculating information entropy is:

H(m) =
M

∑
i=1

p(mi) log2
1

p(mi)
, (22)

where p(mi) is the probability of occurrence of symbol m, while M is the total number of
bits for each symbol. In relation to images, as a grayscale image has 256 distinct values
[0− 255] and 28 potential permutations, the entropy value of an encrypted image reaches a
maximum of 8. Consequently, the entropy can be used to measure the unpredictability of
encrypted images. In Table 7, the entropy values computed for the image cryptosystem
proposed in this work as well as other state-of-the-art algorithms are displayed. It is clear
that the entropy values computed for the various images are extremely close to the ideal
value of 8, indicating that the proposed image cryptosystem is resistant to entropy attacks.
Moreover, the disparities in the information entropy values for the state-of-the-art are
demonstrated to be insignificant.

Table 7. Comparison of information entropy values with the literature.

Image Proposed [8] [29] [30] [62] [31] [20] [60]

Lena 7.99887 7.9856 7.999 7.999 7.997 7.996 7.997 7.9972
Mandrill 7.99866 7.9905 7.999 7.999 7.999 N/A 7.996 7.9969
Peppers 7.99834 7.9951 7.999 7.9991 N/A 7.997 7.9969 N/A
House 7.99729 7.9577 7.999 N/A N/A N/A N/A N/A

House2 7.99848 7.9847 N/A N/A N/A N/A N/A N/A
Girl 7.99477 7.9789 N/A N/A N/A N/A N/A N/A

Sailboat 7.99875 N/A N/A N/A N/A N/A N/A N/A
Tree 7.99713 N/A N/A N/A N/A N/A N/A N/A

Average 7.99711 7.98208 7.999 7.999 7.99903 7.9965 7.99663 7.99705

4.6. Fourier Transformation Analysis

The discrete Fourier transform (DFT) is a mathematical technique that transforms a
discrete signal into its equivalent frequency representation. In the context of image encryp-
tion, DFT can be used as a tool for analyzing the frequency content of an image. In order
to transform an image from the spatial domain to the frequency domain, the following
expression mathematically describes the application of DFT:

F(k, l) =
N−1

∑
i=0

N−1

∑
j=0

f (i, j)e−i2π( ki
N + li

N ), (23)

such that f (a, b) is the spatial domain representation of the image, where the exponential
term is the basis function corresponding to each point F(k, l) in the Fourier space. When
applied to a plain image, the DFT separates the image into its constituent frequencies,
which can be visualized as peaks in the frequency spectrum. This representation is useful
for analyzing the image structure, as certain patterns and features can be identified by the
presence of specific frequencies. On the other hand, when applied to an encrypted image,
the result is a transformed representation of the encrypted data. However, this transformed
representation typically does not provide any useful information about the original image.

The encrypted data has been altered in a way that makes it difficult to extract any
meaningful information—even after transforming it. The aim of any image cryptosystem
is to render image content unintelligible, and DFT can help confirm this by showing that
the transformed representation of the encrypted image is not representative of the original
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data. Figure 15b,e display the DFT as applied to the plain Tree image and its encrypted
version, respectively. Unlike the various special features, such as edges and corners, which
result in the plus-sign-shape of the DFT of the plain image, the DFT of its encrypted version
is distorted and lacks any such features.

4.7. Correlation Coefficient Analysis

This assessment approach evaluates the consistency of a single image. The objective
of such an evaluation metric is to assess the cohesiveness of pixels in close proximity.
This means that the aim here is to calculate the proportion of uniform regions relative
to edge transitions. As a result, a rather high correlation coefficient (i.e., co-occurrence)
value is anticipated in the case of plain images, which consist of more regions than edges.
Alternatively, as substantial distortion is desired in encrypted images, a lower correlation
coefficient is expected. The following set of equations mathematically describe how the
pixel cross-correlation coefficient ρ is computed:

ρ(x, y) =
cov(x, y)√
σ(x)

√
σ(y)

, (24)

where

cov(x, y) =
1
N

N

∑
i=1

(xi − µ(x))(yi − µ(y)), (25)

σ(x) =
1
N

N

∑
i=1

(xi − µ(x))2, (26)

and

µ(x) =
1
N

N

∑
i=1

(xi). (27)

Classically, this metric is computed for three directions: horizontal, vertical and
diagonal, where an image with a strong pixel cross-correlation would typically yield a value
close to 1. On the other hand, for a well-encrypted image, its pixel cross-correlation would
typically yield a value close to 0. Such values are well-exemplified in Table 8, where the
pixel correlation coefficients are computed and displayed for various plain images and their
encrypted versions, each in three directions. Moreover, Tables 9 and 10 provide numerical
comparisons with other state-of-the-art algorithms of the pixel correlation coefficients for
the Lena image both in RGB format and for each of the separate color channels.

Table 8. Correlation coefficients of plain and encrypted images.

Plain Image Encrypted Image

Correlation Coefficient Correlation Coefficient

Image Horizontal Diagonal Vertical Horizontal Diagonal Vertical

Lena 0.938611 0.913175 0.96833 0.0064113 −0.0015143 0.000568333
Peppers 0.959422 0.930426 0.966795 −0.00834328 −0.00327485 0.00222402
Mandrill 0.848778 0.750624 0.79088 −0.00007897 0.00157688 −0.00200228
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Table 9. Comparison with the literature of the correlation coefficient values for plain and encrypted
versions of the Lena image.

Scheme Horizontal Diagonal Vertical

Proposed 0.0064113 −0.0015143 0.000568333
[8] 0.003265 −0.00413 0.002451
[30] 0.0054 0.0054 0.0016
[20] 0.002287 −0.00132 −0.00160
[60] −0.0061 −0.0018 0.0067
[63] 0.000199 0.003705 −0.000924

Table 10. Comparison with the literature of the correlation coefficient values in three directions
for plain and encrypted versions of the Lena image computed for each color channel separately.

Channel Direction Plain
Image

Encrypted
Image [64] [65] [66] [20]

Red
Horizontal 0.952474 0.00771152 0.001365 0.0021 0.9568 −0.00364
Diagonal 0.928029 −0.003263 0.000232 −0.0026 0.0075 0.00016
Vertical 0.975913 0.00199022 0.004776 0.0018 −0.0376 0.000697

Green
Horizontal 0.935628 −0.000053 0.003294 −0.0006 0.0020 0.000118
Diagonal 0.910534 0.0026447 0.004807 0.0001 −0.0046 0.00177
Vertical 0.966647 −0.003507 −0.000579 0.0004 −0.0013 −0.0011

Blue
Horizontal 0.917439 −0.000962 0.002060 −0.005 0.0071 −0.00164
Diagonal 0.888482 −0.004093 −0.004043 −0.0104 −0.0009 −0.00523
Vertical 0.947961 0.00259674 0.000194 0.001 −0.0423 0.006041

In addition to the numerical analysis offered by computing (24)–(27), the co-occurrence
matrix can be shown to visualize directional covariance. In the case of images with natural
visual characteristics, there is a higher probability for values with high similarity to coexist,
leading to magnitudes within the matrix to mostly exhibit a linear distribution. In contrast,
for a well-encrypted image, a more uniform distribution of values is expected. To visually
illustrate this, Figure 16 provides 2D plots of the pixel co-occurrence matrices for the plain
and encrypted Tree image in three directions.

Clearly, sub-figures (a), (b) and (c) are diagonal in nature, reflecting strong pixel
correlation in the plain image, unlike sub-figures (d), (e) and (f), which reflect a rather
uniform distribution, signifying random pixel values. Not surprisingly, the same pixel
correlation behavior is noticed for each of the separate color channels of the Tree image,
which are illustrated in Figures 17–19. Moreover, a similar 3D plot of the same metric is
illustrated in Figure 15, where sub-figures (c) and (f) provide pixel correlation for the plain
and encrypted Tree images, respectively.

4.8. Differential Attack Analysis

This analysis evaluates the quality of an image-encryption algorithm based on the
difference between the plain and encrypted images. This is conducted as follows. An input
plain image is compared to its encrypted version on a pixel-by-pixel basis. Such a computa-
tion is performed to reach a percentage indicating the change in color intensities resulting
from the encryption procedure. Since an absence of resemblance between comparable
pixels in both images is promoted, such an evaluation must be performed pixel-by-pixel.

In addition, a more general aspect of the aggregate pixel change rates between images
is analyzed, indicating the presence of prevailing color intensity similarities between these
images. The literature suggests two tests to satisfy these requirements: the number of
pixel change ratio (NPCR) for pixel-by-pixel comparison and the unified averaged change
intensity (UACI) for the evaluation of the mean average difference.
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(a) Plain horizontal. (b) Plain diagonal. (c) Plain vertical.

(d) Encrypted horizontal. (e) Encrypted diagonal. (f) Encrypted vertical.

Figure 16. 2D plot of co-occurrence matrices of the Tree image pre- and post-encryption.

(a) Plain horizontal. (b) Plain diagonal. (c) Plain vertical.

(d) Encrypted horizontal. (e) Encrypted diagonal. (f) Encrypted vertical.

Figure 17. 2D plot of co-occurrence matrices of the red channel of the Tree image pre- and post-encryption.
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(a) Plain horizontal. (b) Plain diagonal. (c) Plain vertical.

(d) Encrypted horizontal. (e) Encrypted diagonal. (f) Encrypted vertical.

Figure 18. 2D plot of co-occurrence matrices of the green channel of the Tree image pre- and post-encryption.

(a) Plain horizontal. (b) Plain diagonal. (c) Plain vertical.

(d) Encrypted horizontal. (e) Encrypted diagonal. (f) Encrypted vertical.

Figure 19. 2D plot of co-occurrence matrices of the blue channel of the Tree image pre- and post-encryption.
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The NPCR signifies the percentage evaluation of the number of altered pixels. Such a
difference among pixels is performed with a stern equality stance. For two images, I1 and I2
(of dimensions M× N), the difference per pixel D(x, y) (where x and y are the coordinates
of the pixel) is equated as:

D(x, y) =

{
0 I1(x, y) = I2(x, y)
1 Otherwise

∣∣∣∣∣x ∈ [1, M]&y ∈ [1, N]. (28)

Thus, the NPCR is mathematically expressed as:

NPCR =
∑M

x=1 ∑N
y=1 D(x, y)

M× N
× 100. (29)

This means that a larger percentage reflects a more significant difference between the
two images. As a significant difference is sought, the state-of-the-art suggests that 99% is
the target NPCR value for a well-encrypted image.

Utilizing a different assessment lens, the UACI attempts to assess the difference
between two images with regard to their mean averages. The UACI is mathematically
expressed as:

UACI =
1

M× N

M

∑
x=1

N

∑
y=1

|I1(x, y)− I2(x, y)|
255

× 100. (30)

The state-of-the-art considers an ideal value of about 33% to reflect a well-encrypted
image (with respect to the color range [0, 255], 33% is approximated to 85 steps of difference
in intensity.)

For the proposed image cryptosystem, Table 11 displays the computed NPCR and
UACI values for different images with average values corresponding to 99.6119% and
31.4563%, respectively, indicating very good NPCR and UACI performance. Furthermore,
Table 12 presents a comparison with the literature for the three separate color channels
for various images. A comparable performance is shown. Finally, Table 13, provides another
comparison with the literature for the RGB Lena image. Furthermore, here, comparable
performance is attained.

Table 11. NPCR and UACI of various images.

Metric Image Result

NPCR

Lena 99.5855
Peppers 99.6435
Mandrill 99.6023

House 99.5972
House2 99.6241

Girl 99.6546
Sailboat 99.6048

Tree 99.5829

Average 99.6119

UACI

Lena 30.3873
Peppers 32.1503
Mandrill 29.4757

House 29.6072
House2 30.7187

Girl 35.2865
Sailboat 32.1962

Tree 31.8284

Average 31.4563
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Table 12. Comparison of the NPCR and UACI values computed for various images’ color channels.

Metric Image Color
Channel Proposed [20] [67]

NPCR

Lena
Red 99.5712 99.6109 99.6355

Green 99.5758 99.6109 99.6256
Blue 99.6094 99.6375 99.6159

Peppers
Red 99.6338 99.6032 99.6307

Green 99.6338 99.6032 99.6250
Blue 99.6628 99.3750 99.6213

Mandrill
Red 99.5911 99.5880 99.6102

Green 99.5865 99.5880 99.6134
Blue 99.6292 99.5880 99.6057

UACI

Lena
Red 33.1056 33.4158 33.4657

Green 30.5178 30.3902 33.4552
Blue 27.5385 33.2420 33.4550

Peppers
Red 28.8353 33.3459 33.4832

Green 33.8409 33.4702 33.4904
Blue 33.7746 33.4357 33.4619

Mandrill
Red 29.5137 33.4273 33.5002

Green 28.0464 33.4635 33.4711
Blue 30.8671 33.7951 33.4951

Table 13. Comparison of NPCR and UACI values of the Lena image.

Scheme NPCR UACI

Proposed 99.5855 30.3873
[30] 99.52 26.793
[20] 99.63 30.3432
[32] 99.625 30.5681
[60] 99.61 33.516
[68] 99.63 33.48

4.9. The National Institute of Standards and Technology Analysis

The National Institute of Standards and Technology (NIST) Special Publication (SP)
800 series provides guidelines, standards and best practices for various aspects of informa-
tion security, including image encryption [69]. The NIST SP 800 series is widely recognized
as a leading source of information security guidance and is widely used by organizations
in the public and private sectors. In relation to image encryption, NIST SP 800-60 provides
guidelines for the selection and use of image-encryption algorithms. The publication pro-
vides a framework for evaluating and comparing different encryption algorithms based on
factors, such as security, performance and implementation complexity.

The guidelines in SP 800-60 are intended to help organizations choose the most
appropriate encryption algorithm for their specific needs and to ensure the security and
privacy of encrypted images. Moreover, the NIST SP 800-63-3 provides guidelines for
the secure use of biometric images, such as fingerprints, iris scans and facial recognition
data. These guidelines cover various aspects of biometric image security, including the
secure storage, transmission and use of biometric images. Furthermore, those specific
guidelines in SP 800-63-3 are intended to help organizations protect the confidentiality,
integrity and availability of biometric images, while also addressing privacy concerns. This
makes it of paramount importance to include a NIST analysis as part of the performance
evaluation of any image cryptosystem.

The NIST analysis suite of tests assesses a bit stream for randomness through various
tests. For such a bit stream to successfully pass all the tests, it needs to score a p-value of
at least 0.01 in all of them. Upon performing a NIST analysis on encrypted bit streams
resultant from the proposed image cryptosystem, we can see that it does indeed pass all
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NIST tests successfully. An example illustrates this in Table 14, where all values pass the
0.01 threshold for randomness.

Table 14. NIST analysis on the encrypted Lena image.

Test Name Value Remarks

Frequency 0.677248 Success
Block Frequency 0.478516 Success

Run 0.667837 Success
Longest run of ones 0.136182 Success

Rank 0.743617 Success
Spectral FFT 0.522490 Success

Non overlapping 0.202310 Success
Overlapping 0.590476 Success

Universal 0.775967 Success
Linear complexity 0.688046 Success

Serial 0.950997 Success
Approximate Entropy 0.094460 Success

Cumulative sum (forward) 0.704199 Success
Cumulative sum (reverse) 0.363251 Success

4.10. Key Space Analysis

A key space analysis was performed to determine the number of distinct keys that may
be employed in a cryptosystem. In this work, we assumed that the transmitter and receiver
pre-share the secret keys via a secure channel. Moreover, the state-of-the-art provides
useful key-establishment protocols, such as in [70]. For the proposed image cryptosystem,
the Chen hyperchaotic map provides 13 variables, while each of the encryption keys
provides a single variable as a seed as well as the variables related to the S-box evaluation
metrics, which are 5× 3 = 15.

This means that there is a total of 13 + 3 + 15 = 31 variables affecting the key
space. With the maximum machine precision being 10−16, the key space is calculated
to be 1031×16 = 10496 ≈ 21658. It is clear that the achieved key space is much larger than the
previously considered safe threshold of 2100 [71]. This signifies that the proposed image
cryptosystem is fully resistant against brute-force attacks. Table 15 presents a comparison
of the key spaces of various image cryptosystems in the state-of-the-art and displays how
the proposed cryptosystem fares among them, showcasing its superior performance in
that regard.

Table 15. A comparison of key-space values.

Algorithm Key Space

Proposed 10496 ≈ 21658

[8] 2372

[32] 2478

[60] 2604

[63] 2187

[70] 2312

[72] 2256

[73] 2256

[74] 2345

[75] 2219

4.11. Histogram Dependency Tests

In this testing category, the histograms of the plain and encrypted images are compared.
Given two histograms, the comparisons attempt to assess the level of the linear dependency
between both of them. For the five evaluations conducted [76], the better the encryption
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performed, the less the correlation between the two histograms and, thus, the lower the
dependency value computed.

Accordingly, when computing the dependency coefficient as a value in the range
[−1, 1], it is favored to be as close as possible to 0 since 1 and −1 both reflect a significant
dependency in magnitude (aside form the direction presented by the sign). While the field
of statistics could lend the field of image processing a myriad of dependency evaluation
metrics, in this research work, five tests were performed: Blomqvist β, Goodman–Kruskal
γ, Kendall τ, Spearman ρ and Pearson correlation r [77].

1. Blomqvist β evaluates the correlation between two histograms X and Y with their
medians x and y, respectively. It is mathematically expressed as:

β = {(X− x)(Y− y) > 0} − {(X− x)(Y− y) < 0}. (31)

With respect to the median as a reference point, every couple of elements across the
two histograms belongs to one side of the median or not.

2. The Goodman–Kruskal γ measure of monotonic association is computed in a pairwise
fashion, which demands converting the two histograms into a single set of pairs.
Comparing two pairs, they are either in line with the correlation (nc) or opposing it
(nd). Goodman–Kruskal correlation is mathematically expressed as:

γ =
nc − nd
nc + nd

. (32)

3. Kendall τ evaluates correlation based on sample sizes, nc, nd and n. It is mathemati-
cally expressed as:

τ =
nc − nd
n(n−1)

2

. (33)

4. The Spearman rank correlation ρ test relates the element position in a sorted histogram
in relation to the mean rank value. It is mathematically expressed as:

ρ =
∑(Rix − Rx)(Riy − Ry)√

∑(Rix − Rx)2 ∑(Riy − Ry)2
, (34)

such that x and y are the two variables to be evaluated, Ril is the rank of element i in
list l, and Rl is the average of ranks of l.

5. Pearson correlation r associates elements in the histograms directly with their mean
averages. It is mathematically expressed as:

r = ∑(Xi − X)(Yi −Y)√
∑(Xi − X)2 ∑(Yi −Y)2

, (35)

such that X and Y are the means of the histograms X and Y, respectively.

Table 16 presents the resulting values of running the five tests on a number of images.
As all scores are close to 0, the dependency is shown to be minimal, showcasing the excellent
pixel dispersion quality of the proposed image cryptosystem.
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Table 16. Histogram dependency tests for various images.

Image Color β (31) γ (32) τ (33) ρ (34) r (35)

Lena

Red −0.110694 −0.0347993 −0.0337626 −0.0481434 −0.0132834
Green −0.0158119 0.0215872 0.0213466 0.0354592 0.0373801
Blue −0.0514905 −0.0646801 −0.0608846 −0.0878873 −0.0543499

Combined 0.015625 −0.0276274 −0.0274928 −0.0420548 −0.0527299

Peppers

Red 0.0553381 0.0327303 0.0320445 0.0441645 0.0552461
Green −0.00793776 0.00618093 0.0061233 0.00892123 0.0309788
Blue −0.0316267 −0.0302744 −0.0298716 −0.047874 0.0160251

Combined −0.0472456 −0.0437633 −0.0435566 −0.0676501 −0.0410837

Mandrill

Red 0.0198853 0.0565044 0.0558669 0.0816251 0.0595621
Green 0.046875 0.00948634 0.00932192 0.0154712 −0.0016778
Blue 0.0825168 0.0616492 0.0611381 0.0939456 0.0924138

Combined 0.046875 0.0745872 0.0742411 0.110141 0.0934929

House

Red 0.110243 0.0104633 0.0102083 0.0137227 0.129594
Green 0.0156864 −0.0230578 −0.0228953 −0.0316539 −0.127908
Blue 0.0433977 0.0520028 0.0499645 0.0761799 −0.0458134

Combined 0.03125 0.0195387 0.0194504 0.0282111 0.0149416

House2

Red −0.0594233 −0.00223601 −0.00220542 −0.00585658 0.0241044
Green −0.0828449 −0.00492304 −0.00488175 −0.00884184 0.0531022
Blue 0.0079207 −0.0105576 −0.0103937 −0.0162964 0.00611405

Combined 0.043395 0.0143268 0.0142559 0.0229318 0.0314425

Girl

Red 0.0866627 0.0242129 0.0204944 0.025068 −0.0205761
Green 0.0474911 0.0689793 0.0573322 0.077706 0.104362
Blue 0.030644 0.054669 0.0443616 0.0605645 0.0420095

Combined 0.03125 0.0340795 0.0326326 0.0450366 0.0657316

Sailboat

Red 0.0158114 0.00693224 0.00666217 0.0118382 −0.0119124
Green −0.039685 −0.0265376 −0.0262888 −0.0422393 −0.0116989
Blue 0.0714466 0.040201 0.0397032 0.0554966 0.00863334

Combined −0.0435716 −0.054667 −0.0544031 −0.0806747 −0.0740552

Tree

Red 0.0960611 0.034327 0.0336832 0.0463177 0.00928989
Green 0.0591786 0.0368575 0.036362 0.0540911 0.0376557
Blue 0.046875 0.045737 0.0441452 0.0640862 0.019782

Combined 0 0.0226485 0.022537 0.034886 −0.0006252

4.12. Execution Time Analysis

An image cryptosystem’s processing time, with regards to its encryption and decryp-
tion times, is a crucial performance evaluation metric. This is because: (a) this reflects the
efficiency of running an algorithm and its ability to handle large-scale image encryption
and decryption; (b) this reflects how well an image cryptosystems handles resource con-
straints, where the algorithm is expected to run on mobile and hand-held devices with
low processing power; (c) this reflects the possibility (or its lack) of scalability, which is
important as some algorithms exhibit superior performance for small images but weaken as
the image size grows; and (d) this allows for a comparison with state-of-the-art algorithms
as part of the trade-off between security performance and implementation complexity.

Table 17 displays the execution times for various square dimensions of the House
image. For an image of dimensions 256× 256, a very short time of less than half a second
is reported. It is also clear that there is a linear increase in time with increases in the
image dimensions. Moreover, Table 18 presents an execution time comparison with other
state-of-the-art algorithms. It is clear that the proposed cryptosystem exhibits superior
performance in that regard. It is worth mentioning here that execution times are not solely
dependent on the complexity of an image cryptosystem.

Other factors that directly influence the execution times include the available pro-
cessing power and random access memory (RAM) as well as the programming language
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or software of choice and, finally, the operating system. Traditionally, whenever execu-
tion times are reported in the literature, information is provided regarding the machine’s
processor, RAM and the software upon which the image cryptosystem is implemented.
The absence of such information, as in [75] is rather unusual. The proposed image cryp-
tosystem, as well as the algorithms provided in [8,20,32], are implemented in the Wolfram
language, utilizing Wolfram Mathematica®, while the algorithms provided in [60,75,78,79]
adopt Mathworks Matlab®. The mean processing (encryption) rate of the proposed image
cryptosystem was 3.34 Mbps.

Table 17. Processing times of the proposed image cryptosystem for the House image at various dimensions.

Image Dimensions tEnc [s] tDec [s] tAdd [s]

64× 64 0.028884 0.026181 0.055065
128× 128 0.107976 0.116058 0.232116
256× 256 0.426243 0.463615 0.889858
512× 512 1.88184 1.64237 3.52422

1024× 1024 7.66508 6.70321 15.3302

Table 18. A comparison of the encryption time for various state-of-the-art algorithms for the Lena
image with dimensions 256× 256.

Algorithm tEnc [s] Machine Specifications (CPU and RAM)

Proposed 0.426243 2.9 GHz Intel® CoreTM i9, 32 GB
[8] 1.42545 2.9 GHz Intel® CoreTM i9, 32 GB
[20] 2.582389 2.9 GHz Intel® CoreTM i9, 32 GB
[32] 2.750966 3.4 GHz Intel®

[60] 2.7236 2.7 GHz Intel® CoreTM i7, 8 GB
[75] 3.45 N/A
[78] 1.1168 3.4 GHz Intel® CoreTM i7, 8 GB
[79] 1.112 3.4 GHz Intel® CoreTM i3, 4 GB

4.13. S-Box Performance Analysis

With practically infinite possibilities to choose from when selecting an S-box for an
image cryptosystem, performance evaluation metrics must be employed to gauge their
performance and make an informed decision on which S-box would exhibit the best
confusion properties. The literature offers five tests to achieve that. These metrics are
as follows:

1. Nonlinearity [80] represents the measure of the effect of changing 1 bit in the input
on the output (ideal value of 120, however, commonly reported in the state-of-the-art
as 112).

2. Linear approximation probability (LAP) [81] calculates the bias of an S-box (ideal
value being 0.0625).

3. Differential approximation probability (DAP) [82] is a metric that checks the impact
of certain changes in inputs and their effect on the confused output (the ideal value
being 0.0156).

4. Bit independence criterion (BIC) [83] evaluates the repeatability in patterns in the
confused output (the ideal value being 112).

5. Strict avalanche criterion (SAC) [83] computes the rate of change in the confused
output in relation to the change in the input (the ideal value being 0.5).

Table 19 displays the results of computing those five metrics for the proposed S-boxes
(displayed earlier in Tables 1–3), alongside the ideal value for each metric. It is clear that
the OpenSLL S-box provides the best performance with closest proximity to the set of ideal
values. Furthermore, Table 20 displays a comparison among the proposed S-boxes and a
number of S-boxes utilized as part of other state-of-the-art algorithms.
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It is clear that a comparable performance is indeed achieved. It is worth noting here
that the main advantage of opting to use those three proposed S-boxes is the increase in
the number of variables of the key space by 15, as explained earlier in Section 2.3.4. While
near-optimal S-box performance evaluation metrics were pursued, other important S-box
design criteria (e.g., aiming to avoid short ring cycles and fixed points [84,85]) were not
considered in this research work.

Table 19. Performance evaluation of the proposed S-boxes (displayed in Tables 1–3).

Metric Optimal MT OpenSSL Intel’s MKL

Nonlinearity 112 108 108 108
SAC 0.5 0.503662 0.499023 0.499268
BIC 112 92 112 104
LAP 0.0625 0.140625 0.0625 0.09375
DAP 0.0156 0.015625 0.015625 0.015625

Table 20. Comparison among the proposed S-boxes and those reported in the state-of-the-art.

S-box NL SAC BIC LAP DAP

Proposed, MT 108 0.503662 92 0.140625 0.015625
Proposed, OpenSSL 108 0.499023 112 0.0625 0.015625
Proposed, Intel’s MKL 108 0.499268 104 0.09375 0.015625
AES [17] 112 0.5058 112 0.0625 0.0156
Khan et al. [30] 111 0.5036 110 0.0781 0.0234
Zahid et al. [86] 107 0.497 103.5 0.1560 0.0390
Aboytes et al. [87] 112 0.4998 112 0.0625 0.0156
Hayat et al. [88] 100 0.5007 104.1 0.0390 0.1250
Nasir et al. (S4) [89] 112 0.5 112 0.0625 0.0156

4.14. Various Cryptanalyses and Noise Attacks

Table 21 provides a brief description of various forms of cryptanalyses that could be
utilized to attack an image cryptosystem. However, due to the proposed image cryptosys-
tem making use of a three-layered SPN, none of the attacks in Table 21 would be effective
against it.

A considerable portion of an encrypted image is lost during transmission in an oc-
clusion attack. Using the same set of keys, the decryption process attempts to retrieve the
original plain image from the encrypted image. Thus, some of the restored image’s informa-
tion may be lost. Nonetheless, it may maintain the majority of visual information necessary
to reconstruct the original image. The effect of an occlusion attack on the encrypted image
created by the proposed image cryptosystem is depicted in Figure 20. Transmission causes
the loss of one-fourth of the cipher picture. Yet, the decryption technique can recover
some of the visual information from the image, which is sufficient to comprehend the
visual content of the original plain image and identify it as the House image. As would be
expected, in Figure 20, it is clear that increasing the fraction of the occlusion results in a
decrypted image of a worse condition.

In a noise attack, portions of the pixel values of the encrypted images are altered
during transmission owing to channel-deteriorating effects. Figure 21 depicts the effect of a
noise attack in which a salt-and-pepper noise is applied to encrypted images resulting from
the proposed cryptosystem. When the noisy encrypted images are decrypted, the resulting
images seem to retain the visual information of the original image. Thus, the cryptosystem is
resistant to salt-and-pepper noise attacks. Figure 22 represents the same scenario recreated
for the case of a Gaussian noise attack. In both of Figures 21 and 22, it is observed that, for
the salt-and-pepper noise attack, with increased fraction of the image, as well as for the
Gaussian noise attack, with increased standard deviation, the decrypted image, while still
identifiable as the House image, is in worse condition.
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Table 21. Description of various types of attacks.

Attack Needed Information by Cryptanalyst

Ciphertext only
1. Cryptosystem
2. Encrypted image to be decoded

Known plaintext

1. Cryptosystem
2. Encrypted image to be decoded
3. Plain image and corresponding encrypted image

with the encryption key

Chosen ciphertext

1. Cryptosystem
2. Encrypted image to be decoded
3. Reported encrypted image chosen by cryptanalyst

alongside its corresponding plain image generated
with the cryptosystem and decryption key

Chosen plaintext

1. Cryptosystem
2. Encrypted image to be decoded
3. Reported plain image chosen by cryptanalyst along-

side its corresponding encrypted image generated
with the cryptosystem and encryption key

(a) 1/8 occlusion in the corner. (b) 1/4 occlusion in the corner. (c) 1/4 occlusion as a frame.

(d) 1/8 occlusion in the corner. (e) 1/4 occlusion in the corner. (f) 1/4 occlusion as a frame.

Figure 20. Various occlusion attacks on encrypted images (a–c) and their corresponding decrypted
versions (d–f).
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(a) f = 0.01. (b) f = 0.04. (c) f = 0.07.

(d) f = 0.01. (e) f = 0.04. (f) f = 0.07.

Figure 21. Various salt-and-pepper noise attacks to a fraction f of the encrypted images (a–c) and their
corresponding decrypted versions (d–f).

(a) σ = 0.001. (b) σ = 0.004. (c) σ = 0.007.

(d) σ = 0.001. (e) σ = 0.004. (f) σ = 0.007.

Figure 22. Various zero-mean Gaussian noise attacks with standard deviation σ on the encrypted
images (a–c) and their corresponding decrypted versions (d–f).
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5. Conclusions and Future Works

This research work aimed at proposing a novel image cryptosystem that makes use
of a multiple-layer-encryption network. For every layer, an encryption key and an S-box
were generated and utilized. Design ideas for the encryption keys and S-boxes were
pooled from the 4D dynamical Chen system of a fractional-order, the Mersenne Twister,
OpenSLL, Rule 30 Cellular Automata and, finally, Intel’s MKL. The employment of the
hyperchaotic Chen map and the three PRNGs allowed for the introduction of a large
number of variables, which have led to the vast expansion of the key space to 21658. This
is indeed one of the differentiating advantages of the proposed image cryptosystem over
other state-of-the-art algorithms.

Another such advantage is its superior efficiency, encrypting images at an average rate
of 3.34 Mbps. Moreover, the attained security level of the proposed image cryptosystem is
shown to be rather high, not only in quantitative terms—as exhibited by the comparable
and sometimes superior performance evaluation metrics in relation to the state-of-the-
art—but also from a qualitative aspect. Quantitatively, the proposed image cryptosystem
showcases the average computed values for some key performance metrics as follows: MSE
of 9610.65, PSNR of 8.33256 dB, MAE of 80.2136, entropy of 7.99711, NPCR of 99.6119%
as well as UACI of 31.4563%.

Qualitatively, upon examining other state-of-the-art algorithms, it is easy to realize
that they implement a one-and-a-half layer (i.e., a permutation, a substitution and a final
permutation), unlike the proposed image cryptosystem, which implements double that,
while maintaining excellent code efficiency. Furthermore, inspection of the encrypted
images by the HVS provides no information as to what the original plain image could
be. Various cryptanalyses and noise attacks were also shown to be futile in breaking the
proposed cryptosystem.

Future research could take on more than one direction. First, while the adopted idea
of incorporating the S-box performance evaluation metrics as part of the encryption key
itself has much improved the key space, this has inadvertently lead to the utilization of sub-
optimal S-boxes. Nevertheless, the performance of the proposed image cryptosystem was
not affected by this due to the application of the multiple-layer-encryption network. Still,
further improvements could have been attained if better-performing S-boxes been chosen.

Second, some instances in the literature have indicated that, while the Mersenne
Twister provides an excellent PRNG performance in general, in strict relation to cryp-
tography applications, other PRNGs could potentially offer improved performance [90].
Once again, this might not have affected the performance of the proposed image cryp-
tosystem due to the application of the multiple-layer-encryption network. In that regard,
future works could attempt to replace the Mersenne Twister with other PRNGs of higher
cryptographic performance and check for any noticeable overall improvements in the
image cryptosystem.
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Abbreviations
The following abbreviations are used in this manuscript:

CA Cellular Automata
DNA Deoxyribonucleic Acid
FPGA Field Programmable Gate Arrays
HVS Human Visual System
LFSR Linear Feedback Shift Register
MAE Maximum Absolute Error
MSE Mean Square Error
NIST National Institute of Standards and Technology
NPCR Number of Pixel Changing Ratio
PRNG Pseudo-Random Number Generation
PSNR Peak Signal-to-Noise Ratio
S-box Substitution box
UACI Unified Averaged Change Intensity
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