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Abstract: The purpose of this paper is to investigate the optimal control for fractional stochastic
integrodifferential systems of order 1 < γ < 2. To ensure the existence and uniqueness of mild
solutions, we first gather a novel list of requirements. Further, the existence of optimal control for the
stated issue is given by applying Balder’s theorem. Additionally, we extend our existence outcomes
with infinite delay. The outcomes are obtained via fractional calculus, Hölder’s inequality, the cosine
family, stochastic analysis techniques, and the fixed point approach. The theory is shown by an
illustration, as well.
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1. Introduction

Fractional differential equations have gained popularity over the past three decades
due to their effectiveness in mathematical modeling. In contrast to integer-order models,
noninteger-order models encourage the discovery of more precise solutions. It turns out
that the fractional derivatives more accurately yield the heritable features of several physi-
cal phenomena. As a result of its uses in several fields of science, engineering, economics,
and optimal problem solving, fractional calculus has attracted many scientists. By utilizing
the concepts of fractional calculus, the cosine family, and the fixed point approach, the
researchers in [1,2] established the existence of mild solutions and controllability outcomes
for fractional systems with or without a nonlocal condition. The approximate controlla-
bility outcomes of the Hilfer fractional differential system have been recently examined
in [3]. Refer to the textbooks [4–6] for further details on fractional differential systems and
their uses.

On the other hand, the concept of stochastic differential systems and their uses have
received a great deal of consideration (see [7–10] and the references therein). In [11], the
researchers examined the controllability outcomes of neutral stochastic fractional inte-
grodifferential system involving infinite delay with the help of fractional calculus and the
fixed point approach, along with stochastic analysis theory. Using fractional calculus and
Bohnenblust-Karlin’s fixed point strategy, the authors of [12] explored the approximate
controllability of fractional neutral stochastic functional integrodifferential systems. Re-
cently, in [13], the authors discussed the asymptotic stability and mean square stability of
stochastic differential systems of order γ ∈ (1, 2].

Moreover, in the design and study of control systems, the optimal and approximate
controllability problems are significant (see [14–23] and the references therein). By applying
the fractional derivatives of Reimann-Liouville, the author of [24] developed a fractional
optimal control issue and provided a numerical approach for solving it. In [25], the authors
investigated the optimal controls and approximate controllability for fractional differential
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equations of order γ ∈ (1, 2) via a fixed point approaches. The author of [26] formulated the
requirements for fractional optimal control of equations involving fixed delay. Using the
Banach fixed point strategy, in [27], the authors established requirements for the existence
of optimal control for the fractional control equations of order γ ∈ (1, 2]. Furthermore,
the authors of [28] investigated the optimal control of fractional evolution systems in the
α-norm of order γ ∈ (1, 2) involving nonlocal circumstances.

The authors of [29] investigated the optimal controls of system governed by impulsive
Hilfer fractional evolution system involving delay and Clarke subdifferential. In [30], by
using the compactness of the fractional resolvent operator family, the authors examined
the existence of mild solutions and optimal controls for stochastic evolution systems
involving the Sobolev type. Moreover, the authors of [31] established the optimal control
for stochastic fractional differential systems that were non-instantaneous and impulsive.
Integrodifferential systems, which are used in a diversity of scientific fields where an
aftereffect or delay must be considered, such as biology, control theory, and medicine,
have increasingly attracted attention. In [32], the authors obtained the solvability and
optimal controls for fractional stochastic integrodifferential systems with impulsive via
Leray-Schauder fixed point approach. The authors of [33] studied the optimal control issue
for few integrodifferential systems. In addition, controllability and optimal control results
for fractional stochastic integrodifferential equations involving Poisson jumps have been
obtained [34].

Recently, in [35], the researchers employed the cosine family, fractional calculus, and
the Banach fixed point theorem to develop the optimal control issue and approximate the
controllability outcomes for fractional integrodifferential systems involving infinite delay of
order γ ∈ (1, 2). Using Schauder’s fixed point approach, in [36], the existence and optimal
control outcomes for fractional mixed Volterra-Fredholm type integrodifferential equations
of order 1 < γ < 2 involving sectorial operators have been investigated.

Based on the information provided above, the main aim of the present manuscript is to
study the existence and uniqueness of mild solutions to the fractional stochastic integrodif-
ferential systems of order 1 < γ < 2 through stochastic analysis theory, fractional calculus,
the cosine family, and the Banach fixed point approach. Additionally, we discover a formu-
lation for fractional optimal control governed by the fractional stochastic integrodifferential
systems. Further, with the help of Balder’s theorem, the existence of optimal control for
the given problem is studied. In addition, the optimal control for fractional stochastic
integrodifferential systems of order 1 < γ < 2 involving infinite delay is examined. The
obtained outcomes are novel and are thought to contribute to the theory of stochastic
fractional optimal control.

Consider the following fractional stochastic integrodifferential systems involving the
control term, where the fractional derivative is described in the sense of the Caputo:CDγ

t y(t) = Ay(t) +B(t)κ(t) + h
(

t, y(t),
∫ t

0 g(t, s, y(s))ds
)

dW(t)
dt , t ∈ I ,

y(0) = y0, y′(0) = y1,
(1)

where CDγ
t is the fractional derivative, whose order is γ ∈ (1, 2) on a separable Hilbert

space Y ; I = [0, ϑ]; A : D(A) ⊂ Y → Y stand for the infinitesimal generator of a strongly
continuous cosine family {V (t), t ≥ 0}; the control function κ takes values from another
separable reflexive Hilbert space X ; B : X → Y is a linear operator; h and g are the
appropriate functions to be defined further; y0 and y1 are J0-measurable Y -valued random
variables; and W indicates a Wiener process.

The manuscript has been split into several segments: Required preparations are given
in Section 2. The existence and uniqueness outcomes of the mild solutions for (1) are
verified in Section 3. The existence of optimal control is discussed in Section 4. Then, by
utilizing the fixed point approach, the existence and uniqueness of mild solutions for (22)
are shown in Section 5. In Section 6, we explored the existence of optimal control for the
stated issue. Finally, an illustration is created to validate the theoretical outcomes.
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2. Preliminaries

Consider the following: (Y , ‖ · ‖Y , 〈·, ·〉Y ) and (Z , ‖ · ‖Z , 〈·, ·〉Z ) represent two real
separable Hilbert spaces, including their vector norms and inner products. L(Z ,Y )
stand for the space of bounded and linear operators from Z into Y . Take into con-
sideration a complete probability space (Ω, J,℘), including a normal filtration {Jt}t∈[0,ϑ].
W(t) = {W(t), t ≥ 0} stand for a Q-Wiener process determined on (Ω,F,℘), including
the covariance operator Q such that TrQ < ∞. Assume that there exists a complete or-
thonormal system {ξ̆m} in Z , a bounded sequence of nonnegative real numbers {λm}m∈N
such that

Qξ̆m = λmξ̆m, ξ̆m ≥ 0, m ∈ N,

and a sequence of independent real-valued Brownian motion {βm}m≥1 such that

〈W(t), ξ̆〉Z =
∞

∑
m=1

√
λm〈ξ̆m, ξ̆〉βm(t), ξ̆ ∈ Z , t ∈ [0, ϑ],

and Jt = JW
t is the σ-algebra induced by {W(s) : 0 < s ≤ t}.

The space of all Hilbert–Schmidt operators from Q1/2Z into Y is described as L0
2,

which is L2(Q1/2Z ,Y ), including the inner product 〈φ̄, ϕ̄〉L0
2
= Tr[φ̄Qϕ̄∗]. The Banach

space of all the continuous functions from [0, ϑ] into L2(Ω,Y ) fulfilling the requirements
supt∈[0,ϑ] E‖y(t)‖2 < ∞ is determined as C ([0, ϑ], L2(Ω,Y )). It is a Banach space with the

norm ‖y‖C ([0,ϑ],L2(Ω,Y )) =
(

supt∈[0,ϑ] E‖y(t)‖2
) 1

2
.

Definition 1 ([4]). The fractional integral of order for g : [0, ∞)→ < with the lower limit zero is
represented as

Iγg(t) =
1

Γ(γ)

∫ t

0

g(s)
(t− s)1−γ

ds, t > 0, γ ∈ <+,

provided the right hand be pointwise defined on [0, ∞).

Definition 2 ([4]). The Riemann-Liouville derivative of order for g : [0, ∞)→ < with the lower
limit zero is represented as

LDγg(t) =
1

Γ(n− γ)

dn

dtn

∫ t

0

g(s)
(t− s)γ+1−n ds, t > 0, n− 1 < γ < n.

Definition 3 ([4]). The Caputo derivative of order for g : [0, ∞)→ < with the lower limit zero is
represented as

CDγg(t) = LDγ

(
g(t)−

n−1

∑
i=0

ti

i!
g(i)(0)

)
, t > 0, n− 1 < γ < n.

Remark 1. (1) Provided that g(t) ∈ C n[0, ∞), next

CDγg(t) =
1

Γ(n− γ)

∫ t

0

g(n)(s)
(t− s)γ+1−n ds = In−γg(n)(t), t > 0, n− 1 < γ < n.

(2) Given that g is an abstract function with values in Y , then the integrals that appear in
Definitions 1 and 2 are taken in Bochner’s sense.

(3) CDγ(Constant) = 0.

Definition 4 ([37]). {V (t)}t∈< : Y → Y is said to be a strongly continuous cosine family if

(ı) V (s + t) + V (s− t) = 2V (s)V (t), ∀ s, t belongs to <;
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(ıı) ∀ y belongs to Y , V (t)y is continuous in t on <;
(ııı) V (0) = I.

Consider {W (t)}t∈< the sine family related with {V (t)}t∈< is represented as

W (t)y =
∫ t

0
V (s)yds, y ∈ Y , t ∈ <. (2)

Further, provided that

Ay =
d2

dt2V (0)y, ∀ y ∈ D(A), (3)

In the above D(A) = {y ∈ Y : V (t)y ∈ C 2(<,Y )}, where A is a closed, densely-defined
operator belonging to Y . Define a family V = {y ∈ Y : V (t)y ∈ C 1(<,Y )}.

Lemma 1 ([37]). Consider {W (t)}t∈< is a strongly continuous cosine family in Y . The subse-
quent are hold

(ı) ∃ K ≥ 1 and ω ≥ 0 ∈ ‖V (t)‖Lϑ(Y ) ≤ Keω|t| ∀ t belongs to <;

(ıı) ‖W (t2)−W (t1)‖Lϑ
≤ K

∣∣∣ ∫ t2
t1

eω|s|ds
∣∣∣ ∀ t1, t2 belongs to <;

(ııı) Provided that y belongs to V, next V (t)y ∈ D(A) and d
dtV (t)y = AW (t)y.

Lemma 2. Consider {V (t)}t∈< ∈Y . Next,

lim
t→0

t−1W (t)y = y, ∀ y belongs to Y .

Lemma 3 ([37]). Consider {V (t)}t∈< in Y fulfilling ‖V (t)‖Lϑ
≤ Keω|t|, t ∈ <, and A is the

infinitesimal generator of {V (t)}t∈<. Next, ∀ Re Λ > ω, Λ2 belongs to ρ(A) and

ΛR(Λ2; A)y =
∫ ∞

0
e−ΛtV (t)ydt, R(Λ2; t)y =

∫ ∞

0
e−ΛtW (t)ydt, ∀ y in Y .

In Y , A is a closed dense operator, ∃ K ≥ 1 such that ‖V (t)‖Lϑ
≤ K for t ≥ 0. Fix

η = γ
2 ∀ γ ∈ (1, 2), as described in [1,5].

Definition 5 ([1]). A stochastic process y(t) belonging to C ([0, ϑ], L2(Ω,Y )) is called a mild
solution of (1), provided for every κ(·) ∈ Uad there exists a ϑ = ϑ(κ) > 0, y(t) is measurable
and the subsequent integral system is fulfilled:

y(t) = Vη(t)y0 +Nη(t)y1 +
∫ t

0
(t− s)η−1Mη(t− s)h

(
s, y(s),

∫ s

0
g(s, ι, y(ι))dι

)
dW(s)

+
∫ t

0
(t− s)η−1Mη(t− s)B(s)κ(s)ds, t ∈ I . (4)

In the above

Vη(t) =
∫ ∞

0
Pη(θ)V (tηθ)dθ, Nη(t) =

∫ t

0
Vη(s)ds,

Mη(t) =
∫ ∞

0
ηθPη(θ)W (tηθ)dθ, Pη(θ) =

1
η

θ
−1− 1

η µη(θ
− 1

η ) ≥ 0,

µη(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−nη−1 Γ(nη + 1)
n!

sin(nπη), θ ∈ (0, ∞),



Fractal Fract. 2023, 7, 284 5 of 24

and Pη(·) is the Wright-type function of Mainardi defined on (0, ∞) such that

Pη(θ) ≥ 0 for θ ∈ (0, ∞) and
∫ ∞

0
Pη(θ)dθ = 1.

Lemma 4 ([1]). The subsequent characteristics hold to Vη(t), Nη(t) andMη(t):

(ı) {Vη(t), t ≥ 0} is strongly continuous, that is, ∀ y ∈ Y and ∀ t′, t′′ ≥ 0, one can obtain

‖Vη(t′′)y− Vη(t′)y‖Lϑ
→ 0, when t′′ → t′.

(ıı) {Nη(t)} and {Mη(t)} are uniformly continuous, that is, ∀ t′, t′′ ≥ 0, and one can obtain

‖Nη(t′′)y−Nη(t′)y‖Lϑ
→ 0, ‖Mη(t′′)y−Mη(t′)y‖Lϑ

→ 0, when t′′ → t′.

(ııı) ∀ t ≥ 0, the operators Vη(t), Nη(t) andMη(t) are linear and bounded operators, that is, ∀
y ∈Y , the subsequent:

‖Vη(t)y‖ ≤ K‖y‖, ‖Nη(t)y‖ ≤ K‖y‖t, ‖Mη(t)y‖ ≤
K

Γ(2η)
‖y‖tη .

Remark 2. Nothing that, from Lemma 4 (ıı) and (ııı), ∀ t, s ≥ 0, y ∈Y

lim
t→0

tη−1Mη(t)y = 0, ‖tη−1Mη(t)− sη−1Mη(s)‖Lϑ
→ 0, t→ s.

Now consider the Henry-Gronwall inequality [38].

Lemma 5. Consider x, h̄ : [0, ϑ] → [0, ∞) are continuous functions. Provided that h̄ is nonde-
creasing, α ≥ 0 and γ > 0 such that

x(t) ≤ h̄(t) + α
∫ t

0
(t− s)γ−1x(s)ds, t ∈ [0, ϑ], (5)

next

x(t) ≤ h̄(t) +
∫ t

0

[ ∞

∑
n=1

(αΓ(γ))n

Γ(nγ)
(t− s)nα−1h̄(s)

]
ds, t ∈ [0, ϑ]. (6)

Provided that h̄(t) = c, constant on [0, ϑ], next, the above inequality is reduced to

x(t) ≤ cEγ

(
αΓ(γ)tγ

)
, t ∈ [0, ϑ].

In the above the Mittag-Leffler function Eγ [39] is determined as

Eγ(z) =
∞

∑
n=0

zn

Γ(nγ + 1)
, z ∈ C, Re(γ) > 0.

We recommend that readers see [40] for further information on generalized Henry-
Gronwall inequalities.

Lemma 6. Provided that ‖ f ‖ is the Lebesgue integrable, next, a measurable function f : [0, ϑ]→
Y is Bochner integrable.

3. Existence and Uniqueness of Mild Solution

To prove the existence and uniqueness of mild solutions for (1), we list the subsequent
basic conditions:

(H1). A is the infinitesimal generator of a strongly continuous cosine family {V (t)}t>0 on Y .
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(H2). h : I ×Y ×Y → L0
2 fulfills:

(ı) ∀ (δ, y) ∈Y ×Y , h(·, δ, y) : I → L0
2 is measurable.

(ıı) Arbitrary δ1, δ2, y1, y2 ∈Y fulfilling E‖δ1‖2, E‖δ2‖2, E‖y1‖2, E‖y2‖2 ≤ q, ∃ Lh(q) >
0 such that

E‖h(t, δ1, y1)− h(t, δ2, y2)‖2 ≤ Lh(q)(E‖δ1 − δ2‖2 + E‖ξ1 − ξ2‖2), for all t ∈ [0, ϑ].

(ııı) ∃ dh > 0 such that

E‖h(t, δ, y)‖2 ≤ dh(1 + E‖δ‖2 + E‖y‖2), for all δ, y ∈ Y , t ∈ [0, ϑ].

(H3). g : ∆×Y → Y fulfills:

(ı) g(t, s, ·) : Y → Y is continuous ∀ (t, s) ∈∆ =
{
(t, s) ∈ I × I | s ∈ [0, t]

}
.

(ıı) For arbitrary (t, s) ∈ ∆ and δ1, δ2 ∈ Y fulfilling E‖δ1‖2, E‖δ2‖2 ≤ q, ∃ Lg(q) > 0
such that

E‖g(t, s, δ1)− g(t, s, δ2)‖2 ≤ Lg(q)(E‖δ1 − δ2‖2).

(ııı) ∃ dg > 0 such that

E‖g(t, s, δ)‖2 ≤ dg(1 + E‖δ‖2), ∀ δ ∈ Y .

(H4). Let κ ∈X be the control function and the operator B in L∞([0, ϑ], L(X ,Y )), ‖B‖∞ denote
the norm of operator B.

(H5). Multivalued maps U (·) : [0, ϑ] → V(X ) (where V(X ) is a class of nonempty closed,
convex subsets ofX ) are measurable andU (·) ⊆ ð, where ð is a bounded set ofX .

Fix the admissible set,

Uad =
{

κ(·) : [0, ϑ]×Ω → X such that κ is Jt-adapted stochastic process

and E
∫ ϑ

0
‖κ(t)‖rdt < ∞

}
.

Clearly,Uad 6= ∅ by [41] andUad ⊂ Lr([0, ϑ],X
)
(1 < r < +∞) that is bounded, closed,

and convex. It is evident that Bκ ∈ Lr([0, ϑ],X
)
∀ κ ∈ Uad.

To present the solvability of (1), we need the subsequent significant a priori estimation.

Lemma 7. Suppose that (4) is the mild solution of (1) on [0, ϑ] related to κ inUad. Next, there
exists a constant ν > 0 such that

E‖y(t)‖2 ≤ ν, ∀ t ∈ [0, ϑ].

Proof. Provided that y is the mild solution of system (1), next, (4) is fulfilled. From
requirements (H2)(ııı), (H3)(ııı) and Hölder’s inequality, one can obtain

E‖y(t)‖2

≤ 4E‖Vη(t)y0‖2 + 4E‖Nη(t)y1‖2 + 4E‖
∫ t

0
(t− s)η−1Mη(t− s)B(s)κ(s)ds‖2

+ 4E‖
∫ t

0
(t− s)η−1Mη(t− s)h

(
s, y(s),

∫ s

0
g(s, ι, y(ι))dι

)
dW(s)‖2

≤ 4K2E‖y0‖2 + 4K2ϑ2E‖y1‖2

+ 4

(
K

Γ(2η)

)2

‖B‖2
∞E
[ ∫ t

0
(t− s)2η−1‖κ(s)‖ds

]2

+ 4

(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2E‖h

(
s, y(s),

∫ s

0
g(s, ι, y(ι))dι

)
‖2ds



Fractal Fract. 2023, 7, 284 7 of 24

≤ 4K2E‖y0‖2 + 4K2ϑ2E‖y1‖2

+ 4

(
K

Γ(2η)

)2

‖B‖2
∞

[( ∫ t

0
(t− s)

r(2η−1)
r−1 ds

) r−1
r
(

E
∫ t

0
‖κ(s)‖rds

) 1
r
]2

+ 4

(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2dh

(
1 + E‖y(s)‖2

Y + dgϑ
∫ s

0
(1 + E‖y(ι)‖2

Y )dι
)

ds

≤ 4K2E‖y0‖2 + 4K2ϑ2E‖y1‖2 + 4

(
K

Γ(2η)

)2

‖B‖2
∞

(
r− 1

2ηr− 1

) 2(r−1)
r

ϑ4η− 2
r ‖κ‖2

Lr([0,ϑ],X )

+ 4

(
K

Γ(2η)

)2

Tr(Q) ϑ4η−1

4η − 1
dh

(
1 + dgϑ2

)

+ 4

(
K

Γ(2η)

)2

Tr(Q)dh

(
1 + dgϑ2

) ∫ t

0
(t− s)4η−2E‖y(s)‖2

Y ds. (7)

InY , we use Gronwall’s inequality to determine the boundedness of y(·), that is, E‖y(t)‖2 ≤
ν, ∀ t ∈ [0, ϑ].

Theorem 1. Under the requirements (H1)–(H5), the system (1) has a unique mild solution on I
for κ(·) ∈ Uad and for some r, such that 2ηr > 1.

Proof. Deteremine an operator Φ : C ([0, ϑ], L2(Ω,Y ))→ C ([0, ϑ], L2(Ω,Y )) as

(Φy)(t) = Vη(t)y0 +Nη(t)y1 +
∫ t

0
(t− s)η−1Mη(t− s)h

(
s, y(s),

∫ s

0
g(s, ι, y(ι))dι

)
dW(s)

+
∫ t

0
(t− s)η−1Mη(t− s)B(s)κ(s)ds. (8)

Showing that Φ has a fixed point in C ([0, ϑ], L2(Ω,Y )) is sufficient to verify the
existence of the mild solution to (1). Consider

Qq =
{

y ∈ C ([0, ϑ], L2(Ω,Y )) : ‖y‖2
C ([0,ϑ],L2(Ω,Y )) ≤ q, t ∈ [0, ϑ]

}
,

where q is a positive constant. Clearly, Φ(Qq) is a bounded and closed subset of C ([0, ϑ],
L2(Ω,Y )). For any y(·) ∈ Qq, and one can obtain

E‖(Φy)(t)‖2

= E‖Vη(t)y0 +Nη(t)y1 +
∫ t

0
(t− s)η−1Mη(t− s)h

(
s, y(s),

∫ s

0
g(s, ι, y(ι))dι

)
dW(s)

+
∫ t

0
(t− s)η−1Mη(t− s)B(s)κ(s)ds‖2

≤ 4E‖Vη(t)y0‖2 + 4E‖Nη(t)y1‖2 + 4E‖
∫ t

0
(t− s)η−1Mη(t− s)B(s)κ(s)ds‖2

+ 4E‖
∫ t

0
(t− s)η−1Mη(t− s)h

(
s, y(s),

∫ s

0
g(s, ι, y(ι))dι

)
dW(s)‖2

≤ 4‖Vη(t)‖2E‖y0‖2 + 4‖Nη(t)‖2E‖y1‖2

+ 4

(
K

Γ(2η)

)2

‖B‖2
∞E
[ ∫ t

0
(t− s)2η−1‖κ(s)‖ds

]2

+ 4

(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2E‖h

(
s, y(s),

∫ s

0
g(s, ι, y(ι))dι

)
‖2ds

≤ 4K2E‖y0‖2 + 4K2ϑ2E‖y1‖2

+ 4

(
K

Γ(2η)

)2

‖B‖2
∞

[( ∫ t

0
(t− s)

r(2η−1)
r−1 ds

) r−1
r
(

E
∫ t

0
‖κ(s)‖rds

) 1
r
]2
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+ 4

(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2dh

(
1 + E‖y(s)‖2

Y + E‖
∫ s

0
g(s, ι, y(ι))dι‖2

)
ds

≤ 4K2E‖y0‖2 + 4K2ϑ2E‖y1‖2

+ 4

(
K

Γ(2η)

)2

‖B‖2
∞

(
r− 1

2ηr− 1

) 2(r−1)
r

ϑ4η− 2
r ‖κ‖2

Lr([0,ϑ],X )

+ 4

(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2dh

(
1 + E‖y(s)‖2

Y + dgϑ
∫ s

0
(1 + E‖y(ι)‖2

Y )dι
)

ds

≤ 4K2E‖y0‖2 + 4K2ϑ2E‖y1‖2

+ 4

(
K

Γ(2η)

)2

‖B‖2
∞

(
r− 1

2ηr− 1

) 2(r−1)
r

ϑ4η− 2
r ‖κ‖2

Lr([0,ϑ],Y )

+ 4

(
K

Γ(2η)

)2

Tr(Q) ϑ4η−1

4η − 1
dh

(
1 + q+ dg(1 + q)ϑ2

)
. (9)

Now, consider

4K2E‖y0‖2 + 4K2ϑ2E‖y1‖2 + 4

(
K

Γ(2η)

)2

‖B‖2
∞

(
r− 1

2ηr− 1

) 2(r−1)
r

ϑ4η− 2
r ‖κ‖2

Lr([0,ϑ],X )

+ 4

(
K

Γ(2η)

)2

Tr(Q) ϑ4η−1

4η − 1
dh

(
1 + q+ dg(1 + q)ϑ2

)
< q. (10)

Next,

4K2E‖y0‖2 + 4K2ϑ2E‖y1‖2 + 4

(
K

Γ(2η)

)2

‖B‖2
∞

(
r− 1

2ηr− 1

) 2(r−1)
r

× ϑ4η− 2
r ‖κ‖2

Lr([0,ϑ],X ) + 4

(
K

Γ(2η)

)2

Tr(Q) ϑ4η−1

4η − 1
dh

(
1 + dgϑ2

)

< q

(
1− 4

(
K

Γ(2η)

)2

Tr(Q) ϑ4η−1

4η − 1
dh

(
1 + dgϑ2

))
. (11)

The right hand side will become positive, provided that(
K

Γ(2η)

)2

Tr(Q) ϑ4η−1

4η − 1
dh

(
1 + dgϑ2

)
< 1. (12)

This suggests that, when ϑ is fulfilled (12), we conclude that Φ : Qq → Qq.
Next, we will demonstrate that Φ is a contraction map. For every y, ỹ ∈ Qq, provided

that t ∈[0, ϑ], next one can obtain

E‖(Φy)(t)− (Φỹ)(t)‖2 = E‖
∫ t

0
(t− s)η−1Mη(t− s)

[
h
(

s, y(s),
∫ s

0
g(s, ι, y(ι))dι

)
− h
(

s, ỹ(s),
∫ s

0
g(s, ι, ỹ(ι))dι

)]
dW(s)‖2

≤
(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2E‖h

(
s, y(s),

∫ s

0
g(s, ι, y(ι))dι

)
− h
(

s, ỹ(s),
∫ s

0
g(s, ι, ỹ(ι))dι

)
‖2ds
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≤
(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2Lh(q)

(
E‖y(s)− ỹ(s)‖2

Y

+ E‖
∫ s

0

[
g(s, ι, y(ι))− g(s, ι, ỹ(ι))

]
dι‖2

)
ds

≤
(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2Lh(q)

(
E‖y(s)− ỹ(s)‖2

Y

+ ϑ
∫ s

0
Lg(q)E‖y(ι)− ỹ(ι)‖2

Y dι
)

ds

≤
(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2Lh(q)

(
sup

s∈[0,ϑ]
E‖y(s)− ỹ(s)‖2

Y

+ ϑ2Lg(q) sup
s∈[0,ϑ]

E‖y(ι)− ỹ(ι)‖2
Y

)
ds,

which implies that

sup
s∈[0,ϑ]

E‖(Φy)(t)− (Φỹ)(t)‖2
Y ≤

(
K

Γ(2η)

)2

Tr(Q) ϑ4η−1

4η − 1
Lh(q)

(
1 + ϑ2Lg(q)

)
× sup

s∈[0,ϑ]
E‖y(s)− ỹ(s)‖2

Y . (13)

Therefore,

‖(Φy)− (Φỹ)‖2
C ([0,ϑ],L2(Ω,Y )) ≤ L0‖y− ỹ‖2

C ([0,ϑ],L2(Ω,Y )). (14)

where

L0 =

(
K

Γ(2η)

)2

Tr(Q) ϑ4η−1

4η − 1
Lh(q)

(
1 + ϑ2Lg(q)

)
< 1. (15)

Thus Φ is a contraction mapping onQq. It follows from the contraction mapping principle,
i.e., that Φ has a unique fixed point y inQq, which is the mild solution of (1). By taking into
account the equation on intervals [0, ϑ̃], [ϑ̃, 2ϑ̃] · · · , including ϑ̃ fulfilling (15), the additional
condition on may be eliminated with ease.

4. Optimal Control Outcomes

Take into account the subsequent Lagrange problem (LP):
Find (y0,κ0) ∈C ([0, ϑ], L2(Ω,Y ))×Uad such that

J (y0,κ0) ≤ J (yκ ,κ), for all κ ∈ Uad.

In the above

J (yκ ,κ) = E

{ ∫ ϑ

0
=(t, yκ(t),κ(t))dt

}
, (16)

and the mild solution of (1) is described as yκ in relation to κ that ∈Uad. To prove the
existence of solution for (LP), we impose the subsequent requirements:

(H6)(ı) OnX ∀ y ∈Y and almost t ∈[0, ϑ], =(t, y, ·) is convex.
(ıı) The Jt-measurable functional = : [0, ϑ]×Y ×X → <∪ {∞}.
(ııı) On Y ×X for a.e. t ∈ [0, ϑ], =(t, ·, ·) is sequentially lower semicontinuous.
(ıv) There exist d1 ≥ 0, e > 0, `1 is nonnegative and `1 ∈L1([0, ϑ],<) such that

`1(t) + d1E‖y‖2
Y + e‖κ‖r

X ≤ =(t, y,κ).
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Theorem 2. Provided that the requirements of Theorem 1 and (H6) are true, assume that B is a
strongly continuous operator, next the Lagrange problem has at least one optimal pair, i.e., there
exists an admissible control pair (y0,κ0) ∈C ([0, ϑ], L2(Ω,Y ))×Uad such that

J (y0,κ0) = E

{ ∫ ϑ

0
=(t, y0(t),κ0(t))dt

}
≤ J (yκ ,κ), (17)

for all (yκ ,κ) ∈ C ([0, ϑ], L2(Ω,Y ))×Uad.

Proof. Provided that inf{J (yκ ,κ) |κ ∈ Uad} = +∞, next we clearly get the outcome.
Consider

inf{J (yκ ,κ) |κ ∈ Uad} = υ < +∞.

From (H6), we get υ > −∞. ∃ minimizing sequence feasible pair by the definition
of infimum

{(ym,κm)} ⊂ Pad ≡ {(y,κ) | y is a mild solution of system (1) corresponding toκ ∈ Uad}

such that J (ym,κm)→ υ when m→ +∞. For m = 1, 2, . . . , {κm} ⊆ Lr([0, ϑ],X ) which is
also bounded. Next, ∃ {κm}, and κ0 ∈Lr([0, ϑ],X ) such that κm weakly convergent to κ0

in Lr([0, ϑ],X ). By means of Marzur lemmaUad is closed convex, κ0 ∈Uad.
Consider {ym} is the sequence of solutions of (1) corresponding to {κm}, y0 is the

mild solution of (1) corresponding to the control κ0. ym and y0 fulfill the subsequent
integral systems,

ym(t) = Vη(t)y0 +Nη(t)y1 +
∫ t

0
(t− s)η−1Mη(t− s)h

(
s, ym(s),

∫ s

0
g(s, ι, ym(ι))dι

)
dW(s)

+
∫ t

0
(t− s)η−1Mη(t− s)B(s)κm(s)ds, (18)

and

y0(t) = Vη(t)y0 +Nη(t)y1 +
∫ t

0
(t− s)η−1Mη(t− s)h

(
s, y0(s),

∫ s

0
g(s, ι, y0(ι))dι

)
dW(s)

+
∫ t

0
(t− s)η−1Mη(t− s)B(s)κ0(s)ds. (19)

By Lemma 7 and boundedness of {κm}, {κ0}, make it simple to demonstrate that ∃ q > 0
such that E‖ym‖2 ≤ q, E‖y0‖2 ≤ q. For t ∈ [0, ϑ], one can get

E‖ym(t)− y0(t)‖2

≤ 2E
∥∥ ∫ t

0
(t− s)η−1Mη(t− s)

[
h
(

s, ym(s),
∫ s

0
g(s, ι, ym(ι))dι

)
− h
(

s, y0(s) +
∫ s

0
g(s, ι, y0(ι))dι

)]
dW(s)

∥∥2

+ 2E‖
∫ t

0
(t− s)η−1Mη(t− s)[B(s)κm(s)−B(s)κ0(s)]ds‖2

≤
2K2Tr(Q)Lh(q)

(
1 + Lg(q)ϑ2)(

Γ(2η)
)2

∫ t

0
(t− s)4η−2E‖ym(s)− y0(s)‖2ds

+ 2

(
K

Γ(2η)

)2(
r− 1

2ηr− 1

) 2(r−1)
r

η4η− 2
r

[(
E
∫ t

0
‖B(s)κm(s)−B(s)κ0(s)‖rds

) 1
r
]2

,

it suggest that there exists a constant K∗ > 0 such that

E‖ym(t)− y0(t)‖2 ≤ K∗‖Bκm −Bκ0‖2
Lr([0,ϑ],X ), t ∈ [0, ϑ]. (20)
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Hence, B is strongly continuous, one can obtain

‖Bκm −Bκ0‖2
Lr([0,ϑ],X )

s−→ 0 as m→ ∞. (21)

Next, we get

E‖ym(t)− y0(t)‖2 s−→ 0 as m→ ∞,

which is equivalent to

‖ym − y0‖2
C

s−→ 0 as m→ ∞.

Therefore

ym s−→ y0 in C when m→ ∞.

Hence, from [42], we can conclude that

(y,κ)→ E

{ ∫ ϑ

0
=(t, y(t),κ(t))dt

}

is sequentially lower semicontinuous in the strong topology of L1([0, ϑ],Y ) and weak
topology of Lr([0, ϑ],X ) ⊂ L1([0, ϑ],X ).

Therefore, J is weakly lower semicontinuous on Lr([0, ϑ],X ), and from (H6)(ıv),
J > −∞, J succeeds its minimum at κ0 ∈Uad, i.e.,

υ = lim
m→∞

E

{ ∫ ϑ

0
=(t, ym(t),κm(t))dt

}
≥ E

{ ∫ ϑ

0
=(t, y0(t),κ0(t))dt

}
= J (y0,κ0) ≥ υ.

This completes the proof.

5. Integrodifferential Systems with Delay

Recently, there has been an increase in interest in studying systems with memory or
aftereffects, that is, the impact of infinite delay on state equations, in various fields of science
and engineering, (see [8,9,11] and reference therein). Thus, stochastic integrodifferential
systems involving infinite delay must be discussed. The solvability and optimal controls of
fractional integrodifferential evolution equations involving infinite delay have been studied
in [43]. The authors of [44] examined the optimal control issues for a semilinear evolution
system involving infinite delay. Moreover, in [45], the authors discussed the problems of
optimal control and time-optimal control for a neutral integrodifferential evolution system
with infinite delay.

Here, we discuss the optimal control for fractional stochastic integrodifferential sys-
tems with infinite delay as follows:CDγ

t y(t) = Ay(t) +B(t)κ(t) + h̃
(

t, yt,
∫ t

0 g̃(t, s, ys)ds
)

dW(t)
dt , t ∈ I ,

y(t) = (t) ∈ L2(Ω,G ), t ∈ (−∞, 0], y′(0) = y1 ∈ Y .
(22)

In the above A and B are defined as in the previous segment. The histories yt : (−∞, 0]→ Y
is determined as yt(s) = y(t + s), s ≤ 0 and ∈the phase space G .  = {(t) : −∞ < t ≤ 0}
is an J0-measurable, G -valued random variable independent of the Wiener process W with
finite second moments. Consider L0

2(Ω,Y ) is the family of all J0-measurable Y -valued
random variables y(0).

By [46], the phase space G is introduced now. Consider (G , ‖ · ‖) is a linear space of
functions mapping (−∞, 0] into Y and fulfill the subsequent axioms:
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(A1)Provided that y : (−∞, ϑ]→ Y , is such that y0 ∈ G , next ∀ t ∈[0, ϑ], the subsequent
characteristics are true:

(a) yt is in G ,
(b) ‖y(t)‖ ≤ H‖yt‖G ,
(c) ‖yt‖G ≤ M(t) sup

{
‖y(s)‖ : 0 ≤ s ≤ t

}
+ N(t)‖y0‖G .

In the above H ≥ 0, the continuous function M : [0, ϑ] → [0,+∞), N : [0,+∞) →
[0,+∞) is locally bounded operator andH, M, N are not dependent of y(·).

(A2) yt is a G -valued function in I , where y(·) from (A1).
(A3) The space G is complete.

Further, h̃ : I ×G ×Y → L0
2, g̃ : I × I ×G → Y are appropriate functions fulfilling

the subsequent requirements:

(H7).

(ı) ∀ (δ, ξ) ∈ Y ×Y , the function h̃(·, δ, ξ) : I → L0
2 is measurable.

(ıı) For arbitrary δ1, δ2 ∈G , ξ1, ξ2 ∈Y fulfilling ‖δ1‖2
G , ‖δ2‖2

G , E‖ξ1‖2,
E‖ξ2‖2 ≤ τ, there exists a Mh̃(τ) > 0 such that

E‖h̃(t, δ1, ξ1)− h̃(t, δ2, ξ2)‖2 ≤ Mh̃(τ)(‖δ1 − δ2‖2
G + E‖ξ1 − ξ2‖2),

for all t ∈ I .

(ııı) There exists a ch̃ > 0 such that

E‖h̃(t, δ, ξ)‖2 ≤ ch̃(1 + ‖δ‖
2
G + E‖ξ‖2), for all δ ∈ G , ξ belongs to Y

and t ∈ I .

(H8).

(ı) ∀ (t, s) ∈ I × I , the function g̃(t, s, ·) : G → Y is continuous.
(ıı) For arbitrary (t, s) ∈ I × I and δ1, δ2 ∈ G fulfilling ‖δ1‖2

G , ‖δ2‖2
G ≤ τ, there exists

a Mg̃(τ) > 0 such that

E‖g̃(t, s, δ1)− g̃(t, s, δ2)‖2 ≤ Mg̃(τ)(‖δ1 − δ2‖2
G ).

(ııı) There exists a cg̃ > 0 such that

E‖g̃(t, s, δ)‖2 ≤ cg̃(1 + ‖δ‖2
G ), for all δ ∈ G .

Definition 6 ([1]). A stochastic process y : (−∞, ϑ] → Y is called a mild solution of (22)
provided that y0 =  ∈ L2(Ω,G ) on (−∞, 0] fulfilling y0 ∈ L2

0(Ω,Y ), ∀ κ(·) ∈ Uad there exists
a ϑ = ϑ(κ) > 0, and the subsequent integral system is fulfilled:

y(t) =


Vη(t)φ(0) +Nη(t)y1

+
∫ t

0 (t− s)η−1Mη(t− s)h̃
(

s, ys,
∫ s

0 g̃(s, ι, yι)dι
)

dW(s)

+
∫ t

0 (t− s)η−1Mη(t− s)B(s)κ(s)ds, 0 ≤ t ≤ ϑ,
φ(t), −∞ < t ≤ 0.

(23)

In the above

Vη(t) =
∫ ∞

0
Pη(θ)V (tηθ)dθ, Nη(t) =

∫ t

0
Vη(s)ds,

Mη(t) =
∫ ∞

0
ηθPη(θ)W (tηθ)dθ, Pη(θ) =

1
η

θ
−1− 1

η µη(θ
− 1

η ) ≥ 0,
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µη(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−nη−1 Γ(nη + 1)
n!

sin(nπη), θ ∈ (0, ∞),

and the Mainardi’s Wright-type function Pη(·) is deteremined on (0, ∞) such that

Pη(θ) ≥ 0, ∀ θ ∈ (0, ∞) and
∫ ∞

0
Pη(θ)dθ = 1.

Determine GC =
{

y : (−∞, 0]→ Y , y|(−∞,0] ∈ G and y|I ∈ C (I ,Y )
}

, and assume
that ‖ · ‖GC is the seminorm in GC represented as

‖y‖GC = ‖y0‖G + sup
s∈I

(
E‖y(s)‖2)1/2.

It is clear that (GC , ‖ · ‖GC ) is a Banach space.
Additionally, we fix GC 0 = {z ∈ GC : z0 = 0 ∈ G} and consider ‖ · ‖GC 0 is the

seminorm in GC 0, represented as

‖z‖GC 0 = ‖z0‖G + sup
s∈I

(
E‖z(s)‖2)1/2

= sup
s∈I

(
E‖z(s)‖2)1/2.

It is clear that (GC 0, ‖ · ‖GC 0) is a Banach space.

Lemma 8. Assume that (0) in Y , (H7)(ııı), and (H8)(ııı) are fulfilled. Suppose (22) is mildly
solvable on (−∞, ϑ] related to κ ∈Uad. Next, there exists a constant τ > 0 such that

E‖y(t)‖2 ≤ τ, ∀ t ∈ I . (24)

Proof. Given that the system (22) is mildly solvable on (−∞, ϑ] with regard to κ ∈ Uad,
by Definition 6, consider y is a mild solution of (22), with respect to κ on (−∞, ϑ], next y
fulfills (23). Take a look at the y(t) = z(t) + ̃(t), where ̃ : (−∞, ϑ]→ Y , described as

̃(t) =

{
(t), t ∈ (−∞, 0],
Vη(t)(0) +Nη(t)y1, t ∈ [0, ϑ].

(25)

Obviously, y fulfills the system (23) if
z0 = 0, t ∈ (−∞, 0],

z(t) =
∫ t

0 (t− s)η−1Mη(t− s)h̃
(

s, zs + ̃s,
∫ s

0 g̃(s, ι, zι + ̃ι)dι
)

dW(s)

+
∫ t

0 (t− s)η−1Mη(t− s)B(s)κ(s)ds, t ∈ I .

(26)

For t ∈ I , one can obtain

E‖z(t)‖2 ≤ 2E‖
∫ t

0
(t− s)η−1Mη(t− s)h̃

(
s, zs + ̃s,

∫ s

0
g̃(s, ι, zι + ̃ι)dι

)
dW(s)‖2

+ 2E‖
∫ t

0
(t− s)η−1Mη(t− s)B(s)κ(s)ds‖2

≤ 2

(
K

Γ(2ϑ)

)2

Tr(Q)
∫ t

0
(t− s)4η−2E‖h̃

(
s,κt + ̃t,

∫ t

0
g̃(s, ι,κι + ̃ι)dι

)
‖2ds

+ 2

(
K

Γ(2η)

)2

‖B‖2
∞E
[ ∫ t

0
(t− s)2η−1‖κ(s)‖ds

]2

≤ 2

(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2ch̃

(
1 + ‖zs + ̃s‖2

G + ϑ2cg̃

(
1 + ‖zι + ̃ι‖2

G

))
ds
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+ 2

(
K

Γ(2η)

)2

‖B‖2
∞

[( ∫ t

0
(t− s)

r(2η−1)
r−1 ds

) r−1
r
(

E
∫ t

0
‖κ(s)‖rds

) 1
r
]2

≤ c + 2

(
K

Γ(2η)

)2

Tr(Q)ch̃

(
1 + ϑ2cg̃

) ∫ t

0
(t− s)4η−2‖zs + ̃s‖2

G ds. (27)

In the above inequality,

c =
2K2ch̃

(
1 + ϑ2cg̃

)
ϑ4η−1Tr(Q)(

Γ(2η)
)2
(4η − 1)

+
2K2‖B‖2

∞(
Γ(2η)

)2

(
r− 1

2ηr− 1

) 2(r−1)
r

ϑ4η− 2
r ‖κ‖2

Lr([0,ϑ],X ).

Consider Mϑ = sup{M(t) : t ∈ I} and Nϑ = sup{N(t) : t ∈ I}. Next,

‖zs + ̃s‖2
G ≤ 2(‖zs‖2

G + ‖ ̃s‖2
G )

≤ 4
(

M(t)
)2 sup

{
E‖z(s)‖2 : 0 ≤ s ≤ t

}
+ 4
(

N(t)
)2‖z0‖2

G

+ 4
(

M(t)
)2 sup

{
E‖ ̃(s)‖2 : 0 ≤ s ≤ t

}
+ 4
(

N(t)
)2‖ ̃0‖2

G

≤ 4M2
ϑ sup

{
E‖z(s)‖2 : 0 ≤ s ≤ t

}
+ 4M2

ϑ

(
2K2E‖φ(0)‖2 + 2K2ϑ2E‖y1‖2)

+ 4N2
ϑ‖‖2
G . (28)

Fix

x(t) = 4M2
ϑ sup

{
E‖z(s)‖2 : 0 ≤ s ≤ t

}
+ 4M2

ϑ

(
2K2E‖(0)‖2 + 2K2ϑ2E‖y1‖2)

+ 4N2
ϑ‖‖2
G . (29)

Next
‖zs + ̃s‖2

G ≤ x(t),

It suggests that (27) may be expressed as

E‖z(t)‖2 ≤ c +
2K2Tr(Q)ch̃

(
1 + ϑ2cg̃

)(
Γ(2η)

)2

∫ t

0
(t− s)4η−2x(s)ds. (30)

When applying Equation (30) in the definition of x, one can obtain

x(t) ≤ 4M2
ϑ

(
2K2E‖φ(0)‖2 + 2K2ϑ2E‖y1‖2)+ 4N2

ϑ‖φ‖2
G + 4M2

ϑc

+
8M2

ϑK2Tr(Q)ch̃

(
1 + ϑ2cg̃

)(
Γ(2η)

)2

∫ t

0
(t− s)4η−2x(s)ds. (31)

Using Lemma 8, there existsN > 0 such that

x(t) ≤ N
(
4M2

ϑ

(
2K2E‖φ(0)‖2 + 2K2ϑ2E‖y1‖2)+ 4N2

ϑ‖φ‖2
G + 4M2

ϑc
)

:=M , t ∈ I .

Next

E‖z(t)‖2 ≤ c +
2K2Tr(Q)ch̃

(
1 + ϑ2cg̃

)(
Γ(2η)

)2

∫ t

0
(t− s)4η−2M ds

≤ c +
2K2Tr(Q)ch̃

(
1 + ϑ2cg̃

)
ϑ4η−1(

Γ(2η)
)2
(4η − 1)

M :=M ∗. (32)

As a result,

E‖y(t)‖2 ≤ 2E‖z(t)‖2 + 4
(
E‖Vη(t)(0)‖2 + E‖Nη(t)y1‖2)



Fractal Fract. 2023, 7, 284 15 of 24

≤ 2K∗ + 4(K2E‖(0)‖2 +K2ϑ2E‖y1‖2) := τ, ∀ t ∈ I . (33)

The evidence is finished.

Remark 3. It is not difficult to see ‖y‖GC ≤ ‖‖G + τ := τ∗, according to the seminorm, as
expressed in GC .

Theorem 3. Provided that the assumptions (H1), (H4), (H5), (H7), and (H8) are fulfilled,
(0) ∈ Y . Next, for each κ ∈ Uad and 1 < r < ∞ such that 2ηr > 1, and Equation (22)
is mildly solvable on (−∞, ϑ] with respect to κ, and the mild solution is unique.

Proof. Consider

GC |ϑ1 = {y : (−∞, 0]→ Y , y|(−∞,0] belongs to G and y|[0,ϑ1]
∈ C ([0, η1],Y )}

and

S(1, ϑ1) := {y ∈ GC |ϑ1 sup
s∈[0,ϑ1]

E‖y(s)− φ(0)‖2 ≤ 1, y(s) = (s) for s ∈ (−∞, 0]}.

Next, S(1, ϑ1) ⊆ GC |ϑ1 is a closed convex collection of GC |ϑ1 . We can easily obtain the
function h̃(s, ys,

∫ s
0 g̃(s, ι, yι)dι) is a measurable function ∀ s ∈[0, t], t ∈ [0, ϑ1] because it is

mentioned in (H7)(ı) and (H8)(ı). Consider y ∈ S(1, ϑ1), ∃ τ∗ = 8E‖(0)‖2 + 8ϑ2
1E‖y1‖2 +

4 + 2‖‖2
G > 0 such that

‖y‖2
GC |ϑ1

≤ τ∗. (34)

Using (H7)(ııı) and (H8)(ııı), one can obtain

E
∥∥h̃
(

s, ys,
∫ s

0
g̃(s, ι, yι)dι

)∥∥2 ≤ ch̃

(
1 + ‖ys‖2

G + E‖
∫ s

0
g̃(s, ι, yι)ds‖2

)
≤ ch̃

(
1 + τ∗ + ϑ2cg̃(1 + τ∗)

)
= K∗, ∀ t ∈ [0, ϑ1]. (35)

By Lemma 4(ı) and (35), one can obtain

E
∥∥ ∫ t

0
(t− s)η−1Mη(t− s)h̃

(
s, ys,

∫ s

0
g̃(s, ι, yι)dζ

)
dW(s)

∥∥2

≤
(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2E

∥∥h̃
(

s, ys,
∫ s

0
g̃(s, ι, yι)dι

)∥∥2ds

≤
(
K

Γ(2η)

)2

Tr(Q)
∫ t

0
(t− s)4η−2K∗ds

≤
(
M

Γ(2η)

)2
Tr(Q)K∗η4η−1

4η − 1
. (36)

In this case, (t− s)η−1Mη(t− s)h̃
(

s, ys,
∫ s

0 g̃(s, ι, yι)dι

)
is treated as Bochner integrable,

with regard to s in [0, t] ∀ t in [0, ϑ1], due to Lemma 6.
Furthermore, by Lemma 4(ı), (H7), (H8), and 2ηr > 1, one can obtain

E
∥∥ ∫ t

0
(t− s)η−1Mη(t− s)B(s)κ(s)ds

∥∥2



Fractal Fract. 2023, 7, 284 16 of 24

≤
(
K

Γ(2η)

)2

‖B‖2
∞E
[ ∫ t

0
(t− s)2η−1‖κ(s)‖ds

]2

≤
(
K

Γ(2η)

)2

‖B‖2
∞

[( ∫ t

0
(t− s)

r(2η−1)
r−1 ds

) r−1
r
(

E
∫ t

0
‖κ(s)‖rds

) 1
r
]2

≤
(
K

Γ(2η)

)2

‖B‖2
∞

(
r− 1

2ηr− 1

) 2(r−1)
r

ϑ4η− 2
r ‖κ‖2

Lr([0,ϑ],X ). (37)

In this case, (t − s)η−1Mη(t − s)B(s)κ(s) is also treated as a Bochner integrable, with
regard to s ∈ [0, t] ∀ t ∈ [0, ϑ1], due to Lemma 6 once more.

Let Υ : S(1, ϑ1)→ GC |ϑ1 be determined by

(Υy)(t) =


(t), t ∈ (−∞, 0],
Vη(t)φ(0) +Nη(t)y1

+
∫ t

0 (t− s)η−1Mη(t− s)h̃
(

s, ys,
∫ s

0 g̃(s, ι, yι)dι
)

dW(s)

+
∫ t

0 (t− s)η−1Mη(t− s)B(s)κ(s)ds, 0 ≤ t ≤ ϑ1.

(38)

Consider y(t) = z(t) + ̃(t), where the function ̃ : (−∞, ϑ]→ Y is expressed by (25). Next,
y fulfills (23) iff z0 = 0 and

z(t) =
∫ t

0
(t− s)η−1Mη(t− s)h̃

(
s, zs + ̃s,

∫ s

0
g̃(s, ι, zι + ̃ι)dι

)
dW(s)

+
∫ t

0
(t− s)η−1Mη(t− s)B(s)κ(s)ds, t ∈ I . (39)

Determine
GC |0ϑ1

= {z ∈ GC |ϑ1 : z0 = 0 ∈ G}

and let ‖ · ‖GC |0ϑ1
be the seminorm in GC |0ϑ1

determined by

‖z‖GC |0ϑ1
= ‖z0‖G + sup

s∈[0,ϑ1]

(
E‖z(s)‖2)1/2

= sup
s∈[0,ϑ1]

(
E‖z(s)‖2)1/2.

(GC |0ϑ1
, ‖ · ‖GC |0ϑ1

) is a Banach space.

Set

S0(1, ϑ1) :=
{

z ∈ GC |0ϑ1
| sup

s∈[0,ϑ1]

E‖z(s)‖2 ≤ 1, z(s) = 0, for all s ∈ (−∞, 0]
}

.

Because S0(1, ϑ1) ⊆ GC |0ϑ1
is a closed convex subset of GC |0ϑ1

.
Determine Υ0 : S0(1, ϑ1)→ GC |0ϑ1

as

(Υ0z)(t) =


0, t ∈ (−∞, 0],∫ t

0 (t− s)η−1Mη(t− s)h̃
(

s, zs + ̃s,
∫ s

0 g̃(s, ι, zι + ̃ι)dι
)

ds

+
∫ t

0 (t− s)η−1Mη(t− s)B(s)κ(s)ds, 0 ≤ t ≤ ϑ1.

(40)

Next, we verify that Υ0 is a contraction mapping on S0(1, ϑ1) with ϑ1 > 0. For t ∈ [0, ϑ1],
we obtain that

E‖(Υ0z)(t)‖2
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≤ 2E‖
∫ t

0
(t− s)η−1Mη(t− s)h̃

(
s, zs + ̃s,

∫ s

0
g̃(s, ι, zι + ̃ι)dι

)
dW(s)‖2

+ 2E‖
∫ t

0
(t− s)η−1Mη(t− s)B(s)κ(s)ds‖2

≤ 2

(
K

Γ(2η)

)2[
Tr(Q)K∗t4η−1

4η − 1
+ ‖B‖2

∞

(
r− 1

2ηr− 1

) 2(r−1)
r

t4η− 2
r ‖κ‖2

Lr([0,ϑ],X )

]
. (41)

Consider

ϑ11 =

[ (
Γ(2η)

)2

2K2
[ Tr(Q)K∗ϑ 2

r −1

4η−1 + ‖B‖2
∞
( r−1

2ηr−1
) 2r−1)

r ‖κ‖2
Lr([0,ϑ],X )

]
] r

4rη−2

,

Next, ∀ t ≤ ϑ11, and it comes from (41), in which

E‖(Υ0z)(t)‖2 ≤ 1. (42)

Moreover, for −∞ < t ≤ 0, (Υ0z)(t) = 0. Hence, Υ0(S0(1, ϑ1)) ⊆ S0(1, ϑ1).
For each t ∈ [0, ϑ1], z, z̃ ∈ S0(1, ϑ1) and ‖z‖2

GC |0ϑ
, ‖z̃‖2

GC |0ϑ
≤ τ∗. For t ∈ [0, ϑ], using

Lemma 4 (ı), (H7)(ıı), (H8)(ıı), we obtain

E‖(Υ0z)(t)− (Υ0z̃)(t)‖2

≤ E‖
∫ t

0
(t− s)η−1Mη(t− s)

[
h̃
(

s, zs + ̃s,
∫ s

0
g̃(s, ι, zι + ̃ι)dι

)
− h̃
(

s, z̃s + ̃s,
∫ s

0
g̃(s, ι, z̃ι + ̃ι)dι

)]
dW(s)‖2

≤
K2Tr(Q)Mh̃(τ

∗)(
Γ(2η)

)2

∫ t

0
(t− s)4η−2‖zs − z̃s‖2

G ds

+
K2Tr(Q)Mh̃(τ

∗)Mg̃(τ
∗)ϑ2(

Γ(2η)
)2

∫ t

0
(t− s)4η−2‖zs − z̃s‖2

G ds

≤
K2Tr(Q)Mh̃(τ

∗)
(
1 + Mg̃(τ

∗)ϑ2)M2
ϑ(

Γ(2η)
)2

∫ t

0
(t− s)4η−2 sup

s∈I
E‖z(s)− z̃(s)‖2ds, (43)

It suggests that

sup
t∈I

E‖(Υ0z)(t)− (Υ0z̃)(t)‖2

≤
K2Tr(Q)Mh̃(τ

∗)(1 + Mg̃(τ
∗)ϑ2))M2

ϑ(
Γ(2η)

)2
t4η−1

4η − 1
sup
s∈I

E‖z(s)− z̃(s)‖2. (44)

Therefore,

‖Υ0z− Υ0z̃‖2
GC |0ϑ1

≤
K2Tr(Q)Mh̃(τ

∗)(1 + Mg̃(τ
∗)ϑ2)M2

ϑ(
Γ(2η)

)2
t4η−1

4η − 1
‖z− z̃‖2

GC |0ϑ1

.

Let

ϑ12 =
1
2

[
(Γ(2η))2(4η − 1)

K2Tr(Q)Mh̃(τ
∗)(1 + Mg̃(τ∗)ϑ2))M2

ϑ

] 1
4η−1

, (45)
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ϑ1 = min{ϑ11, ϑ12}. On S0(1, ϑ1), Υ0 is a contraction mapping. Because of the contraction
mapping concept, Υ0 has a unique fixed point z that ∈S0(1, ϑ1). Therefore, y(t) = z(t)+ ̃(t)
is unique mild solution of (22), with regard to κ on (−∞, ϑ1].

Consider ϑ21 = ϑ1 + ϑ11, ϑ22 = ϑ1 + ϑ12, ∆ϑ min{ϑ21 − ϑ1, ϑ12} > 0. Similarly, we say
that Equation (22) has unique mild solutions over (−∞, ∆ϑ]. By performing the preceding
operations in every interval [∆ϑ, 2∆ϑ], [2∆ϑ, 3∆ϑ], · · · , and employing the methods of
stages, we may immediately reach the global existence of mild solutions for (22).

6. Optimal Control Outcomes with Infinite Delay

Let the Lagrange problem (LP):
Find κ ∈Uad such that

J (y0,κ0) ≤ J (yκ ,κ), ∀ κ belongs toUad.

In the above

J (yκ ,κ) = E

{ ∫ ϑ

0
Ψ(t, yκt , yκ(t),κ(t))dt

}
, (46)

and the mild solution of (22) is described as yκ corresponding to κ ∈ Uad. To prove the
existence of a solution for (LP), we offer the subsequent conditions:

(H9).

(ı) OnX ∀ y ∈ G , z ∈ Y and almost all t ∈ I , Ψ(t, y, z, ·) and is convex.
(ıı) The Jt-measurable functional Ψ : I ×G ×Y ×X → <∪ {∞}.
(ııı) On G ×Y ×X for a.e. t ∈ I , Ψ(t, ·, ·, ·) is sequentially lower semicontinuous.
(ıv) There exist constants d2 > 0, e ≥ 0, a > 0, `2 is nonnegative and `2 ∈ L1(I ,<) such

that

`2(t) + d2‖y‖2
G + eE‖z‖2 + a‖κ‖r

X ≤ Ψ(t, y, z,κ).

Theorem 4. Provided that the condtion (H9) and requirements of Theorem 3 are fulfilled, B is a
strongly continuous operator. Next the Lagrange problem has at least one optimal pair, i.e., there
exists an admissible control κ0 ∈ Uad such that

J (y0,κ0) = E

{ ∫ ϑ

0
Ψ(t, y0

t , y0(t),κ0(t))dt

}
≤ J (yκ ,κ), ∀ κ ∈ Uad. (47)

Proof. Assume inf{J (yκ ,κ)| κ ∈ Uad} = +∞, then we clearly obtain the outcome. Let

inf{J (yκ ,κ) | κ ∈ Uad} = ε < +∞.

From (H9), we obtain ε > −∞. There exists a minimizing sequence feasible pair by definition
of infimum

{(ym,κm)} ⊂ P̃ad ≡ {(y,κ) | y is a mild solution of system (22) corresponding to κ ∈ Uad}

such that J (ym,κm) → ε when m → +∞. Since {κm} ⊆ Uad, m = 1, 2, · · · , {κm}
is a bounded subset of Lr([0, b],X ), there exists a subsequence, relabeled as {κm} and κ0

∈Lr([0, ϑ],X ) such that κm weakly convergent to κ0 in Lr([0, ϑ],X ). By Marzur lemmaUad
is closed, κ0 ∈Uad.
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Consider {ym} ⊂ GC is the corresponding sequence of solutions of the integral
system

ym(t) =


(t), t in (−∞, 0],
Vη(t)(0) +Mη(t)y1

+
∫ t

0 (t− s)η−1Mη(t− s)h̃
(

s, zs + ̃s,
∫ s

0 g̃(s, ι, zι + ̃ι)dι
)

dW(s)

+
∫ t

0 (t− s)η−1Mη(t− s)B(s)κ(s)ds, t ∈ I .

(48)

From Lemma 8 and Remark 3, ∃ τ > 0 such that

‖ym‖2
GC ≤ τ, m = 0, 1, 2, . . . . (49)

Consider ym(t) = zm(t) + ̃(t), here zm ∈GC 0 and ̃ : (−∞, ϑ] → Y . For t ∈ I , one
can obtain

E‖zm(t)− z0(t)‖2

≤ 2E
∥∥ ∫ t

0
(t− s)η−1Mη(t− s)

[
h̃
(

s, zms + ̃s,
∫ s

0
g̃(s, ι, zmι + ̃ι)dι

)
− h̃
(

s, z0
s + ̃s,

∫ s

0
g̃(s, ι, z0

ι + ̃ι)dι
)]

dW(s)
∥∥2

+ 2E‖
∫ t

0
(t− s)η−1Mη(t− s)[B(s)κm(s)−B(s)κ0(s)]ds‖2

≤
2K2Tr(Q)Mh̃(τ)

(
1 + Mg̃(τ)ϑ

2)(
Γ(2η)

)2

∫ t

0
(t− s)4η−2‖zms − z0

s‖2
G ds

+ 2

(
K

Γ(2η)

)2

E

[( ∫ t

0
(t− s)

r(2η−1)
r−1 ds

) r−1
r
( ∫ t

0
‖B(s)κm(s)−B(s)κ0(s)‖rds

) 1
r
]2

≤
2K2Tr(Q)Mh̃(τ)[1 + Mg̃(τ)ϑ

2]M2
ϑ(

Γ(2η)
)2

∫ t

0
(t− s)4η−2 sup

s∈I
E‖zm(s)− z0(s)‖2ds

+ 2

(
K

Γ(2η)

)2(
r− 1

2ηr− 1

) 2(r−1)
r

ϑ4η− 2
r

[(
E
∫ t

0
‖B(s)κm(s)−B(s)κ0(s)‖rds

) 1
r
]2

,

which deduces that there exists a constant M > 0 such that

sup
t∈I

E‖zm(t)− z0(t)‖2 ≤M‖Bκm −Bκ0‖2
Lr([0,ϑ],X ), t ∈ I . (50)

Hence, B is strongly continuous, we get

‖Bκm −Bκ0‖2
Lr([0,ϑ],X )

s−→ 0 as m→ ∞. (51)

Next,

‖zm − z0‖2
GC 0

s−→ 0 as m→ ∞,

which is equivalent to

‖ym − y0‖2
GC

s−→ 0 as m→ ∞.

This yields that

ym s−→ y0 ∈ GC as m→ ∞.
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From [42], we can conclude that

(yt × y,κ)→ E

{ ∫ ϑ

0
Ψ(t, yt, y(t),κ(t))dt

}

is sequentially lower semicontinuous in the strong topology of L1([0, ϑ],G ×Y ) and weak
topology of Lr([0, ϑ],X ) ⊂ L1([0, ϑ],X ).

Hence, J is weakly lower semicontinuous on Lr([0, ϑ],X ), and from (H9)(ıv), J >
−∞, J reaches its minimum at κ0 and ∈Uad, i.e.,

ε = lim
m→∞

E

{ ∫ ϑ

0
Ψ(t, ymt , ym(t),κm(t))dt

}

≥ E

{ ∫ ϑ

0
Ψ(t, y0

t , y0(t),κ0(t))dt

}
= J (y0,κ0) ≥ ε.

This completes the proof.

7. Example

Assume that f ⊂ <N is a bounded domain. Consider the following optimal control
issue for the fractional differential equation with infinite delay

CDγ
t y(t, z)− ∆y(t, z)

= $
(

t,
∫ t
−∞ ρ1(s− t)y(s, z)ds,

∫ t
0

∫ 0
−∞ ρ2(s, z, ξ − s)y(ξ, z)dξds

)
dW(t)

dt

+
∫
f ℘̆1(z, s)κ(s, t)ds, t ∈ I , z ∈ f,

y(t, z) = 0, t ∈ I , z ∈ ∂f,
y(t, z) = (t, z), y′(0, z) = y1(z), t ∈ (−∞, 0], z ∈ f.

(52)

In the above CDγ
t denotes the Caputo fractional partial derivative, whose order is γ in(

3
2 , 2
)

; the Wiener process is represented by W(t); ℘̆1 is a continuous function that maps

from f×f into <; κ ∈L2(I ×f); and ℘̆1 : f×f→ R is continuous.
We also take into account the subsequent requirements:

(S1) ρ1(s) ≥ 0 is continuous in (−∞, 0] and
∫ 0
−∞ ρ2

1(s)ds < ∞.
(S2) $ is continuous in I ×f×f fulfills:

(ı) ∃ K$ > 0 such that

E‖$(t, δ1, y1)− $(t, δ2, y2)‖2 ≤ K$(µ̂‖δ1 − δ2‖2 + E‖y1 − y2‖2), for all t ∈ I .

In the above µ̂ = (− 1
2}
∫ 0
−∞ ρ2

1(s)ds)
1
2 .

(ıı) ∃ c$ > 0 such that

E‖$(t, δ, y)‖ ≤ c$(1 + µ̂‖δ‖2 + E‖y‖2), for all t ∈ I .

(S3) ρ2(t, z, s) is continuous in I × f× (−∞, 0] and
∫ 0
−∞ ρ2(t, z, s)ds = α(t, z) < ∞ and

cj = sup{α(t, z) : t ∈ I , z ∈ f}.
Consider Y = X = L2(f) and A is the Laplace operator, with Dirichlet boundary

conditions that are represented by A = ∆ and

D(A) =
{

h̃ ∈ W1
0 (f), Ah̃ ∈ L2(f)

}
.

Consider D(A) =W1
0 (f) ∩W2(f). According to [47], A can generates the uniformly

bounded strongly continuous cosine family V (t) for t ≥ 0. Let λm = m2π2 and ξ̆m(z) =
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(
2
π

) 1
2

sin(mπz), m = 1, 2, . . . . It is obvious that {−λm, ξ̆m}∞
m=1 is the eigensystem of the

operator A, then 0 < λ1 ≤ λ2 ≤ · · · , λm → ∞ as m → ∞, and {ξ̆m}∞
m=1 forms an

orthonormal basis of Y . Furthermore,

Ay = −
∞

∑
m=1

λm〈y, ξ̆m〉ξ̆m, y ∈ D(A), (53)

where 〈·, ·〉 represents inner product in Y . Therefore, the cosine function is described as

V (t)y =
∞

∑
m=1

cos
(
λ

1
2
mt
)
〈y, ξ̆m〉ξ̆m, y ∈ Y , (54)

and the sine function is associated with cosine function given by

W (t)y =
∞

∑
m=1

1

λ
1
2
m

sin
(
λ

1
2
mt
)
〈y, ξ̆m〉ξ̆m, y ∈ Y , (55)

and ‖V (t)‖Lϑ
≤ 1, ∀ t ≥ 0. Therefore, (H1) is true. The controls are functions κ : V z(f)→

<, such that κ ∈L2(V z(f)). It is mentioned that t→ κ(·, t) is measurable. The family

U (t) = {κ ∈ X : ‖κ‖2
X ≤ κ}.

In the above κ ∈L2(I ,<+). We allocate the admissible controlsUad to all κ ∈ L2(V z(f))
such that ‖κ(·, t)‖L2(f) ≤ κ(t), a.e. t ∈ I .

Suppose that the phase space

G =

{
H ∈ C ((−∞, 0],Y ) : lim

s→−∞
e}sH (s) exists in Y

}
(56)

is determined as } < 0 and assume that

‖H ‖G = sup
−∞<s≤0

{
e}s(E‖H (s)‖2)1/2}. (57)

(G , ‖ · ‖G ) is a Banach space that fulfills (S1)− (S3), with H = 1, M(t) = sup{1, e−}t},
N(t) = e−}t.

In order to (t,H ) ∈ I ×G , in whichH (s)(z) = (s, z), (s, z) ∈ (−∞, 0]×f, consider

y(t)(z) = y(t, z),

g̃(t,H )(z) =
∫ 0

−∞
ρ2(t, z, s)H (s)(z)ds,

h̃
(

t,H ,
∫ t

0
g̃(s,H )ds

)
(z) = $

( ∫ 0

−∞
ρ1(s)H (s)(z)ds,

∫ t

0
ρ2(s,H )(z)ds

)
,

B(t)κ(t)(z) =
∫
f
℘̆1(z, s)κ(s, t)ds.

Because Equation (52) has been transformed (22). Now, we consider the subsequent cost
function:

J (yκ ,κ) = E

{ ∫ ϑ

0
Ψ(t, yκt , yκ(t),κ(t))dt

}
. (58)



Fractal Fract. 2023, 7, 284 22 of 24

In the above Ψ : I ×C 1,0((−∞, 0]×f
)
× L2(I ×f)→ <∪{+∞} for y ∈ C 1,0((−∞, ϑ]×

f
)

and κ ∈ L2(f× I),

Ψ(t, yκt , yκ(t),κ(t))(z)

=
∫
f

∫ 0

−∞
|yκ(t + s, z)|2dsdz+

∫
f
|yκ(t, z)|2dz+

∫
f
|κ(z, t)|2dz. (59)

Theorem 4’s properties are fulfilled. Hence, (52) has at least one optimal pair.

8. Conclusions

In this paper, by utilizing fractional calculus, Hölder’s inequality, stochastic analysis
techniques, and the fixed point theorem, we established the existence and uniqueness of
mild solutions for the fractional stochastic integrodifferential systems of order 1 < γ < 2.
Additionally, we discussed the existence of optimal control for the proposed problem
through Balder’s theorem. Now, there has been a growing interest in many areas of
science and engineering in the study of systems containing memory or aftereffects, i.e., the
effect of infinite delay on state equations. So, we extended the given fractional system to
infinite delay. The existence and uniqueness of mild solutions for the fractional stochastic
integrodifferential systems of order 1 < γ < 2 involving infinite delay have been examined
by using the Banach fixed point approach. Further, we verified the existence of optimal
control for the stated problem. An application has been offered at the end to support the
validity of the study. In the future, we will investigate the optimal control issue for the
fractional stochastic integrodifferential systems of order 1 < γ < 2 via sectorial operator.
Further, we will extend the system with noninstantaneous impulses.
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