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Abstract: We analyze an extension of the dual-phase lag model of thermal diffusion theory to
accurately predict the contribution of thermoelastic bending (TE) to the Photoacoustic (PA) signal in
a transmission configuration. To achieve this, we adopt the particular case of Jeffrey’s equation, an
extension of the Generalized Cattaneo Equations (GCEs). Obtaining the temperature distribution by
incorporating the effects of fractional differential operators enables us to determine the TE effects in
solid samples accurately. This study contributes to understanding the mechanisms that contribute
to the PA signal and highlights the importance of considering fractional differential operators in
the analysis of thermoelastic bending. As a result, we can determine the PA signal’s TE component.
Our findings demonstrate that the fractional differential operators lead to a wide range of behaviors,
including dissipative effects related to anomalous diffusion.

Keywords: anomalous diffusion; fractional dynamics; Generalized Cattaneo Equation

1. Introduction

The thermoelastic bending (TE) effect must be considered in photothermal measure-
ments when the temperature change in the sample, due to light absorption, creates me-
chanical stress that leads to a non-uniform thermal displacement [1,2]. It must be carefully
considered in the design and interpretation of photothermal experiments, as it can impact
the accuracy of the results if not adequately accounted for [3,4]. Thin samples with signif-
icant heat expansion and materials with anisotropic thermal expansion are particularly
susceptible to the TE effect. In addition, the TE effect is also essential in the analysis of the
photothermal responses when thermal characteristics of solid materials are investigated
using the Photoacoustic signal [5–23].

To accurately quantify the thermoelastic (TE) effect, we must determine the tempera-
ture distribution in the sample as a result of light absorption. This is obtained by solving
the heat diffusion equation, which describes how heat is transferred through the material.
The standard heat diffusion equation considers the thermal conductivity using the Fourier
Law and the heat generation rate through the Energy Conservation Law [24,25]. For the
photothermal techniques, the classical model does not consider heat loss, which can be due
to convection and radiation, heat loss to edges, and non-homogeneity [2].

The thermoelastic bending effect and other dissipation effects in photothermal data
can be modeled mathematically using fractional calculus [24–31]. It is worth mentioning
that the fractional calculus enables the modeling of processes that are not characterized
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by traditional (integer order) derivatives [26,29,32,33,33–41] and can be suitably used
to analyze anomalous diffusion and viscoelasticity in many materials [42,43]. In these
scenarios, the effects of memory and dissipation in the material can significantly impact
temperature distribution, and the TE effect, which can be captured by modeling the heat
transfer with fractional derivatives [26,27,44] and the mechanical reaction of the sample
(viscoelastic), can also be analyzed using fractional calculus. Combining these methods
with the fractional calculus enables modeling the mechanical response’s time-dependent
behavior in photothermal measurements, where the laser power and sample temperature
are quickly changing [45–47].

Here, we apply an extension of dual phase lag in thermal systems to predict the
PA signal’s temperature distribution and TE component for transmission configuration.
The extension is a new fractional operator derived from Jeffrey’s equation, an extension of
the GCE-I model with a fractional dual-phase-lag, considered to obtain the thermal piston
component of the PA signal [48] and photothermal response in periodic heating [49]. We
show that applying fractional calculus in photothermal measurements can offer a more
detailed description of the complex and dynamic behavior of the system, resulting in a
more accurate calculation of the TE effect and a more transparent comprehension of the
physical processes.

2. Theory

The Fourier Law connects the heat flux, q(r, t), at a given point in space and time is
proportional to the temperature gradient, ∇T(r, t), at that same point.

q(r, t) = −k∇T(r, t) (1)

where k is the thermal conductivity. It has been shown that fractional equations are a useful
mathematical tool for describing the dynamics of a variety of odd physical events [50–52].
Compte and Metzeler [53] made phenomenological generalizations of the Cattaneo Equa-
tion [54]. In particular, we have the GCE-I generalization:(

1 + τα
q ∂α

t

)
q(r, t) = −kα∂1−α

t ∇T(r, t) (2)

The Jeffreys-type equation is a generalization for the study of the Fractional Dual-
Phase-Lag (FDPL) [48]:(

1 + τα
q ∂α

t

)
q(r, t) = −kγ∂

1−γ
t

(
1 + τ

β
T ∂

β
t

)
∇T(r, t) (3)

where 0 < α, β, γ < 1, and kγ = kτ
1−γ
q , and ∂α

t is the Caputo fractional derivative or
integral, which are, respectively

t0 ∂
γ
t f (x, t) =


1

Γ(1−γ)

∫ t
t0

dt′
(t−t′)γ

∂
∂t f (x, t′), for 0 < γ < 1

1
Γ(−γ)

∫ t
t0

dt′ f (x,t′)
(t−t′)1+γ , for γ < 0

. (4)

A special case of Jeffreys-type equation is for α = γ, in which is obtained an extension
of GCE-I Compte-Metzler equation with a Dual-Phase-Lag (FDPL-GCE-I):(

1 + τα
q ∂α

t

)
q(r, t) = −kα∂1−α

t

(
1 + τ

β
T ∂

β
t

)
∇T(r, t) (5)

Furthermore, the validity interval is generalized, following Jeffrey’s equations, with
0 ≤ α, β ≤ 1. If β = 1 and τT = 0 in Equation (5),

The thermal diffusion equation is obtained by combining the Fourier Law, Equation (1),
with the Energy Conservation Law, which is:

ρcp∂tT(r, t) +∇ · q(r, t) = F(r, t) (6)
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with F(r, t), ρ, and cp the heat source, density, and specific heat, respectively. The classical
thermal diffusion (CTD) equation is

∇2T(r, t)− 1
D

∂tT(r, t) = −1
k

F(r, t) , (7)

where the standard thermal diffusivity is defined as D = k/ρcp.
For the general case, from the Jeffreys-type equation, Equation (3), the thermal diffu-

sion equation is:

∂
1−γ
t

(
1 + τ

β
T ∂

β
t

)
∇2T(r, t)− 1

Dγ

(
1 + τα

q ∂α
t

)
∂tT(r, t) =

− 1
kγ

(
1 + τα

q ∂α
t

)
F(r, t) (8)

with the fractional thermal diffusivity defined as Dγ = kγ/ρcp. For the FDPL-GCE-I the
Thermal Diffusion Equation is obtained:(

1 + τ
β
T ∂

β
t

)
∇2T(r, t)− 1

Dα
∂α−1

t

(
1 + τα

q ∂α
t

)
∂tT(r, t) =

− 1
kα

∂α−1
t

(
1 + τα

q ∂α
t

)
F(r, t) (9)

The anomalous thermal conductivity kα has dimensions kg ·m · s−2−α · K−1 and the
anomalous thermal diffusivity Dα has dimension m2 · s−α.

The Thermoelastic Bending Effect in Photoacoustic Signal

The Photoacoustic (PA) signal is a pressure variation recorded during PA measure-
ments in the sample nearby gas. Figure 1 shows the geometry for the TE calculation, as in
ref. [2,4]. The pressure variation δPTE due to thermoelastic effect is [1]:

δPTE =
ΓP0

V0
2π
∫ R

0
ruz(z = ls/2, r, t)dr (10)

where Γ is the air-specific heat ratio, P0 is the atmospheric pressure, uz(z = ls/2, r, t) is the
displacement of the sample due to the heating, R is the radius of the sample, and V0 = πRclg
with Rc the cell radius.

z

R

r
Rc

+ls/2

pulsed light beam

pressure wave

TE effect

_ls/2

Figure 1. Geometry for the TE problem in photoacoustic transmission excitation of sample with
thickness ls and radius R by considering R� ls. Rc is the PA cell radius.

The displacement uz(r, z) of a thin solid-plate approach is [3,25,55]:

uz

(
r,

ls
2

)
= αT

6(R2 − r2)

l3
s

MT (11)
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where αT is the thermal expansion coefficient, and MT =
∫ ls/2
−ls/2 zTs(z)dz is the temperature

gradient. To determine the temperature distribution, it is necessary to solve Equation (9).
Therefore, it is assumed that the absorption of radiation by air is insignificant, thus the heat
source is present exclusively within the sample:

Fs(z, t) = ηs I0λse−λszeiωt , (12)

with ω = 2π f , in which f is the frequency of light modulation, λs, I0, and ηs are the optical
absorption coefficient, the light intensity, and the quantum coefficient of the electromagnetic
energy to heat conversion of the sample, respectively (it is considered that ηs = 1).

The photothermal signal (PA signal) is monitored with the same frequency as the
heat source, requiring that the temperature variations in the three media (air-sample-air)
have a similar waveform to the source. This temperature variation can be expressed as
T(z, t) = θ(z)eiωt. Due to the experimental characteristics, we consider t0 = −∞. Thus,
∂

γ
t eiωt = (iω)γeiωt [52]. Additionally, the photothermal analysis (PA) problem can be

treated as a one-dimensional problem when the light-induced heating is uniform and
covers an area larger than the sample’s radius. In such cases, the temperature profile of
the sample, Ts(z, t), can be obtained by solving a set of one-dimensional heat diffusion
equations. This assumption simplifies the analysis and provides a more straightforward
method of understanding the temperature distribution within the sample:

d2

d2
z

θj(z)−
mj

Dαj

(iω)θj(z) = −
mj

kαj
Fj(z) (13)

with j = b, s, g for backing air, sample, and air closed in PA cell, respectively, and mj is
obtained from FDPL-GCE-I temporal fractional derivatives:

mj =
(iω)αj−1

(
1 + τ

αj
qj (iω)αj

)
(

1 + τ
β j
Tj (iω)β j

) (14)

To solve, we considered the boundary conditions: (1) the zero temperature variation
in system borders at z = ±∞, (2) continuity of temperature, and (3) continuity heat flux,
both at the interfaces backing air-sample (z = −ls/2), and sample-air inner the PA cell
(z = ls/2). Solving (13) and assuming that: (1) the thermal effusivity (e = (kρc)1/2) of
the sample is much greater than the air [56]; (2) the fractional order derivatives for air
are α = β = 1; and (3) the two relaxation times of air are small, τq → 0 and τT → 0,
the temperature distribution is:

Ts(z, t) =
I0 cosh

(
σms

(
z− ls

2

))
kms sinh(σms ls)

Hs(z, β)eiωt , (15)

where kms = ks/ms, σms = m1/2
s σs, and σj is the complex medium thermal diffusion length,

with j = g, b for the surrounding air and j = s for the sample, given by:

σj =

√
iω
Dj

, (16)

and Hs(z, β) = Λ1(z, β)−Λ2(z, β) is the optical absorbing contribution, which tends to
unit for opaque approach (limβ→∞ Hs(z, β) = 1). The functions Λ1 and Λ2 are defined
as follows:
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Λ1(z, β) =
1− e−βls cosh

(
σms

(
ls
2 + z

))
sech

(
σms

(
z− ls

2

))
1− σ2

ms
β2

, (17)

Λ2(z, β) =
σms e−β( ls

2 +z) sinh(lsσms)sech
(

σms

(
z− ls

2

))
β
(

1− σ2
ms
β2

) .

The GCE-I (One-Phase-Lag) presents a subdiffusive behavior for long timespans
(t < τq), i.e., in the high-frequency domain for photothermal techniques. It was obtained
from phase velocity for the FDPL-GCE-I, which is mainly characterized by subdiffusive
behavior, but the τT promotes the superdiffusive behavior mainly for high-frequency
modulations [49]. The thermoelastic bending contribution δPTE of the sample to the PA
signal is

δPTE =
C1C2ms

(
e−βls + 1

)
σ3

ms

(
1− σ2

ms
β2

) (18)

×
(

F1s − lsσms

(
1− σ2

ms
β2

)
+ 2 tanh

(
lsσms

2

))

where F1s =
2σ3

γs(e−βls−1)
β3(e−βls+1)

, where C1 =
ΓI0P0

√
αg√

2πlgT0ks
is the amplitude of thermal diffusion

contribution and its unit in the S.I is [C1] =Pa m−1s−1/2, and C2 = 3
√

2πR4T0αT
2R2

c
√

αg l3
s

is the relative

amplitude of thermoelastic contribution, and your unit in the S.I is [C2]=m−2s1/2 [45]. For
the opaque approach (β→ ∞):

δPTE =
C1C2ms

(
2 tanh

(
lsσms

2

)
− lsσms

)
l3
s σ3

ms
. (19)

Considering the classical thermal diffusion (m = 1), the PA signal tends to the equation
determined by Rousset et al. [1].

3. Results and Discussion

The analytical results are obtained for an opaque sample of thickness ls = 400 µm and
thermal diffusivity αs = 40× 10−6 m2/s, as a function of fractional order derivatives α
and β, heated by a uniform light source at z = −ls/2. The temperature distribution was
normalized by (ks/I0) to show how the factor ms, and hence the fractional factor alpha,
affect temperature distribution. Furthermore, the PA signal is normalized considering
C1C2 = 1. All simulations were performed until the establishment of attenuation for the
subdiffusive behavior, which occurs around the 0.5 < α < 1 interval [49].

3.1. Temperature Distribution

Figure 2 shows the influence of the Dual-Phase-Lag in GCE-I on the absolute value of
the temperature profile normalized. The temperature results are simulated as a function of
position z and fractional order derivative heated by a uniform light source at z = −ls/2
with frequency f = 1000 Hz. A particular case of FDPL-GCCE-I with α = β and τT = τq is
presented in Figure 2b.
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(c) FDPL with β=0.9 and τq=10-3 s and τT=10-4 s
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(d) FDPL with β=0.5 and τq=10-3 s and τT=10-4 s

Figure 2. Normalized (ksTs(z)/I0) absolute value of the temperature distribution of an opaque
sample heated by a light source at z = −ls/2 in the function of (α) with ls = 400 µm, f = 1000 Hz
and Ds = 40× 10−6 m2/s for (a) GCE-I, and FDPL-GCE-I for (b) special case with α = β, (c) β = 0.9,
and (d) β = 0.5.

The graphical representation provides the peculiar characteristics that arise during
heat wave propagation through the sample for each considered model. The following
remarks can be highlighted

• The subdiffusive Generalized Continuous Equation of the First Kind (GCE-I) has been
shown to reduce the resonant oscillations of the hyperbolic model and diminish the
temperature gradient inside the sample. The attenuation of oscillations in the GCE-I
model for photothermal excitations has been previously observed [23,45,57], as shown
by the red curve in Figure 2a, given that the GCE-I model returns to the hyperbolic
equation when α = 1. Furthermore, a decrease in the value of α leads to a reduction in
the temperature variation, which in turn affects the amplitude of the TE effect;

• The second Phase-Lag term functions as a damping factor for the resonant oscilla-
tions in the hyperbolic model but has the consequence of increasing the temperature
gradient. By setting γ = α in Jeffrey’s Equation (3), the resulting Equation (5) can be in-
terpreted as a DPL extension of the GCE-I model. As illustrated in Figure 2c,d, the DPL
parameters τq and β lead to a reduction in the resonant oscillations while simulta-
neously increasing the temperature in the region of incidence radiation (z = −ls/2).
The degree of attenuation is determined by the fractional order β, while the relaxation
time τq is responsible for the variation in a temperature gradient. This is closer to
real-world scenarios, as resonant oscillations are typically absent, but the TE effect
induced by the temperature gradient is present and can be measured;

• In the scenario where the fractional order, β, and relaxation time, τT , are close to the
values of α and τq, respectively, the damping of resonant oscillations is maximized,
which is the strongest damping situation. Additionally, the temperature gradient
exhibits a weaker behavior than that predicted by the classical and GCE-I models.

3.2. Photoacoustic Signal

Figure 3 presents the influence of the FDPL-GCE-I on the PA signal. Aside from analyz-
ing the amplitude of the PA signal |δP|, as shown in the left column graphs (Figure 3a,c,e,g),
it is also possible to analyze the phase delay φPA in which the signal is generated, as demon-
strated in the right column graphs (Figure 3b,d,f,h). The strongest damping (particular
case) with α = β and τq = τT is analyzed in Figure 3c,d.
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Figure 3. PA signal amplitude |δP| in (a,c,e,g) and phase delay φ in (b,d,f,h) for FDPL-GCE-I as the
function of frequency ( f ) and fractional derivative order (α) with ls = 400 µm, αs = 40× 10−6 m2/s
and τq = 10−3 s.

The temperature gradient mostly strongly influences the pressure wave generated at
each modulation frequency. The results of the PA signal due to the TE effect, which can be
added to the discussion of temperature results, are:

• The GCE-I makes the amplitude tend the classical behavior to high frequencies
increases the first resonant peak. On the other hand, the phase delay exhibits a
sharp decrease around the first resonant peak, which shifts to higher frequencies as
α decreases;

• For low α, the PA signal is lower than the classical result, even for higher frequencies.
This situation can explain the strongest dissipating phenomena;

• The influence of the fractional derivative photothermal model FDPL-GCE-I on the
amplitude of the photoacoustic (PA) signal is more prominent at lower frequencies.
In contrast, its impact on the phase can be detected across the entire frequency range.
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Specifically, the phase delay is more sensitive to anomalous effects, especially when
detecting equipment works at high frequencies.

It is worth noting that when there is an inversion of the relaxation times, leaving
τT > τq, a more intense attenuation occurs.

4. Conclusions

The FDPL-GCE-I equations were proposed to model the fractional heat conduction
and thermal diffusion in materials by incorporating two fractional order derivatives and
two relaxation times based on Jeffrey’s model. We obtained an analytical solution for
the temperature profile for a periodic photothermal excitation, assuming a homogeneous
sample surrounded by air, which can be either transparent or opaque, to investigate the
contribution of the thermoelastic (TE) effect to the photoacoustic (PA) problem.

The model exhibiting subdiffusive behavior for a broad range of modulation frequen-
cies typical of photothermal techniques can provide insights into anomalous effects arising
from anisotropic and dissipative effects that are not accounted for in classical and hyper-
bolic models. This model helps explain the underlying physics of these phenomena and
can enhance our understanding of the dynamics of such complex systems.
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GCE-I Generalized Cattaneo Equation type I
DPL Dual-Phase-Lag
FDPL Fractional Dual-Phase-Lag
FDPL-GCE-I Fractional Dual-Phase-Lag obtained from Jefrey’s Equation interpreted as a dual-

phase-lag extension of GCE-I

References
1. Rousset, G.; Lepoutre, F.; Bertrand, L. Influence of thermoelastic bending on photoacoustic experiments related to measurements

of thermal diffusivity of metals. J. Appl. Phys. 1983, 54, 2383–2391. [CrossRef]
2. Perondi, L.F.; Miranda, L.C.M. Minimal-volume photoacoustic cell measurement of thermal diffusivity: Effect of the thermoelastic

sample bending. J. Appl. Phys. 1987, 62, 2955–2959. [CrossRef]
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