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Abstract: Motivated by the increase in practical applications of fractional calculus, we study the
classical gradient method under the perspective of the ψ-Hilfer derivative. This allows us to cover
several definitions of fractional derivatives that are found in the literature in our study. The con-
vergence of the ψ-Hilfer continuous fractional gradient method was studied both for strongly and
non-strongly convex cases. Using a series representation of the target function, we developed an
algorithm for the ψ-Hilfer fractional order gradient method. The numerical method obtained by
truncating higher-order terms was tested and analyzed using benchmark functions. Considering
variable order differentiation and step size optimization, the ψ-Hilfer fractional gradient method
showed better results in terms of speed and accuracy. Our results generalize previous works in
the literature.
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1. Introduction

The gradient descent method is a classical convex optimization method. It is widely
used in many areas of computer science, such as in image processing [1,2], machine
learning [3–5], and control systems [6]. Its use on a large scale is essentially due to its
intuitive structure, ease of implementation, and accuracy. In recent years, there has been
an increase in interest in the application of fractional calculus techniques to develop and
implement fractional gradient methods (FGM). The first work dealing with such methods is
in [2,7], which addresses problems in the fields of signal processing and adaptive learning.
The design of fractional least mean squares algorithms is another example of the application
of FGM [8–10]. Recently, some applications of FGM have focused on artificial intelligence
subjects such as machine learning, deep learning, and neural networks (see [11–13] and
references therein).

Replacing the first-order integer derivative with a fractional derivative in a gradient
can improve its convergence, because long-term information can be included. However,
there are some convergence issues in the numerical implementation of the FGM because
the real extreme value of the target function is not always the same as the fractional
extreme value.

In [14], the authors propose a new FGM to overcome this problem, considering an
iterative update of the lower limit of integration in the fractional derivative to shorten the
memory characteristic presented in the fractional derivative and truncating the higher order
terms of the series expansion associated with the target function. Afterward, Wei et al. [15]
designed another method involving variable fractional order to solve the convergence problem.
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In the field of fractional calculation, several definitions of fractional and derivative
integrals varying in their kernel size can be found. This diversity allows certain problems to
be tackled with specific fractional operators. To establish a general operator, a ψ-fractional
integral operator with respect to function ψ was proposed in [16,17], where the kernel de-
pends on a function ψ with specific properties. To incorporate as many fractional derivative
definitions as possible into a single formulation, the concept of a fractional derivative of a
function with respect to the function ψ was introduced. In 2017, Almeida [18] proposed
the ψ-Caputo fractional derivative and studied its main properties. A similar approach
can be used to define the ψ-Riemann–Liouville fractional derivative. In 2018, Sousa and
Oliveira [19] unified both definitions using Hilfer’s concept and introduced the ψ-Hilfer
fractional derivative. This approach offers the flexibility of choosing the differentiation type,
as Hilfer’s definition interpolates smoothly between fractional derivatives of Caputo and
Riemann–Liouville types. Additionally, by choosing the function ψ, we obtain well-known
fractional derivatives, such as Caputo, Riemann–Liouville, Hadamard, Katugampola, Chen,
Jumarie, Prabhakar, Erdélyi-Kober, and Weyl, among others (see Section 5 in [19]).

The aim of this work is to propose a FGM with a ψ-Hilfer fractional derivative. Using
this type of general derivative allows us to deal with several fractional derivatives in the
literature at the same time. It also allows us to study cases where the target function is a
composition of functions. In the first section, we show some auxiliary results concerning
the chain rule and solutions of some fractional partial differential equations to study the
convergence of the continuous ψ-fractional gradient method for strongly and non-strongly
convex target functions. In the second section, we introduce and implement numerical
algorithms for the ψ-Hilfer FGM in one- and two-dimensional cases, generalizing the ideas
presented in [14,15]. The proposed algorithms were tested using benchmark functions. The
numerical results had better performance compared with the classical gradient in terms of
accuracy and number of iterations.

In summary, this paper is organized as follows: in Section 2, we recall some basic
concepts about the ψ-Hilfer derivative and the two-parameter Mittag–Leffler function. We
present some auxiliary results in Section 3, which are then used to analyze the continuous
gradient method for strongly and non-strongly convex target functions in Section 4. In the
last section of the paper, we design and implement numerical algorithms for the ψ-Hilfer
FGM by replacing the lower limit of the fractional integral with the last iterate and by
using the variable order of differentiation with the optimization of the step size in each
iteration. The convergence, accuracy, and speed of the algorithms are analyzed using
different examples.

2. General Fractional Derivatives and Special Functions

In this section, we recall some concepts related to fractional integrals and derivatives
of a function with respect to another function ψ (for more details, see [16,18,19]).

Definition 1. (cf. [19], Def. 4) Let [a, b] be a finite or infinite interval on the real line R and
α > 0. In addition, let ψ be an increasing and positive monotone function on (a, b). The left
Riemann–Liouville fractional integral of a function f with respect to another function ψ on [a, b] is
defined by (

Iα;ψ
a+ f

)
(t) =

1
Γ(α)

∫ t

a
ψ′(w) (ψ(t)− ψ(w))α−1 f (w) dw, t > a. (1)

Now, we introduce the definition of the so-called ψ-Hilfer fractional derivative of a
function f with respect to another function.

Definition 2. (cf. [19], Def. 7) Let α > 0, m = bαc+ 1, and I = [a, b] be a finite or infinite
interval on the real line and f , ψ ∈ Cm[a, b] of two functions such that ψ is a positive monotone
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increasing function and ψ′(t) 6= 0, for all t ∈ I. The ψ-Hilfer left fractional derivative HDα,µ;ψ
t,a+ of

order α and type µ ∈ [0, 1] is defined by(
HDα,µ;ψ

a+ f
)
(t) = Iµ(m−α);ψ

a+

(
1

ψ′(t)
d
dt

)m
I(1−µ)(m−α);ψ
a+ f (t). (2)

We observe that when µ = 0, we recover the left fractional derivative ψ-Riemann–
Liouville (see Definition 5 in [19]) and when µ = 1, we obtain the left ψ-Caputo fractional
derivative (see Definition 6 in [19]). The following list shows some fractional derivatives
that are encompassed in Definition 2 for specific choices of the function ψ and parameter µ:

• Riemann–Liouville: ψ(t) = t, I = R+, and µ = 0;
• Caputo: ψ(t) = t, I = R+, and µ = 1;
• Katugampola: ψ(t) = tρ, with ρ ∈ R+, I = R+, and µ = 0;
• Caputo-Katugampola: ψ(t) = tρ, with ρ ∈ R+, I = R+, and µ = 1;
• Hadamard: ψ(t) = ln(t), I =]1,+∞[, and µ = 0;
• Caputo-Hadamard: ψ(t) = ln(t), I =]1,+∞[, and µ = 1.

For a more complete list, please refer to Section 5 in [19]. By considering partial frac-
tional integrals and derivatives, previous definitions can be defined for higher dimensions
(see Chapter 5 in [16]). Furthermore, the ψ-Hilfer fractional derivative of an n-dimensional
vector function f (t) = ( f1(t), . . . , fn(n)) is defined component-wise as

HDα,µ;ψ
a+ f (t) =

(
HDα,µ;ψ

a+ f1(t), . . . , HDα,µ;ψ
a+ fn(t)

)
. (3)

Next, we present some technical results related to previously introduced operators.

Theorem 1. (cf. [19], Thm. 5) If f ∈ Cm[a, b], α > 0, m = bαc+ 1, and µ ∈ [0, 1], then

Iα;ψ
a+

HDα,µ;ψ
a+ f (t) = f (t)−

m

∑
k=1

(ψ(t)− ψ(a))γ−k

Γ(γ− k + 1)
f [m−k]
ψ I(1−µ)(m−α);ψ

a+ f (a), (4)

where γ = α + µ(k− α) and f [m]
ψ f (t) =

(
1

ψ′(t)
d
dt

)m
f (t).

Lemma 1. (cf. [19], Lem. 5) Given δ ∈ R, consider the function f (t) = (ψ(t)− ψ(a))δ−1, where
δ > m. Then, for m = bαc+ 1 and µ ∈ [0, 1], we have

HDα,µ;ψ
a+ f (x) =

Γ(δ)
Γ(δ− α)

(ψ(t)− ψ(a))δ−α−1. (5)

Some results of the paper are given in terms of the two-parameter Mittag–Leffler
function, which is defined by the following power series (see [20])

Eβ1,β2(z) =
+∞

∑
n=0

zn

Γ(β1n + β2)
, Re(β1) > 0, β2 ∈ C, z ∈ C.

For z = −x, with x ∈ R+, 0 < β1 < 2, and β2 ∈ C, the two-parameter Mittag–Leffler
function has the following asymptotic expansion (see Equation (4.7.36) in [20]):

Eβ1,β2(−x) = −
p

∑
k=1

(−x)−k

Γ(β2 − β1k)
+ O

(
|x|−1−p

)
, p ∈ N, x → +∞. (6)

3. Auxiliary Results

In this section, we present some auxiliary results needed for our work. These extend
some results presented in [21] to the ψ-Hilfer derivative of arbitrary type µ ∈ [0, 1].
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We start by presenting a representation formula for the solution of a Cauchy problem
involving the ψ-Hilfer derivative. Let us consider h : R+

0 ×Rn → Rn and f : R→ Rn. We
obtain the following results.

Proposition 1. Let α ∈ [0, 1] and µ ∈ [0, 1]. A continuous function f is a solution of the problem
HDα,µ;ψ

a+ f (t) = h(t, f (t)), t ≥ a,

I(1−α)(1−µ);ψ
a+ f (a+) = fa

(7)

if and only if f is given by

f (t) =
fa

Γ(α + µ(1− α))
(ψ(t)− ψ(a))α+µ(1−α)−1

+
1

Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 ψ′(s) h(s, f (s)) ds, t ≥ a. (8)

Proof. Applying Iα;ψ
a+ to both sides of the fractional differential equation in (7), and taking (4)

with m = 1, we have

Iα;ψ
a+

HDα,µ;ψ
a+ f (t) = f (t)− fa

Γ(α + µ(1− α))
(ψ(t)− ψ(a))α+µ(1−α)−1

which is equivalent to

f (t) =
fa

Γ(α + µ(1− α))
(ψ(t)− ψ(a))α+µ(1−α)−1 + Iα;ψ

a+
HDα,µ;ψ

a+ f (t).

From (1) and (7), we obtain these results.

Now, we present some results concerning the fractional derivative of a composite
function. Let us consider g : Rn → R, f : R→ Rn, ∇ as the classical gradient operator, and
the ψ-Hilfer fractional derivative of an n-dimensional vector function as (3).

Theorem 2. Let α ∈ [0, 1], µ ∈ [0, 1], a ≥ 0, and the function ψ to be in the conditions of
Definition 2. For t > a, let us define the function ζt by setting

ζt(s) = g( f (s))− g( f (t))− 〈(∇g)( f (t)), f (s)− f (t)〉, (9)

where

(∇g)( f (t)) =
(

∂g
∂x1

( f (t)), . . . ,
∂g
∂xn

( f (t))
)

.

The following identity holds

Γ(1− α)
(

HDα,µ;ψ
a+ [g( f (t))]−

〈
(∇g)( f (t)), HDα,µ;ψ

a+ f (t)
〉)

= [ψ(t)− ψ(a)]−α[g( f (t))− 〈(∇g)( f (t)), f (t)〉]

− α
∫ t

a
(ψ(t)− ψ(s))−α−1 ψ′(s) ζt(s) ds. (10)
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Proof. By the Newton–Leibniz formula, for each component of the function f , one has

fi(t) = fi(a) +
∫ t

a
f ′i (s) ds = fi(a) + I1;ψ

a+

(
f ′i
ψ′

)
(t), i = 1, . . . , n.

From (3), for i = 1, . . . , n, we have

HDα,µ;ψ
a+ fi(t) = HDα,µ;ψ

a+ [ fi(a)](t) + HDα,µ;ψ
a+ ◦ I1;ψ

a+

(
f ′i
ψ′

)
(t)

= Iµ(1−α);ψ
a+

[
1

ψ′(t)
d
dt

]
I(1−µ)(1−α);ψ
a+ [ fi(a)](t)

+ Iµ(1−α);ψ
a+

[
1

ψ′(t)
d
dt

]
I(1−µ)(1−α);ψ
a+ I1;ψ

a+

(
f ′i
ψ′

)
(t)

= fi(a) Iµ(1−α);ψ
a+

[
1

ψ′(t)
d
dt

]
I(1−µ)(1−α);ψ
a+ [1](t)

+ Iµ(1−α);ψ
a+

[
1

ψ′(t)
d
dt

]
I(1−µ)(1−α)+1;ψ
a+

(
f ′i
ψ′

)
(t). (11)

Taking (1) into account, the first term in (11) is

fi(a) Iµ(1−α);ψ
a+

[
1

ψ′(t)
d
dt

]
I(1−µ)(1−α);ψ
a+ [1](t)

= fi(a) Iµ(1−α);ψ
a+

[
1

ψ′(t)
d
dt

]
1

Γ((1− µ)(1− α))

∫ t

a
(ψ(t)− ψ(s))(1−µ)(1−α)−1 ψ′(s) ds

= fi(t) Iµ(1−α);ψ
a+

[
1

ψ′(t)
d
dt

][
(ψ(t)− ψ(a))(1−µ)(1−α)

Γ((1− µ)(1− α) + 1)

]

=
fi(a)

Γ(µ(1− α))

∫ t

a
(ψ(t)− ψ(s))µ(1−α)−1 (ψ(s)− ψ(a))(1−µ)(1−α)−1

Γ((1− µ)(1− α))
ψ′(s) ds

=
fi(a)

Γ(1− α)
(ψ(t)− ψ(a))−α. (12)

For the second term in (11), taking (1) and the Leibniz rule for differentiation under
the integral sign into account, we obtain

Iµ(1−α);ψ
a+

[
1

ψ′(t)
d
dt

]
I(1−µ)(1−α)+1;ψ
a+

(
f ′i
ψ′

)
(t)

= Iµ(1−α);ψ
a+

[
1

ψ′(t)
d
dt

]
1

Γ((1− µ)(1− α) + 1)

∫ t

a
(ψ(t)− ψ(s))(1−µ)(1−α) f ′i (s) ds

= Iµ(1−α);ψ
a+

1
Γ((1− µ)(1− α))

∫ t

a
(ψ(t)− ψ(s))(1−µ)(1−α)−1 f ′i (s) ds

= Iµ(1−α);ψ
a+ I(1−µ)(1−α);ψ

a+

(
f ′i
ψ′

)
(t)

=
1

Γ(1− α)

∫ t

a
(ψ(t)− ψ(s))−α f ′i (s) ds. (13)
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From (12) and (13), expression (11) simplifies to

HDα,µ;ψ
a+ fi(t)

=
1

Γ(1− α)

[
fi(a)(ψ(t)− ψ(a))−α +

∫ t

a
(ψ(t)− ψ(s))−α f ′i (s) ds

]
, i = 1, . . . , n

and therefore,

HDα,µ;ψ
a+ f (t) =

1
Γ(1− α)

[
f (a)(ψ(t)− ψ(a))−α +

∫ t

a
(ψ(t)− ψ(s))−α f ′(s) ds

]
. (14)

Hence, we can write

Γ(1− α)
(

HDα,µ;ψ
a+ [g( f (t))]−

〈
(∇g)( f (t)), HDα,µ;ψ

a+ f (t)
〉)

= [ψ(t)− ψ(a)]−α[g( f (a))− 〈(∇g)( f (t)), f (a)〉]

+
∫ t

a
(ψ(t)− ψ(s))−α〈(∇g)( f (s))− (∇g)( f (t)), f ′(s)

〉
ds

= [ψ(t)− ψ(a)]−α[g( f (a))− 〈(∇g)( f (t)), f (a)〉]

+
∫ t

a
(ψ(t)− ψ(s))−αdζt(s) (15)

which implies, by integrating by parts, that

Γ(1− α)
(

HDα,µ;ψ
a+ [g( f (t))]−

〈
(∇g)( f (t)), HDα,µ;ψ

a+ f (t)
〉)

= [ψ(t)− ψ(a)]−α[g( f (a))− 〈(∇g)( f (t)), f (a)〉]

+ lim
s→t

[ψ(t)− ψ(s)]−α ζt(s)− [ψ(t)− ψ(a)]−αζt(a)

− α
∫ t

a
(ψ(t)− ψ(a))−α−1 ψ′(s) ζt(s) ds. (16)

As α ∈ [0, 1], we have by L’Hôpital’s rule that

lim
s→t

[ψ(t)− ψ(s)]−α ζt(s) = lim
s→t

ζt(s)
[ψ(t)− ψ(s)]α

= lim
s→t

ζ ′t(s)[ψ(t)− ψ(s)]1−α

−α ψ′(s)
= 0. (17)

Finally, from (17) and (9), we obtain the following from (16)

Γ(1− α)
(

HDα,µ;ψ
a+ [g( f (t))]−

〈
(∇g)( f (t)), HDα,µ;ψ

a+ f (t)
〉)

= [ψ(t)− ψ(a)]−α[ζt(a)− g( f (t))− 〈(∇g)( f (t)), f (t)〉 − ζt(a)]

− α
∫ t

a
(ψ(t)− ψ(s))−α−1 ψ′(s) ζt(s) ds,

which gives the desired result.

Corollary 1. Let α ∈ [0, 1], µ ∈ [0, 1], a ≥ 0, and the function ψ have the conditions of Definition
2. If g : Rn → R is of class C1 and convex, i.e.,

g(x) ≥ g(y) + 〈∇g(x), x− y〉, for all x, y ∈ Rn, (18)
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then

HDα,µ;ψ
a+ g( f (t)) ≤

〈
(∇g)( f (t)), HDα,µ;ψ

a+ f (t)
〉
+

g(0)
Γ(1− α)

(ψ(t)− ψ(a))−α. (19)

Proof. From (18), it follows that for x = 0,

g( f (t))− 〈(∇g)( f (t)), f (t)〉 ≤ g(0)− 〈(∇g)( f (t)), 0〉 = g(0).

On the other hand, based on Theorem 2, we have the following for x = 0

g( f (t))− 〈(∇g)( f (t)), f (t)〉

= Γ(1− α)[ψ(t)− ψ(a)]α
(

HDα,µ;ψ
a+ [g( f (t))]−

〈
(∇g)( f (t)), HDα,µ;ψ

a+ f (t)
〉)

.

Combining the two previous expressions, we obtain our results.

If we consider µ = 0, which corresponds to the ψ-Riemann–Liouville case, the previous
results reduce to Proposition 3.3 and Corollary 3.4 in [21], respectively. Moreover, the
correspondent results for the ψ-Caputo case (µ = 1) are presented in Proposition 3.1 of [21].

Now, we present an auxiliary result involving the two-parameter Mittag–Leffler function.

Proposition 2. Let α ∈ [0, 1], µ ∈ [0, 1], and a ≥ 0. Moreover, let ψ be in the conditions of
Definition 2, such that sup{ψ(t) : t ≥ a} = +∞. Then, the following limit holds

lim
t→+∞

∫ t

a
(ψ(t)− ψ(a))α−1 ψ′(s) Eα,α+µ(1−α)

(
−λ(ψ(s)− ψ(a))α) ds = 0.

Proof. Taking into account Theorem 5.1 in [22] for the case of a homogeneous equation,
the solution of the initial value problem

HDα,µ;ψ
a+ u(t) = −λ u(t); λ ∈ R+, α ∈ [0, 1], µ ∈ [0, 1], t ≥ a

I1−α−µ(1−α);ψ
a+ u(a) = ua

is given by

u(t) = (ψ(t)− ψ(a))α−µ(1−α)−1 Eα,α+µ(1−α)

(
−λ(ψ(t)− ψ(a))α).

Hence, by Proposition 1, we have

Eα,αµ(1−α)

(
−λ(ψ(t)− ψ(a))α)

=
ua

Γ(α + µ(1− α))
(ψ(t)− ψ(a))α+µ(1−α)−1

− λ

Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 ψ′(s) Eα,α+µ(1−α)

(
−λ(ψ(s)− ψ(a))α) ds.

Taking the limit when t→ +∞ on both sides and considering the asymptotic expan-
sion (6), we conclude that the left-hand side tends to approach zero and the first term of
the right-hand side also tends to approach zero. Hence, we obtain

0 = 0− λ

Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 ψ′(s) Eα,α+µ(1−α)

(
−λ(ψ(s)− ψ(a))α) ds

which leads to our results.



Fractal Fract. 2023, 7, 275 8 of 30

The case when µ = 1, i.e., the ψ-Caputo case, was already studied in [21] and corre-
sponds to Lemma 3.7.

4. Continuous Gradient Method via the ψ-Hilfer Derivative

Assume that we aim to determine the minimum of a function f : Rn → R. To
achieve this, the gradient descent method is used, starting with an initial prediction x0
of the local minimum and producing a sequence x0, x1, x2, . . . based on the following
recurrence relation:

xk+1 = xk − θk∇ f (xk), (20)

where the step size θ > 0 is either constant or varying at each iteration k. The sequence
{xk}+∞

k=0 generated by the gradient descent method is monotonic, i.e., f (x0) > f (x1) >
f (x2) > . . ., and is expected to converge to a local minimum of f . Typically, the stopping
criterion is in the form ‖∇ f (x)‖ ≤ ε, where ε > 0. By expressing (20) as

xk+1 − xk
θk

= −∇ f (xk), (21)

we can interpret (21) as the discretization of the initial value problem

y′(t) = −(∇ f )(y(t)), y(0) = y0 ∈ Rn, (22)

using the explicit Euler scheme with step size θk. The system (22) is known as the continuous
gradient method (see [21]). Assuming that f is both strongly convex and smooth, the solutions
of (20) and (22) converge to the unique stationary point at an exponential rate. In general,
if a convergence result is shown for a continuous method, then we can construct various
finite difference schemes for the solution of the associated Cauchy problem. Let us now
consider the following ψ-fractional version of (22)

HDα,µ;ψ
a+ z(t) = −θ (∇ f )(z(t)), t ≥ a, (23)

such that z : R→ Rn, f : Rn → R, α ∈ [0, 1], µ ∈ [0, 1], and I1−α;ψ
a+ z(a+) = za ∈ Rn, where

the last expression is evaluated at the limit t→ a+. For y∗ ∈ S( f ) = {z ∈ Rn : ∇ f (z) = 0},
let us define the following sum of squares error function:

ϕ(t) =
1
2
‖z(t)− y∗‖2, t ≥ a. (24)

4.1. The Convex Case

Here, we investigate (23) under the assumption of non-strongly convexity of f .

Theorem 3. Let α ∈ [0, 1] and µ ∈ [0, 1]. Suppose that the function f : Rn → R is of class C1

and convex, i.e., f satisfies (18). For the ψ-fractional differential Equation (23), with step size θ
constant, the solution z(·) converges to y∗ with the upper bound

‖z(t)− y∗‖2 ≤ C |ψ(t)− ψ(a)|−µ(1−α), for all t ≥ a. (25)

Proof. Based on Corollary 1 applied to (24) and the fact that f is of class C1 and convex,
we have

HDα,µ;ψ
a+ ϕ(t) ≤ −θ〈z(t)− y∗, (∇ f )(z(t))〉

≤ θ[ f (y∗(t))− f (z(t))] ≤ 0, for all t ≥ a.
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By the properties of ψ (see Definition 2), the previous expression is equivalent to

Iα;ψ
a+

HDα,µ;ψ
a+ ϕ(t) ≤ θ Iα;ψ

a+ [ f (y∗(t))− f (z(t))] ≤ 0.

Using the composition rule (4), with m = 1, we have

ϕ(t)− (ψ(t)− ψ(a))−µ(1−α)

Γ(1− µ(1− α))
I(1−µ)(1−α);ψ
a+ ϕ

(
a+
)
≤ 0.

From (24) and considering C = 1
Γ(1−µ(1−α))

I(1−µ)(1−α);ψ
a+ ϕ(a+), we obtain our results.

If we consider µ = 0 in the previous result, we recover Theorem 4.2 in [21].

4.2. The Strongly Convex Case

Here, we show that under the assumption of strong convexity of the function f , the
solution of (23) admits a Mittag–Leffler convergence, which is a general type of exponential
convergence to the stationary point. Recall the definition of a strongly convex function.

Definition 3. (cf. [21]) A function f ∈ C1 is strongly convex with parameter m f > 0 if

f (x) ≥ f (y) + 〈∇ f (y), x− y〉+
m f

2
‖x− y‖2, for all x, y ∈ Rn,

where ∇ stands for the gradient operator.

Theorem 4. Let α ∈ [0, 1] and µ ∈ [0, 1]. Suppose that f is of class C2 and is strongly convex.
Considering the ψ-fractional differential Equation (23), where the step size θ is a constant, then the
solution z(·) converges to y∗, with the upper bound

‖z(t)− y∗‖2 ≤ ϕa[ψ(t)− ψ(a)](α−1)(1−µ)Eα,α+µ(1−α)

(
−θ m f (ψ(t)− ψ(a))α

)
, t ≥ a,

where ϕa =
1
2 I(1−µ)(1−α);ψ

a+ ‖z(t)− y∗‖2(a+).

Proof. In Definition 3, if we consider y = z(t) and x = y∗, we have for t ≥ a and
m f > 0 that

f (y∗) ≥ f (z(t))− 〈(∇ f )(z(t)), y∗ − z(t)〉+
m f

2
‖y∗ − z(t)‖2,

which is equivalent to

〈(∇ f )(z(t)), y∗ − z(t)〉 ≥ f (z(t))− f (y∗) +
m f

2
‖y∗ − z(t)‖2 ≥

m f

2
‖y∗ − z(t)‖2, (26)

where the last inequality holds, as y∗ ∈ arg(minx∈Rn f (x)). From (23), Corollary 1, and (26),
we have

HDα,µ;ψ
a+ ϕ(t) ≤

〈
z(t)− y∗, HDα,µ;ψ

a+ z(t)
〉

= −θ〈z(t)− y∗, (∇ f )(z(t))〉

≤ −
θ m f

2
‖z(t)− y∗‖2. (27)

Setting

h(t) = −
θ m f

2
‖z(t)− y∗‖2 − HDα,µ;ψ

a+ ϕ(t), (28)
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we have from (27) that h(t) ≥ 0 for all t ≥ a, and moreover, from (28) and recalling (24),
the previous expression is equivalent to

HDα,µ;ψ
a+ ϕ(t) = −θ m f ϕ(t)− h(t). (29)

By Theorem 5.1 in [22], we have that the solution of (29) is

ϕ(t) = ϕa[ψ(t)− ψ(a)]α+µ(1−α)−1Eα,α+µ(1−α)

(
−θ m f (ψ(t)− ψ(a))α

)
−
∫ t

a
(ψ(t)− ψ(a))α−1 ψ′(w) Eα,α

(
−θ m f (ψ(t)− ψ(a))α

)
h(w) dw (30)

≤ ϕa[ψ(t)− ψ(a)]α+µ(1−α)−1Eα,α+µ(1−α)

(
−θ m f (ψ(t)− ψ(a))α

)
, (31)

where the last inequality holds, as the integrand function in (30) is positive and
0 ≤ a < t.

4.3. Convergence at an Exponential Rate

Theorem 4 establishes the Mittag–Leffler convergence rate for the solution of (23) to
a stationary point. Specifically, when α = 1, the exponential rate O

(
e−θ,m f ψ(t)

)
of the

continuous gradient method (22) is recovered for any µ ∈ [0, 1].

Theorem 5. Let α ∈ [0, 1], µ ∈ [0, 1], and ψ satisfy the conditions of Definition 2
with sup{ψ(t) : t ≥ a} = +∞. Let f : Rn → R be a function that is C1, convex, and Lips-
chitz smooth with constant L f , that is,

‖∇ f (x)−∇ f (y)‖ ≤ L f ‖x− y‖, for all x, y ∈ Rn. (32)

If the solution z(·) of (23) converges to y∗ at the exponential rate O
(

e−ωψ(t)
)

, then y∗ = 0.

Proof. Let z(·) be a solution of (23) converging to the stationary point y∗ at the rate
O
(

e−ωψ(t)
)

. Then, there exists a t1 greater or equal to a, such that

‖z(t)− y∗‖ ≤ e−ωψ(t), for all t ≥ t1. (33)

By contradiction, let us assume that y∗ 6= 0. We can then set

k =
θ

‖y∗‖ + 1. (34)

From Formula (4.11.4b) in [20],

Eα,β(z) = 2E2α,β

(
z2
)
− Eα,β(−z), Re(α) > 0, β ∈ C, (35)

we can find t2 ≥ t1 with the property that

Eα,β

(
−L f (ψ(t)− ψ(a))α

)
≥ k e−ωψ(t), for all t ≥ t2. (36)

By Proposition 1, z(·) is of the following form

z(t) =
za

Γ(α + µ(1− α))
(ψ(t)− ψ(a))α+µ(1−α)−1

− θ

Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 ψ′(s) (∇ f )(z(s)) ds,
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which is equivalent to

za(ψ(t)− ψ(a))α+µ(1−α)−1

= Γ(α + µ(1− α)) z(t)

+
θ Γ(α + µ(1− α))

Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 ψ′(s) (∇ f )(z(s)) ds. (37)

Setting

u(t) = za(ψ(t)− ψ(a))α+µ(1−α)−1 − Γ(α + µ(1− α))y∗,

then, by (37), we obtain

‖u(t)‖ =
∥∥∥za(ψ(t)− ψ(a))α+µ(1−α)−1 − Γ(α + µ(1− α))y∗

∥∥∥
≤ Γ(α + µ(1− α))‖z(t)− y∗‖

+
θ Γ(α + µ(1− α))

Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 ψ′(s) ‖(∇ f )(z(s))‖ ds.

By assumption (32), we obtain

‖u(t)‖

≤ Γ(α + µ(1− α))‖z(t)− y∗‖

+
θ L f Γ(α + µ(1− α))

Γ(α)

∫ t

a
(ψ(t)− ψ(s))α−1 ψ′(s) ‖z(t)− y∗‖ ds

= Γ(α + µ(1− α))‖z(t)− y∗‖

+
θ L f Γ(α + µ(1− α))

Γ(α)

∫ t2

a
(ψ(t)− ψ(s))α−1 ψ′(s) ‖z(t)− y∗‖ ds

+
θ L f Γ(α + µ(1− α))

Γ(α)

∫ t

t2

(ψ(t)− ψ(s))α−1 ψ′(s) ‖z(t)− y∗‖ ds. (38)

Now, denoting Q = sup{‖z(·)− y∗‖ : t ∈ [a, t2]} and using (36), we obtain

‖u(t)‖

≤ Γ(α + µ(1− α))‖z(t)− y∗‖

+
θ L f Q Γ(α + µ(1− α))

Γ(α)

∫ t2

a
(ψ(t)− ψ(s))α−1 ψ′(s) ds

+
θ L f Γ(α + µ(1− α))

Γ(α)

∫ t

t2

(ψ(t)− ψ(s))α−1 ψ′(s) Eα,α+µ(1−α)

(
−L f (ψ(s)− ψ(a))α

)
ds

= Γ(α + µ(1− α))‖z(t)− y∗‖

+
θ L f Q Γ(α + µ(1− α))

α Γ(α)
[
(ψ(t)− ψ(a))α − (ψ(t)− ψ(t2))

α]
+

θ L f Γ(α + µ(1− α))

Γ(α)

∫ t

t2

(ψ(t)− ψ(s))α−1 ψ′(s) Eα,α+µ(1−α)

(
−L f (ψ(s)− ψ(a))α

)
ds.
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By the mean value theorem (applied to the function (ψ(t)− ψ(·))α), there exists
δ ∈]a, t2[ such that

(ψ(t)− ψ(a))α − (ψ(t)− ψ(t2))
α = −α(ψ(t)− ψ(δ))α−1 ψ′(δ)

which implies that, as α ∈ [0, 1] and sup{ψ(t) : t ≥ a} = +∞,

lim
t→+∞

[
(ψ(t)− ψ(a))α − (ψ(t)− ψ(t2))

α]
= −α lim

t→+∞

[
(ψ(t)− ψ(δ))α−1 ψ′(δ)

]
= −α lim

t→+∞

ψ′(δ)

(ψ(t)− ψ(δ))1−α
= 0. (39)

Hence, taking the limit of ‖u(t)‖ when t→ +∞, we obtain

lim
t→+∞

‖u(t)‖ = 0 ⇔ Γ(α + µ(1− α))‖y∗‖ = 0.

This implies that ‖y∗‖ = 0, which is a contradiction.

5. ψ-Hilfer Fractional Gradient Method

The aim of this section is to construct and implement a numerical method for the
ψ-Hilfer FGM in one- and two-dimensional cases. For both cases, we perform numerical
simulations using benchmark functions.

5.1. The One-Dimensional Case
5.1.1. Design of the Numerical Method

The gradient descent method typically takes steps proportional to the negative gradi-
ent (or approximate gradient) of a function at the current iteration, that is, xk+1 is updated
by the following law

xk+1 = xk − θ f ′(xk), k = 0, 1, 2, . . . , (40)

where θ > 0 is the step size or learning rate, and f ′(xk) is the first derivative of f evaluated
at x = xk. We assume that f : R → R admits a local minimum at the point x∗ in
Dρ(x∗) = {x ∈ R : |x− x∗| < ρ}, for some ρ > 0, and f admits a Taylor series expansion
centered at x0 = a,

f (x) =
+∞

∑
p=0

f (p)(a)
p!

(x− a)p, (41)

with domain of convergence D ⊆ R such that X∗ ∈ D. As we want to consider the
fractional gradient in the ψ-Hilfer sense, our first (and natural attempt) is to consider the
iterative method

xk+1 = xk − θ HDα,µ;ψ
a+ f (ψ(xk)), k = 0, 1, 2, . . . , (42)

where HDα,µ;ψ
a+ is the ψ-Hilfer derivative of order α ∈]0, 1[ and type µ ∈ [0, 1], given by (2),

and the function ψ is in the conditions of Definition 2. However, a simple example
shows that (42) is not the correct approach. In fact, let us consider the quadratic func-
tion f (x) = (x− h)2 with a minimum at x∗ = h. For this function, we have that

HDα,µ;ψ
a+ f (x) =

2

∑
p=p0

f (p)(a)
Γ(p + 1− α)

(x− a)p−α, (43)
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where p0 = 0 if µ ∈ [0, 1] and p0 = 1 if µ = 1. As HDα,µ;ψ
a+ f (h) 6= 0, the iterative method (42)

does not converge to the real minimum point. This example shows that the ψ-Hilfer FGM
with a fixed lower limit of integration does not converge to the minimum point. This is
due to the influence of long-time memory terms, which is an intrinsic feature of fractional
derivatives. In order to address this problem and inspired by the ideas presented in [14,15],
we replace the starting point a in the fractional derivative by the term xk−1 of the previous
iteration, that is,

xk+1 = xk − θ HDα,µ;ψ
x+k−1

f (ψ(xk)), k = 1, 2, . . . (44)

where α ∈]0, 1[, µ ∈ [0, 1], and θ > 0. This eliminates the long-time memory effect during
the iteration procedure. In this sense, and taking into account the series representation (41)
and differentiation rule (5), we obtain

HDα,µ;ψ
x+k−1

f (ψ(xk)) =
+∞

∑
p=p0

f (p)(ψ(xk−1))

Γ(p + 1− α)
(ψ(xk)− ψ(xk−1))

p−α, (45)

where p0 = 0 if µ ∈ [0, 1] or p0 = 1 if µ = 1. Thus, the representation formula (45) depends
only on µ = 1 or µ 6= 1. With this modification in the ψ-Hilfer FGM, we obtain the following
convergence results.

Theorem 6. If the algorithm (44) is convergent, with the fractional gradient given by (45), then it
converges to the minimum point of f (ψ(·)).

Proof. Let x∗ be the minimum point of f (ψ(·)). We prove that the sequence (xk)k∈N
converges to x∗ by contradiction. Assume that xk converges to a different x 6= x∗ and
f ′(ψ(x)) 6= 0. As the algorithm is convergent, we have that limk→+∞‖xk − x‖ = 0. More-
over, for any small positive ε, there exists a sufficiently large number N ∈ N, such that

|ψ(xk−1)− ψ(x)| < ε < |ψ(x∗)− ψ(x)| (46)

for any k > N. Thus,

δ = inf
p>N

∣∣∣ f (p0)(ψ(xk−1))
∣∣∣ > 0

must hold. From (45) we have

|xk+1 − xk| = θ

∣∣∣∣HDα,µ;ψ
x+k−1

f (ψ(xk))

∣∣∣∣
= θ

∣∣∣∣∣+∞

∑
p=0

f (p+p0)(ψ(xk−1))

Γ(p + p0 + 1− α)
(ψ(xk)− ψ(xk−1))

p+p0−α

∣∣∣∣∣
≥ θ

∣∣∣∣∣ f (p0)(ψ(xk−1))

Γ(p0 + 1− α)
(ψ(xk)− ψ(xk−1))

p0−α

∣∣∣∣∣
− θ

∣∣∣∣∣+∞

∑
p=1

f (p+p0)(ψ(xk−1))

Γ(p + p0 + 1− α)
(ψ(xk)− ψ(xk−1))

p+p0−α

∣∣∣∣∣.
Considering

C = sup
p≥N

∣∣∣ f (p0)(ψ(xk−1))
∣∣∣

Γ(p0 + 1− α)
, (47)
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we have, from the previous expression,

|xk+1 − xk| ≥ θ

∣∣∣∣∣ f (p0)(ψ(xk−1))

Γ(p0 + 1− α)
(ψ(xk)− ψ(xk−1))

p0−α

∣∣∣∣∣
− θ C

+∞

∑
p=1

∣∣ψ(xk)− ψ(xk−1)
∣∣p+p0−α.

The geometric series in the previous expression is convergent for sufficiently large k.
Hence, we obtain

|xk+1 − xk| ≥ θ

∣∣∣∣∣ f (p0)(ψ(xk−1))

Γ(p0 + 1− α)
(ψ(xk)− ψ(xk−1))

p0−α

∣∣∣∣∣
− θ C

|ψ(xk)− ψ(xk−1)|1+p0−α

1− |ψ(xk)− ψ(xk−1)|
,

which is equivalent to

|xk+1 − xk|

≥ θ

[∣∣∣∣∣ f (p0)(ψ(xk−1))

Γ(p0 + 1− α)

∣∣∣∣∣− C
|ψ(xk)− ψ(xk−1)|

1− |ψ(xk)− ψ(xk−1)|

]
|ψ(xk)− ψ(xk−1)|p0−α

≥ d|ψ(xk)− ψ(xk−1)|p0−α, (48)

where

d = d(ε) = θ

[
δ

Γ(p0 + 1− α)
− 2Cε

1− ε

]
. (49)

One can always find ε sufficiently small, such that

δ

Γ(p0 + 1− α)
− 2Cε

1− ε
>

2εα

θ
⇔ δ

Γ(p0 + 1− α)
>

2εα

θ
+

2Cε

1− ε
(50)

because the function g(ε) = 2εα

θ + 2Cε
1−ε is positively increasing for α ∈ [0, 1], θ ∈ [0, 1], and

ε ∈ [0, 1]. Hence, from (48) and taking into account (50), we obtain

|xk+1 − xk| > 2εp0 =


2ε, if µ = 1

2, if µ ∈ [0, 1]

. (51)

On the other hand, from the assumption (46), we have

|xk+1 − xk| ≤ |ψ(xk+1)− ψ(xk)| ≤ |ψ(xk+1)− ψ(x)|+ |ψ(x)− ψ(xk)| = 2ε,

which contradicts (51). This completes the proof.

Sometimes, the function f is not smooth enough to admit a series representation in
the form (41), and therefore, the implementation of (44) using the series (45) is not possible.
For implementation in practice, we need to truncate the series. In our first approach, we
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consider only the term of the series containing f ′(ψ(xk)), as it is the most relevant for the
gradient method. Thus, the ψ-Hilfer FGM (44) simplifies to

xk+1 = xk − θ
f ′(ψ(xk−1))

Γ(2− α)
(ψ(xk)− ψ(xk−1))

1−α. (52)

Furthermore, in order to avoid the appearance of complex numbers, we introduce the
modulus in the expression (52), that is,

xk+1 = xk − θ
f ′(ψ(xk−1))

Γ(2− α)
|ψ(xk)− ψ(xk−1)|1−α. (53)

The pseudocode associated to (53) is presented in Algorithm 1. As (53) is independent
of the µ parameter, from now on we call the method ψ-FGM. Following the same arguments
as in the proof of Theorem 6, we obtain the following results.

Theorem 7. If the algorithm (44) is convergent with the fractional gradient given by (53), then it
converges to the minimum point of f (ψ(·)).

In the following pseudocode, we describe the implementation of the algorithm (53).

Algorithm 1: ψ-FGM with higher order truncation
Inputs:

Functions: ψ(x), f ′(ψ(x))
Fixed parameters: α, a, θ, ε

Initial guess: x0

Output: k-iteration: xk
Initialization:
k = 2, x1 = a
while | f ′(ψ(xk))| ≥ ε do

xk = xk−1 − θ
f ′(ψ(xk−2))

Γ(2− α)
|ψ(xk−1)− ψ(xk−2)|1−α

k = k + 1
end

As we have seen, it is possible to construct a ψ-FGM that converges to the minimum
point of a function. To improve the convergence of the proposed method, we can consider
variable order differentiation α(x) in each iteration. Some examples of α(x) are given by
(see [15]):

α(x) =
1

1 + β J(x)
, (54)

α(x) =
2

1 + eβ J(x)
, (55)

α(x) =
1

cos(β J(x))
, (56)

α(x) = 1− 2
π

arctan(β J(x)), (57)

α(x) = 1− tanh(β J(x)), (58)

where β > 0 and we consider the loss function J(x) = ( f ′(ψ(x)))2 to be minimized in each
iteration. The consideration of the square in the loss function guarantees its non-negativity.
All examples given satisfy
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lim
β→0

α(x) = 1 = lim
x→x∗

α(x), (59)

where the second limit results from the fact that J(x) → 0 as x → x∗. Variable order
differentiation turns the ψ-FGM into a learning method, because as x gradually approaches
x∗, α(x) ≈ 1. The ψ-FGM with variable order is given by

xk+1 = xk − θ
f ′(ψ(xk−1))

Γ(2− α(xk))
|ψ(xk)− ψ(xk−1)|1−α(xk).

Theorem 6 remains valid for this variation of Algorithm 1.

5.1.2. Numerical Simulations

Now, we provide some examples that show the validity of the previous algorithms
applied to the quadratic function f (x) = (x− 1)2, which is one of the simplest benchmark
functions. This function is a convex function with a unique global minimum at x∗ = 1. For
the ψ-derivative, we consider the following cases:

• Caputo and Riemann–Liouville fractional derivatives: ψ1(x) = x, I = [0,+∞[, and a = 0;
• Hadamard fractional derivative: ψ2(x) = ln(x), I = [1,+∞[, and a = 1;
• Katugampola fractional derivative: ψ3(x) = x0.5, I = [0,+∞[, and a = 0.5. In this case,

a cannot coincide with the lower limit of the interval I because ψ′ is not defined at
x = 0.

Figures 1–3 show the numerical results of Algorithm 1 applied to the composite func-
tions f (ψ1(·)), f (ψ2(·)), and f (ψ3(·)), choosing different parameters. In Figure 1, we con-
sider θ = 0.1, x0 = 2, ε = 10−9, and different orders of differentiation α = 0.4, 0.6, 0.8, 1.0.

Figure 1. Algorithm 1 for different orders of differentiation, α.

Analyzing the plots in Figure 1, we see that the convergence of the ψ-FGM in the
non-integer case is slower, in general, than in the integer case (α = 1.0). In Figure 2, we
consider x0 = 2, α = 0.75, ε = 10−9, and different step sizes θ = 0.05, 0.1, 0.2, 0.3.

The plots in Figure 2 show that the increment of the step size makes convergence faster.
The optimization of the step size in each iteration would lead to the optimal convergence of
the method in a few iterations. In Figure 3, we consider different initial approximations x0,
and the values α = 0.75, θ = 0.1, and ε = 10−9. As expected, convergence becomes faster
as x0 approaches the minimum point.
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Figure 2. Algorithm 1 for different step sizes, θ.

Figure 3. Algorithm 1 for different initial approximations, x0.

Now, we show the numerical simulations of Algorithm 1 with a variable order of
differentiation α(x). In Figure 4, we consider θ = 0.1, β = 0.1, x0 = 2, ε = 10−9, and the
variable order Functions (54)–(58). In Figure 5, we exhibit the behaviour of the algorithm
for α(x) given by (58) and different values of β.

Figure 4. Algorithm 1 for different variable orders of differentiation.
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Figure 5. Algorithm 1 with α(x) = 1− tanh(βJ(x)) and different values of β.

From these plots, we conclude that in the one-dimensional case, the consideration of
variable order differentiation can speed up the convergence, but it is, in general, slower
than the classical gradient descent method with integer derivative. A further improvement
of the algorithm could be made by considering a variable step size optimized in each
iteration. This idea is implemented in the next section, where we consider optimization
problems in R2.

5.2. The Two-Dimensional Case
5.2.1. Untrained Approach

Motivated by the ideas presented in [14,15], we extend the results presented in
Section 5.1 to the two-dimensional case. We consider a function ψ in the conditions of
Definition 2 and the vector-valued function Ψ : R2 → R2 given by Ψ(X) = (ψ(x), ψ(y))
with X = (x, y). Moreover, let f : R2 → R be a function that admits a local minimum at
the point X∗ in Dρ(X∗) =

{
X ∈ R2 : ‖X− X∗‖ < ρ

}
for some ρ > 0. We want to find a

local minimum point of the function f (Ψ(X)) = f (ψ(x), ψ(y)), with X = (x, y), through
the iterative method

Xk+1 = Xk − θ

(
H∇α,µ;ψ

X+
k−1

f
)
(Ψ(Xk)), θ > 0. (60)

We assume that f admits a Taylor series centered at the point (a1, a2) ∈ Dρ(X∗), given by

f (x, y) =
+∞

∑
p=0

+∞

∑
q=0

(
∂p+q f
∂

p
x ∂

q
y

)
(a1, a2)

1
p! q!

(x− a1)
p(y− a2)

q, (61)

with a domain of convergence D ⊆ R2, such that X∗ ∈ D. Then, the ψ-Hilfer fractional
gradient in (60) is given by(

H∇α,µ;ψ
X+

k−1
f
)
(Ψ(Xk)) =

((
H

x+k−1
∂

α,µ;ψ
x f

)
(Ψ(Xk)),

(
H

y+k−1
∂

α,µ;ψ
y f

)
(Ψ(Xk))

)
, (62)

where
(

H
x+k−1

∂
α,µ;ψ
x f

)
(Ψ(Xk)) and

(
H

y+k−1
∂

α,µ;ψ
x f

)
(Ψ(Xk)) denote the partial ψ-Hilfer deriva-

tives of f , with respect to x and y, of order α ∈ [0, 1], type µ ∈ [0, 1], and with the lower limit
of integration replaced by xk−1 and yk−1, respectively. Taking into account (61) and (5), we
have the following expressions for the components of (62)
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(
H

x+k−1
∂

α,µ;ψ
x f

)
(Ψ(Xk))

=
+∞

∑
p=p0

+∞

∑
q=0

(
∂p+q f
∂

p
x ∂

q
y

)
(Ψ(Xk−1))

(ψ(yk)− ψ(yk−1))
q

q!
(ψ(xk)− ψ(xk−1))

p−α

Γ(p + 1− α)
, (63)

(
H

y+k−1
∂

α,µ;ψ
x f

)
(Ψ(Xk))

=
+∞

∑
p=0

+∞

∑
q=q0

(
∂p+q f
∂

p
x ∂

q
y

)
(Ψ(Xk−1))

(ψ(xk)− ψ(xk−1))
p

p!
(ψ(yk)− ψ(yk−1))

q−α

Γ(q + 1− α)
, (64)

where

p0 = q0 =


0, if µ ∈ [0, 1]

1, if µ = 1

. (65)

The iterative method proposed in (60) takes into account the short memory char-
acteristics of the fractional derivatives and, as in the one-dimensional case, we can see
from (63) and (64) that the method does not depend on the type of derivative µ. Further-
more, due to the freedom of choice of the µ parameter (µ = 1 or µ ∈ [0, 1]) and the ψ
function, we can deal with several fractional derivatives (see Section 5 in [19]). We obtain
the following convergence results:

Theorem 8. If the algorithm (60) is convergent where the fractional gradient is given by (62)–(64),
then it converges to the minimum point of f (Ψ(·)).

Proof. Let X∗ be the minimum point of f (Ψ(·)). We prove that the sequence (Xk)k∈N
converges to X∗ by contradiction. Assume that Xk converges to a different X 6= X∗ and
f ′x(Ψ(X)) 6= 0 6= f ′y(Ψ(X)). As the algorithm is convergent, we have that
limk→+∞‖Xk − X‖ = 0. Moreover, for any small positive ε, there exists a sufficiently
large number N ∈ N, such that

(ψ(xk−1)− ψ(x))2 <
ε2

2
< (ψ(x∗)− ψ(x))2 (66)

and

(ψ(yk−1)− ψ(y))2 <
ε2

2
< (ψ(y∗)− ψ(y))2 (67)

for any k > N. Thus,

δ1 = inf
p,q>N

∣∣∣∣∂p0 f
∂xp0

(Ψ(Xk−1))

∣∣∣∣ > 0 and δ2 = inf
p,q>N

∣∣∣∣∂q0 f
∂yq0

(Ψ(Xk−1))

∣∣∣∣ > 0 (68)

must hold. From (62)–(64) we have
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‖Xk+1 − Xk‖2

= θ2
∥∥∥∥H∇α,µ;ψ

x+k−1
f (Ψ(Xk−1))

∥∥∥∥2

= θ2

(
+∞

∑
p=0

+∞

∑
q=0

(
∂p+p0+q f

∂
p+p0
x ∂

q
y

)
(Ψ(Xk−1))

(ψ(yk)− ψ(yk−1))
q

q!
(ψ(xk)− ψ(xk−1))

p+p0−α

Γ(p + p0 + 1− α)

)2

+ θ2

(
+∞

∑
p=0

+∞

∑
q=0

(
∂p+q+q0 f

∂
p
x ∂

q+q0
y

)
(Ψ(Xk−1))

(ψ(xk)− ψ(xk−1))
p

p!
(ψ(yk)− ψ(yk−1))

q+q0−α

Γ(q + q0 + 1− α)

)2

≥ θ2

(
∂p0 f
∂xp0

(Ψ(Xk−1))
(ψ(xk)− ψ(xk−1))

p0−α

Γ(p0 + 1− α)

)2

− θ2

(
+∞

∑
p=1

+∞

∑
q=1

(
∂p+p0+q f

∂
p
x ∂

q
y

)
(Ψ(Xk−1))

(ψ(yk)− ψ(yk−1))
q

q!
(ψ(xk)− ψ(xk−1))

p+p0−α

Γ(p + p0 + 1− α)

)2

+ θ2

(
∂q0 f
∂yq0

(Ψ(Xk−1))
(ψ(yk)− ψ(yk−1))

q0−α

Γ(q0 + 1− α)

)2

− θ2

(
+∞

∑
p=1

+∞

∑
q=1

(
∂p+q+q0 f

∂
p
x ∂

q
y

)
(Ψ(Xk−1))

(ψ(xk)− ψ(xk−1))
p

p!
(ψ(yk)− ψ(yk−1))

q+q0−α

Γ(q + q0 + 1− α)

)2

.

Considering

C1 = sup
p,q≥N

∣∣∣ ∂p0 f
∂xp0 (Ψ(Xk−1))

∣∣∣
Γ(p0 + 1− α) q!

and C2 = sup
p,q≥N

∣∣∣ ∂q0 f
∂yq0 (Ψ(Xk−1))

∣∣∣
Γ(q0 + 1− α) p!

,

from the previous expression, we obtain

‖Xk+1 − Xk‖2 ≥ θ2

(
∂p0 f
∂xp0

(Ψ(Xk−1))
(ψ(xk)− ψ(xk−1))

p0−α

Γ(p0 + 1− α)

)2

− θ2C2
1

(
+∞

∑
p=1

+∞

∑
q=1

(ψ(yk)− ψ(yk−1))
q (ψ(xk)− ψ(xk−1))

p+p0−α

)2

+ θ2

(
∂q0 f
∂yq0

(Ψ(Xk−1))
(ψ(yk)− ψ(yk−1))

q0−α

Γ(q0 + 1− α)

)2

− θ2C2
2

(
+∞

∑
p=1

+∞

∑
q=1

(ψ(xk)− ψ(xk−1))
p (ψ(yk)− ψ(yk−1))

q+q0−α

)2

.

The double series that appears in the previous expression are of a geometric type with
positive radius less than 1. Hence, by the sum of a geometric series, we have
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‖Xk+1 − Xk‖2 ≥ θ2

(
∂p0 f
∂xp0

(Ψ(Xk−1))
(ψ(xk)− ψ(xk−1))

p0−α

Γ(p0 + 1− α)

)2

− θ2C2
1

(
ψ(yk)− ψ(yk−1)

1− (ψ(yk)− ψ(yk−1))

)2
(
(ψ(xk)− ψ(xk−1))

1+p0−α

1− (ψ(xk)− ψ(xk−1))

)2

+ θ2

(
∂q0 f
∂yq0

(Ψ(Xk−1))
(ψ(yk)− ψ(yk−1))

q0−α

Γ(q0 + 1− α)

)2

− θ2C2
2

(
ψ(xk)− ψ(xk−1)

1− (ψ(xk)− ψ(xk−1))

)2
(
(ψ(yk)− ψ(yk−1))

1+q0−α

1− (ψ(yk)− ψ(yk−1))

)2

,

which is equivalent to

‖Xk+1 − Xk‖2

≥ θ2

( ∂p0 f
∂xp0 (Ψ(Xk−1))

Γ(p0 + 1− α)

)2

− C2
1

(
ψ(yk)− ψ(yk−1)

1− (ψ(yk)− ψ(yk−1))

)2( ψ(xk)− ψ(xk−1)

1− (ψ(xk)− ψ(xk−1))

)2


×
(
(ψ(xk)− ψ(xk−1))

p0−α
)2

+ θ2


 ∂q0 f

∂yq0 (Ψ(Xk−1))

Γ(q0 + 1− α)

2

− C2
2

(
ψ(xk)− ψ(xk−1)

1− (ψ(xk)− ψ(xk−1))

)2( ψ(yk)− ψ(yk−1)

1− (ψ(yk)− ψ(yk−1))

)2


×
(
(ψ(yk)− ψ(yk−1))

q0−α
)2

≥ d1

(
(ψ(xk)− ψ(xk−1))

p0−α
)2

+ d2

(
(ψ(yk)− ψ(yk−1))

q0−α
)2

, (69)

where

d1 = d1(ε) = θ2

((
δ1

Γ(p0 + 1− α)

)2
− C2

1

(
ε

1− ε

)4
)

and

d2 = d2(ε) = θ2

((
δ2

Γ(q0 + 1− α)

)2
− C2

2

(
ε

1− ε

)4
)

.

One can always find ε sufficiently small, such that(
δ1

Γ(p0 + 1− α)

)2
− C2

1

(
ε

1− ε

)4
>

ε2α

θ2

⇔
(

δ1

Γ(p0 + 1− α)

)2
>

ε2α

θ2 + C2
1

(
ε

1− ε

)4
(70)

and
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(
δ2

Γ(q0 + 1− α)

)2
− C2

1

(
ε

1− ε

)4
>

ε2α

θ2

⇔
(

δ2

Γ(q0 + 1− α)

)2
>

ε2α

θ2 + C2
2

(
ε

1− ε

)4
, (71)

because the functions

g1(ε) =
ε2α

θ2 + C2
1

(
ε

1− ε

)4
and g2(ε) =

ε2α

θ2 + C2
2

(
ε

1− ε

)4

are positive increasing for α ∈ [0, 1], θ ∈ [0, 1], and ε ∈ [0, 1]. Hence, from (69) and taking
into account (70) and (71), we obtain

‖Xk+1 − Xk‖2 > ε2αε2p0−2α + ε2αε2q0−2α =


2ε2, if µ = 1

2, if µ ∈ [0, 1]

. (72)

On the other hand, from assumption (71), we have

‖Xk+1 − Xk‖2

≤ ‖Ψ(Xk+1)−Ψ(Xk)‖2

≤ (ψ(xk+1)− ψ(xk))
2 + (ψ(yk+1)− ψ(yk))

2

≤ (ψ(xk+1)− ψ(x))2 + (ψ(x)− ψ(xk))
2 + (ψ(yk+1)− ψ(y))2(ψ(y)− ψ(yk))

2

<
ε2

2
+

ε2

2
+

ε2

2
+

ε2

2
= 2ε2,

which contradicts (72). This completes the proof.

Despite the convergence of (60), it is important to point out that sometimes the func-
tion f (Ψ(·)) is not smooth enough. In these cases, the algorithm involving the double
series (63) and (64) cannot be implemented. Moreover, in the same way as was done for
the one-dimensional case, assuming that f is at least of the class C1, we only consider the
following terms of (63) and (64)

f ′x(Ψ(Xk−1))

Γ(2− α)
(ψ(xk)− ψ(xk−1))

1−α(term p = 1 and q = 0 in (63)),

f ′y(Ψ(Xk−1))

Γ(2− α)
(ψ(yk)− ψ(yk−1))

1−α, (term p = 0 and q = 1 in (64)).

Thus, the higher order terms are eliminated and we have the following update of (62):(
H∇α,µ;ψ

X+
k−1

f
)
(Ψ(Xk))

=

(
f ′x(Ψ(Xk−1))

Γ(2− α)
(ψ(xk)− ψ(xk−1))

1−α,
f ′y(Ψ(Xk−1))

Γ(2− α)
(ψ(yk)− ψ(yk−1))

1−α

)
.
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To avoid the appearance of complex numbers, we also consider(
H∇α,µ;ψ

X+
k−1

f
)
(Ψ(Xk))

=

(
f ′x(Ψ(Xk−1))

Γ(2− α)
|ψ(xk)− ψ(xk−1)|1−α,

f ′y(Ψ(Xk−1))

Γ(2− α)
|ψ(yk)− ψ(yk−1)|1−α

)
. (73)

The implementation of (73) is presented in Algorithm 2. In a similar way as it was
done in Theorem 8, we can state the following results.

Theorem 9. If the algorithm (60) is convergent where the fractional gradient is given by (73), then
it converges to the minimum point of f (Ψ(·)).

Algorithm 2: 2D ψ-FGM with higher order truncation
Inputs:

Functions: ψ(x), f ′x(Ψ(X)), f ′y(Ψ(X))

Fixed parameters: α, a, θ, ε

Initial guess: X0 = [x0, y0]

Output: k-iteration: Xk = [xk, yk]

Initialization
k = 2, X1 = [a, a]

while
∥∥∥H∇α,µ;ψ

X+
k

f (Ψ(Xk+1))
∥∥∥ ≥ ε do

xk = xk−1 − θ
f ′x(Ψ(Xk−2))

Γ(2− α)
|ψ(xk−1)− ψ(xk−2)|1−α

yk = yk−1 − θ
f ′y(Ψ(Xk−2))

Γ(2− α)
|ψ(yk−1)− ψ(yk−2)|1−α

Xk = [xk, yk]

k = k + 1
end

5.2.2. The Trained Approach

In this section, we refine Algorithm 2 in two ways that train our algorithm in each
iteration to find the most accurate Xk. First, we consider a variable step size θk > 0 that is
updated in each iteration by minimizing the following function

φ(θk) = f
(

Ψ(Xk)− θk

(
H∇α,µ;ψ

X+
k−1

f
)
(Ψ(Xk))

)
.

In the second refinement, we adjust the order of integration α with Xk. More precisely,
if f is a non-negative function with a unique minimum point X∗, we can consider any
of the functions (54)–(58). In our approach, we only consider the following variable
fractional order

α(X) = 1− 2
π

arctan(β J(X)), (74)

where the loss function is J(X) = ‖∇ f (Ψ(X))‖. From (74), we infer that when J(X) ≈ 0,
one has α(X) ≈ 1, and when J(X) � 0, one has α(X) ≈ 0. As a consequence of the
previous refinements, we have the following iterative method:

Xk+1 = Xk − θk

(
H∇α(Xk),µ;ψ

X+
k−1

f
)
(Ψ(Xk)), (75)

where the fractional gradient is given by
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(
H∇α(Xk),µ;ψ

X+
k−1

f
)
(Ψ(Xk))

=

(
f ′x(Ψ(Xk−1))

Γ(2− α(Xk))
|ψ(xk)− ψ(xk−1)|1−α(Xk),

f ′y(Ψ(Xk−1))

Γ(2− α(Xk))
|ψ(yk)− ψ(yk−1)|1−α(Xk)

)
. (76)

The implementation of (76) is presented in Algorithm 3. Likewise, with a variable
fractional order α(X), the following theorem follows.

Theorem 10. If the algorithm (75) is convergent where the fractional gradient is given by (76),
then it converges to the minimum point of f (Ψ(·)).

The proof of this result follows the same reasoning of the proof of Theorem 8, and
therefore, is omitted.

Algorithm 3: 2D ψ-FGM with variable fractional order and optimized step size
Inputs:

Functions: ψ(x), f ′x(Ψ(X)), f ′y(Ψ(X))

Fixed parameters: α(X), a, ε, β

Initial guess: X0 = [x0, y0]

Output: k-iteration: Xk = [xk, yk]
Initialization
k = 2, X1 = [a, a]
while

∥∥∥H∇α(Xk),µ;ψ
X+

k
f (Ψ(Xk+1))

∥∥∥ ≥ ε do

J(Xk−2) = ‖∇ f (Ψ(Xk−2))‖ α(Xk−2) = subs(α(X), J(X), J(Xk−2))

θk = Solve
[

Diff
[

f
(

Ψ(Xk)− θ

(
H∇α(Xk),µ;ψ

X+
k−1

f
)
(Ψ(Xk))

)]
= 0, θ

]
xk = xk−1 − θk

f ′x(Ψ(Xk−2))

Γ(2− α)
|ψ(xk−1)− ψ(xk−2)|1−α(Xk−2)

yk = yk−1 − θk
f ′y(Ψ(Xk−2))

Γ(2− α)
|ψ(yk−1)− ψ(yk−2)|1−α(Xk−2)

Xk = [xk, yk]
k = k + 1

end

5.2.3. Numerical Simulations

In this section, we implement Algorithms 2 and 3 for finding the local minimum point
of the function f (Ψ(·)) for particular choices of f and ψ. For the function f , we consider
the following cases:

• f1(x, y) = 4x2 − 4xy + 2y2 with minimum point at (0, 0),
• Matyas function: f2(x, y) = 0.26

(
x2 + y2)− 0.48xy with minimum point at (0, 0),

• Wayburn and Seader No. 1 function: f3(x, y) =
(
x6 + y4 − 17

)2
+ (2x + y− 4)2 with

minimum point at (1, 2).

The function f1 is a classic convex quadratic function in R2 and can be considered
an academic example for implementing our algorithms. The choice of functions f2 and
f3 is due to the fact that they are benchmark functions used to test and evaluate several
characteristics of optimization algorithms, such as convergence rate, precision, robustness,
and general performance. More precisely, the Matyas function has a plate shape and the
Wayburn and Seader No. 1 function has a valley shape, which implies slow convergence
to the minimum point of the corresponding function. For the functions ψ in the vector
function Ψ, we consider the choices

• ψ1(x) = x, with x ∈ I = [0,+∞[,
• ψ2(x) = x2, with x ∈ I = [0,+∞[,



Fractal Fract. 2023, 7, 275 25 of 30

• ψ3(x) = ln x, with x ∈ I = [1,+∞[.

For the numerical simulations, we consider some combinations of the functions fi,
i = 1, 2, and ψj, j = 1, 2, 3, and compare the results in the following scenarios:

• Algorithm 3 with α(X) = 1 that corresponds to the classical 2D gradient descent
method,

• Algorithm 2 with α(X) = 0.8 and step size θ = 0.1,

• Algorithm 3 with α(X) = 1− 2
π

arctan(β J(X)), with β = 0.1.

Figure 6 shows the target functions f1(Ψ1(X)) = 4x2 − 4xy + 2y2 and f1(Ψ2(X)) =
4x4 − 4x2y2 + 2y4, both with a local minimum point at X∗ = (0, 0). Figures 7 and 8 show
the Xk iterates in the corresponding contour plots of the functions. The plots on the right
show the amplification close to the minimum point. The results of numerical simulations
are summarized in Table 1. The stopping criterion used was ε = 10−9.

Figure 6. Graphical representations of f1(Ψ1(X)) and f1(Ψ2(X)).

Figure 7. Iterates for f1(Ψ1(X)).

Figure 8. Iterates for f1(Ψ2(X)).
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Table 1. Information about the k-iteration associated with Figures 7 and 8.

α θ k X0 Xk ‖Xk− X∗‖

f1(Ψ1(X))

Classical Gradient 1.0 optimized 49 [1.50, 2.50]
[
7.8188× 10−11, 1.3031× 10−10] 1.5197× 1010

Algorithm 2 0.8 0.1 2480 [0.75, 1.25]
[
3.3860× 10−8, 5.3902× 10−8] 6.3655× 10−10

Algorithm 3 variable optimized 50 [1.50, 2.50]
[
9.3483× 10−11, 1.4213× 10−10] 1.7012× 10−10

f1(Ψ2(X))

Classical Gradient 1.0 optimized 77 [1.50, 2.50]
[
3.3370× 10−4, 5.5617× 10−4] 6.4860× 10−4

Algorithm 2 0.8 0.1 divergence [0.75, 1.25] — —

Algorithm 3 variable optimized 73 [1.50, 2.50]
[
3.9399× 10−4,−5.4845× 10−4] 6.7530× 10−4

In Table 1, we present the information concerning the Xk iterates of the implemented
algorithms. When we consider Ψ1, we achieve the global minimum point in the three
cases; however, it is clear that Algorithm 2 leads to the worst results in terms of speedi-
ness, whereas the classical case and Algorithm 3 have similar results. If we consider Ψ2
and we restrict our analysis to the two fastest algorithms, we conclude that, in this case,
Algorithm 3 provides a more accurate approximation in fewer iterations. We point out
that the objective function f1(Ψ2(·)) is a function with less convexity near the minimum
point when compared with the objective function f1(Ψ1(·)), which leads to an optimization
problem that is more challenging under the numerical point of view.

In the next set of figures and tables, we consider the Matyas function to test our
algorithms. More precisely, we consider the functions f2(Ψ1(X)) = 0.26

(
x2 + y2)− 0.48xy

with local minimum at the point X∗ = (0, 0), and f2(Ψ3(X)) = 0.26
(

ln2(x) + ln2(y)
)
−

0.48 ln(x) ln(y) with local minimum at the point X∗ = (1, 1).
Figure 9 shows both functions f2(Ψ1(·)) and f2(Ψ3(·)) with a plate-like shape. Con-

sidering the same stopping criteria, we have the following results.

Figure 9. Graphical representations of f2(Ψ1(X)) and f2(Ψ3(X)).

From the analysis of Table 2, we see that the three methods converge in the case of
f2(Ψ1), but Algorithm 2 is the worst in terms of iterations. The classic case and Algorithm 3
have similar results in terms of precision; however, Algorithm 3 presents better performance
in terms of the number of iterations. In the case of f2(Ψ3), the Algorithm 2 diverges and
the other two are convergent. Algorithm 3 required half of the iterations compared with
the classical gradient method.
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Table 2. Information about the k-iteration associated with Figures 10 and 11.

α θ k X0 Xk ‖Xk− X∗‖

f2(Ψ1(X))

Classical Gradient 1.0 optimized 43 [1.50, 2.50]
[
8.9458× 10−9, 8.8320× 10−9] 1.2571× 10−8

Algorithm 2 0.8 1.0 94777 [0.75, 1.25]
[
1.7395× 10−6, 1.7395× 10−6] 2.4600× 10−6

Algorithm 3 variable optimized 27 [1.50, 2.50]
[
1.4056× 10−8, 1.3811× 10−8] 1.9727× 10−8

f2(Ψ3(X))

Classical Gradient 1.0 optimized 51 [1.50, 2.50] [1, 1] 0.5× 10−16

Algorithm 2 0.8 0.1 divergence [0.75, 1.25] — —

Algorithm 3 variable optimized 29 [1.50, 2.50] [1, 1] 0.5× 10−6

Figure 10. Iterates for f2(Ψ1(X)).

Figure 11. Iterates for f2(Ψ3(X)).

In the final set of figures and tables, the function f3 is composed with Ψ1 and Ψ2.
Taking into account the results obtained previously for the Matyas function, where it is
clear that Algorithm 2 leads to worse results in terms of rapidness and accuracy, we only
implemented the classical gradient method and Algorithm 3. The following figure shows
the graphical representation of f3(Ψ1(X)) =

(
x6 + y4 − 17

)2
+ (2x + y− 4)2 with local

minimum at the point X∗ = (1, 2) and f3(Ψ2(X)) =
(

x12 + y8 − 17
)2

+
(
2x2 + y2 − 4

)2

with local maximum at X∗ = (0, 0) (or a local minimum of the function − f3(Ψ2(X))).
The plots in Figure 12 show that both functions are valley-shaped. Figures 13 and 14

and Table 3 show the obtained numerical results.
In this last case, we see that the classic gradient method and Algorithm 3 provide very

good approximations. Algorithm 3 performs better in terms of the number of iterations.
For instance, in the case of f3(Ψ1), the number of iterations decreased around 97% in
comparison with the classical gradient method.
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Figure 12. Graphical representations of f3(Ψ1(X)) and − f3(Ψ2(X))

Table 3. Information about the k-iteration associated with Figures 13 and 14.

α θ k X0 Xk ‖Xk− X∗‖

f3(Ψ1(X))

Classical Gradient 1.0 optimized 2923 [1.50, 2.50] [1, 2] 0.5× 10−16

Algorithm 3 variable optimized 71 [1.50, 2.50] [1, 2] 1.378364× 10−10

f3(Ψ2(X))

Classical Gradient 1.0 optimized 51 [0.50, 0.25]
[
1.6446× 10−12,−1.3283× 10−11] 1.3385× 10−11

Algorithm 3 variable optimized 39 [0.50, 0.25]
[
−1.0755× 10−12, 2.1842× 10−11] 2.1868× 10−11

Figure 13. Iterates for f3(Ψ1(X)).

Figure 14. Iterates for f3(Ψ2(X)).

6. Conclusions

In this work, we study the classical gradient method from the perspective of the
ψ-Hilfer fractional derivative. In the first part of the article, we consider the continuous
gradient method and perform the convergence analysis for strongly and non-strongly
convex cases. The identification of functions of the Lyapunov type, together with the
auxiliary results demonstrated, allowed us to establish the convergence of the generating
trajectories in the case of ψ-Hilfer.

In the second part of the paper, we first show that the ψ-Hilfer FGM with the ψ-Hilfer
gradient given as a power series can converge to a point different from the extreme point. To
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work out this problem, we propose an algorithm with a variable lower bound of integration,
reducing the influence of long-time memory terms. By truncating the higher order terms,
we obtain the ψ-FGM, which allows easy implementation in practice. Furthermore, we
optimized the step size in each iteration and considered a variable order of differentiation
to increase the precision and speed of the method. These two tunable parameters improved
the performance of the method in terms of speed of convergence.

Our numerical simulations showed that the proposed FGM achieved the approxi-
mation with equal or better precision, but in much fewer iterations compared with the
classical gradient method with optimized step size. We emphasize that in our 2D numer-
ical simulations, the Matyas function and the Wayburn and Seader No. 1 functions are
well-known benchmark functions used to test optimization methods. These functions have
the shapes of plates and valleys, respectively, representing an extra challenge in numerical
simulations.

In future works, it would be interesting to further develop this theory to see its
application in the field of convolutional neural networks.
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