
Citation: Zhao, T.; Chi, Y. Quantum

Weighted Fractional-Order

Transform. Fractal Fract. 2023, 7, 269.

https://doi.org/10.3390/

fractalfract7030269

Academic Editors: Shahram

Jalalzadeh and Seyed Meraj

Mousavi Rasouli

Received: 14 February 2023

Revised: 11 March 2023

Accepted: 17 March 2023

Published: 18 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Quantum Weighted Fractional-Order Transform
Tieyu Zhao 1,* and Yingying Chi 2

1 Information Science Teaching and Research Section, Northeastern University at Qinhuangdao,
Qinhuangdao 066004, China

2 College of Marxism, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
* Correspondence: zhaotieyu@neuq.edu.cn

Abstract: Quantum Fourier transform (QFT) transformation plays a very important role in the design
of many quantum algorithms. Fractional Fourier transform (FRFT), as an extension of the Fourier
transform, is particularly important due to the design of its quantum algorithm. In this paper, a new
reformulation of the weighted fractional Fourier transform (WFRFT) is proposed in order to realize
quantum FRFT; however, we found that this reformulation can be applied to other transformations,
and therefore, this paper presents the weighted fractional Hartley transform (WFRHT). For the
universality of application, we further propose a general weighted fractional-order transform (WFRT).
When designing the quantum circuits, we realized the quantum WFRFT via QFT and quantum phase
estimation (QPE). Moreover, after extending our design to the WFRHT, we were able to formulate the
quantum WFRHT. Finally, in accordance with the research results, we designed the quantum circuit
of the general WFRT, and subsequently proposed the quantum WFRT. The research in this paper has
great value as a reference for the design and application of quantum algorithms.

Keywords: quantum fractional Fourier transform; quantum phase estimation; quantum Fourier
transform; quantum computation

1. Introduction

The human desire for computing power is endless, and improvements in computing
power are closely related to the progress of civilization. Quantum computing comprises
parallel computations; this shows that quantum computing quantum algorithms have great
advantages over traditional, classical algorithms. Computers are composed of the following
four elements: electron tubes, transistors, integrated circuits, and large-scale integrated
circuits. As electronic computers continue to develop, chip integration is becoming more
common, and a single transistor will eventually be measured on the nanoscopic scale;
however, as transistors continue to shrink in size, the physical and chemical properties of
the material will qualitatively change, which will lead to the gradual disappearance of the
Molar law [1], and the emergence of the quantum effect. Therefore, quantum computing
will be important for the next generation of computer research. In 1980, Benioff proposed
the quantum Turing machine model, which opened new avenues for quantum computing
research [2]. Furthermore, Feynman pointed out that quantum computing has the ability to
complete tasks that classical computers cannot [3]. Moreover, the Deutsch–Jozsa algorithm
was one of the first to prove the superiority of quantum computing; this algorithm also
conceived the physical implementation of the quantum Turing machine and the general
quantum computer [4,5]. In 1994, Shor’s algorithm was proposed. Shor’s algorithm can
effectively solve the problem of order finding and factorization using quantum Fourier
transform, quantum phase estimation, and other basic operations that involve quantum
computing. Compared with classical algorithms, Shor’s algorithm can achieve exponential
acceleration; undoubtedly, this is a great challenge for public-key cryptography [6]. In 1996,
Grover proposed a square root accelerated quantum search algorithm for N unstructured
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databases with disordered records [7]. The Grover algorithm aims to use quantum com-
puting technology to solve search problems, and it can achieve square-level acceleration
for classical search algorithms. With the introduction of two efficient quantum algorithms,
researchers have paid an increasing level of attention to quantum computing; as a result, many
improved Grover algorithms appeared [8–12], which has further promoted the development
of quantum computing. In addition, applied quantum algorithms have emerged in large num-
bers; these algorithms are also based on the Grover algorithm [13–18]. In 2009, the emergence
of the HHL algorithm once again proved the superiority of the quantum algorithm [19], and
improvements to the HHL algorithm have also been proposed [20–22]. In 2012, Preskill pro-
posed the term “quantum supremacy”; this term highlights that quantum computers may
easily answer a class of problems that are complex for classical computers [23]. Moreover,
quantum supremacy can be demonstrated on quantum computers using random quantum
circuits of more than 50 qubits [24]. A series of quantum computing techniques, such as
the quantum Fourier transform (QFT) [25], quantum phase estimation (QPE) [26], and
HHL algorithm [19], play a key role in quantum algorithm design; hence, they are called
quantum basic linear algebra assemblies [27]. Moreover, these basic operations may be
applied to quantum singular value decomposition problems [28] and quantum gradient
solving problems [29]. In addition, quantum algorithms play an important role in solving
linear equations and differential equations [30–34]. At present, quantum computing has
been widely used and it shows great potential.

Out of the abovementioned quantum algorithms, QFT and QPE play an important
role in quantum computing; hence, they are called quantum toolbox algorithms. Sim-
ilar quantum algorithms include the quantum wavelet transform [35], quantum cosine
transform [36], quantum Hartley transform [37], quantum black-box [38,39], and quantum
random walk [40,41] algorithms, among others. As an extension of the Fourier transform,
fractional Fourier transform (FRFT) has a wide range of applications; therefore, the proposal
of the quantum fractional Fourier transform (QFRFT) is particularly important. Recently,
some studies concerning QFRFT have been conducted. Unfortunately, these studies do
not present a complete quantum circuit [42–45]. Parasa et al. proposed a quantum pseudo-
fractional Fourier transform (QPFRFT) using multi-valued logic [42]; however, it is not a
proper QFRFT because it is not unitary. Recently, we presented a QFRFT using a quan-
tum artificial neural network, which required using more qubits [46]. There are several
diverse definitions of FRFT [47,48]. In this paper, the weighted fractional Fourier transform
(WFRFT) was studied because it is unitary. First, we propose a new reformulation of the
WFRFT, and we designed its quantum circuit using QFT and QPE; secondly, we propose a
definition for the weighted fractional Hartley transform (WFRHT), and the design for the
quantum circuit is presented; and finally, the general weighted fractional-order transform
(WFRT) is defined and the design for its quantum circuit is proposed.

The remainder of this paper is organized as follows. The theories behind WFRFT,
WFRHT, and WFRT are analyzed in Section 2. The quantum WFRFT is proposed in Section 3.
The quantum WFRHT is proposed in Section 4. Section 5 discusses the quantum circuit of
the WFRT. Finally, the conclusions are presented in Section 6.

2. Weighted Fractional-Order Transform

In 1995, the WFRFT was proposed [49]. We have studied this algorithm in great detail,
and in this paper, we propose a new reformulation of this algorithm; we found that this
new reformulation can be used with many new algorithms, such as the WFRHT, weighted
fractional sine transform (WFRST), weighted fractional cosine transform (WFRCT), and
weighted fractional Hadamard transform (WFRHaT) algorithms, among others. Further-
more, we found that when a periodic matrix is given, we can define a new algorithm; thus,
we present the definition of the general WFRT algorithm in Section 2.3.
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2.1. Weighted Fractional Fourier Transform

In 1995, Shih proposed the WFRFT using the integer power operation of the Fourier
transform [49]. As a generalized version of the Fourier transform, the algorithm can be
widely used in signal processing and image encryption, among other fields [50,51]; it is
defined as follows:

(Fα f )(t) =
3

∑
l=0

Aα
l fl(t). (1)

Here, f0(t) = f (t), f1(t) = (F f0)(t), f2(t) = (F f1)(t) and f3(t) = (F f2)(t) (F denotes
the Fourier transform). The weighting coefficient Aα

l can be expressed as:

Aα
l = cos

(
(α− l)π

4

)
cos
(

2(α− l)π
4

)
exp

(
−3(α− l)iπ

4

)
. (2)

For Equation (1), we can also write

Fα[ f (t)] =
3
∑

l=0
Aα

l fl(t)

= Aα
0 f0(t) + Aα

1 f1(t) + Aα
2 f2(t) + Aα

3 f3(t)
= Aα

0 I f (t) + Aα
1 F f (t) + Aα

2 F2 f (t) + Aα
3 F3 f (t)

=
(

Aα
0 I + Aα

1 F + Aα
2 F2 + Aα

3 F3) f (t)

=
(

I, F, F2, F3)


Aα
0

Aα
1

Aα
2

Aα
3

 f (t).

(3)

From [49], we can obtain Equation (4),
Bα

0
Bα

1
Bα

2
Bα

3

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




Aα
0

Aα
1

Aα
2

Aα
3

, (4)

where Bα
k = exp

(
2πikα

4

)
; k = 0, 1, 2, 3. Via inverse transformation, we can obtain Equation (5),


Aα

0
Aα

1
Aα

2
Aα

3

 =
1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3

. (5)

Next, Equation (5) is substituted into Equation (3), so that Equation (6) is obtained.

Fα[ f (t)] =
(

I, F, F2, F3)


Aα
0

Aα
1

Aα
2

Aα
3

 f (t)

= 1
4
(

I, F, F2, F3)


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3

 f (t).

(6)

Let 
Y0 = I + F + F2 + F3

Y1 = I − iF− F2 + iF3

Y2 = I − F + F2 − F3

Y3 = I + iF− F2 − iF3

(7)
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Thus, a new reformulation of WFRFT is obtained, as shown in Equation (8).

Fα[ f (t)] =
1
4
(Y0, Y1, Y2, Y3)


Bα

0
Bα

1
Bα

2
Bα

3

 f (t). (8)

Here Bα
k = exp

(
2πikα

4

)
; k = 0, 1, 2, 3.

Unitarity is a prerequisite for quantum algorithm design. We can easily prove that the
WFRFT is unitary using Equation (8) [52]. Moreover, in Section 3, Equation (8) was used to
design quantum circuits. The new reformulation that we propose can easily be used with
other new algorithms.

2.2. Weighted Fractional Hartley Transform

The abovementioned WFRFT uses the Fourier transform as the base function. We
know that the discrete Fourier transform (DFT) is a periodic matrix with eigenvalues (1, i,
−1, −i). Similar to the WFRFT, we can also try to define new fractional-order transforms
for other periodic matrices; therefore, we used the Hartley transform as an example. The
discrete Hartley transform (DHT) has been proposed [53], and its definition is as follows:

H =
1√
N

[
cos
(

2πmn
N

)
+ sin

(
2πmn

N

)]
. (9)

The DHT comprises period 2; hence, its eigenvalues are 1 and −1. Therefore, we
present the definition of WFRHT as:

(Hα f )(t) =
1

∑
l=0

Aα
l fl(t). (10)

Here, f0(t) = f (t) and f1(t) = (H f0)(t) (H denotes the Hartley transform). The
weighting coefficient Aα

l can be obtained using Equation (11),(
Bα

0
Bα

1

)
=

(
1 1
1 −1

)(
Aα

0
Aα

1

)
, (11)

where Bα
k = exp(πikα); k = 0, 1. Thus, Equation (12) is obtained,(

Aα
0

Aα
1

)
=

1
2

(
1 1
1 −1

)(
Bα

0
Bα

1

)
. (12)

Then, Equation (10) can be re-expressed as:

Fα[ f (t)] = (I, H)

(
Aα

0
Aα

1

)
f (t)

= 1
2 (I, H)

(
1 1
1 −1

)(
Bα

0
Bα

1

)
f (t).

(13)

Let {
Y0 = I + H
Y1 = I − H

(14)

Therefore, the WFRHT can also be expressed as:

Hα[ f (t)] =
1
2
(Y0, Y1)

(
Bα

0
Bα

1

)
f (t). (15)

Here Bα
k = exp(πikα); k = 0, 1.
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The discrete sine transform, discrete cosine transform, and discrete Hadamard transform,
among other discrete matrices, have period 2, and their eigenvalues are 1 and −1; therefore, a
new algorithm can be defined by replacing the Hartley transform in Equation (14).

2.3. Weighted Fractional-Order Transform

In the analysis of Sections 2.1 and 2.2, it is evident that for periodic transforms (that is,
when the matrix of a transform is periodic), we can present the definition of its weighted
fractional-order. Next, we present the definition of a general WFRT.

Let T denote a periodic matrix (strictly speaking, the matrix should be symmetrical)
and TM = I (M is the period of the matrix T, and I denotes the identity matrix); therefore,
the WFRT can be defined as:

(Tα f )(t) =
M−1

∑
l=0

Aα
l fl(t). (16)

Here, fl(t) = Tl( f (t)); l = 0, 1, · · · , M − 1. The weighting coefficient Aα
l can be

obtained by Equation (17),
Bα

0
Bα

1
...

Bα
M−1

 =


w0×0 w0×1 · · · w0×(M−1)

w1×0 w1×1 · · · w1×(M−1)

...
...

. . .
...

w(M−1)×0 w(M−1)×1 · · · w(M−1)×(M−1)




Aα
0

Aα
1

...
Aα

M−1

, (17)

where w = e2πi/M and Bα
k = e2πiαk/M; k = 0, 1, · · · , M− 1. Furthermore, we can obtain

Equation (18) as follows:
Aα

0
Aα

1
...

Aα
M−1

 =
1
M


u0×0 u0×1 · · · u0×(M−1)

u1×0 u1×1 · · · u1×(M−1)

...
...

. . .
...

u(M−1)×0 u(M−1)×1 · · · u(M−1)×(M−1)




Bα
0

Bα
1
...

Bα
M−1

, (18)

where u = e−2πi/M. Next, Equation (16) can be re-expressed as:

(Tα f )(t) =
M−1
∑

l=0
Aα

l fl(t)

=
(

I, T, · · · , TM−1)


Aα
0

Aα
1

...
Aα

M−1

 f (t).
(19)

Substituting Equation (18) into Equation (19), we can obtain

(Tα f )(t)=
M−1
∑

l=0
Aα

l fl(t)

= 1
M
(

I, T, · · · , TM−1)


u0×0 u0×1 · · · u0×(M−1)

u1×0 u1×1 · · · u1×(M−1)

...
...

. . .
...

u(M−1)×0 u(M−1)×1 · · · u(M−1)×(M−1)




Bα
0

Bα
1
...

Bα
M−1

 f (t).
(20)
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Let 

Y0 = u0×0 I + u1×0T + · · ·+ u(M−1)×0TM−1

Y1 = u0×1 I + u1×1T + · · ·+ u(M−1)×1TM−1

Y2 = u0×2 I + u1×2T + · · ·+ u(M−1)×2TM−1

...
YM−1 = u0×(M−1) I + u1×(M−1)T + · · ·+ u(M−1)×(M−1)TM−1

(21)

Therefore, the WFRT can also be expressed as:

(Tα f )(t) =
M−1
∑

l=0
Aα

l fl(t)

= 1
M (Y0, Y1, · · · , YM−1)


Bα

0
Bα

1
...

Bα
M−1

 f (t)

= 1
M

M−1
∑

k=0
YkBα

k f (t).

(22)

Here Bα
k = e2πiαk/M and the WFRT is proposed; thus, the WFRFT and the WFRHT

presented above are its special cases. For example, M = 4, and T denotes the Fourier
transform in Equation (21), which is defined as the WFRFT. If M = 2, T denotes the Hart-
ley transform in Equation (21), which is the WFRHT. This new reformulation can be
acceptably applied to the fractional-order definition of periodic functions. Our findings
have important value as they can be used as a reference for future information process-
ing and quantum algorithm designs. With increasing demand for greater computing
power, we will eventually enter the quantum age. Next, we designed quantum circuits for
these algorithms.

3. Quantum Weighted Fractional Fourier Transform

Recently, studies concerning QFRFT have been conducted [42–45]; however, these
research methods describe the QFRFT from the perspective of quantum mechanics, and
they do not mention quantum circuits. FRFT definitions are diverse, and some definitions
are not unitary [47,48]; this causes issues when designing the QFRFT. As a result of such
difficulties, Parasa et al. showed that QFRFT cannot be realized [42]. Recently, we proposed
a method to help realize the QFRFT using a quantum artificial neural network; however,
this method uses more qubits, and thus, it requires more resources [46]. In this section, we
will use QFT and QPE to redesign the QFRFT quantum circuit. Studies by Gidney et al.
assisted with our research, as follows [54,55].

First, we used QPE to obtain the eigenvalues of Equation (7), and the quantum circuit
of Equation (7) is shown in Figure 1. The upper part represents the control register, the lower
part represents the target register, and |u〉 represents the feature vector that corresponds
with the operator in the target register. Here, we used QFT instead of the inverse quantum
Fourier transform (IQFT) in the control register, as the purpose of this design is to obtain
the same results as Equation (7).

From Figure 1, we know

|ψ0〉 = |0〉 ⊗ |0〉 ⊗ |u〉. (23)

Via the H gate, we obtain

|ψ1〉 = 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ |u〉

= 1
2 (|00〉+ |01〉+ |10〉+ |11〉)⊗ |u〉.

(24)
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Then, the QFT operation of the target register is,

|ψ2〉 =
1
2
(|00〉|u〉+ |01〉F|u〉+ |10〉|u〉+ |11〉F|u〉), (25)

and
|ψ3〉 =

1
2

(
|00〉I|u〉+ |01〉F|u〉+ |10〉F2|u〉+ |11〉F3|u〉

)
. (26)

Here, |u〉 is the eigenvector of Fourier transform; therefore, F|u〉 = D|u〉 (D is the
eigenvalue of Fourier transform). The eigenvalue D can be expressed as:

D =


λ0 0

λ1
. . .

0 λn−1

, (27)

where λj ∈ {1, i,−1,−i}; j = 0, 1, · · · , n− 1. Therefore, Equation (26) can be expressed as:

|ψ3〉 =
1
2

(
D0|00〉+ D1|01〉+ D2|10〉+ D3|11〉

)
⊗ |u〉. (28)

The eigenvector |u〉 can be written in accordance with standard orthogonal basis
conditions, as shown in Equation (29),

|u〉 = ∑
j

bj
∣∣uj
〉
, (29)

where bj is the projection length. Thus, we can obtain

D|u〉 = ∑
j

λjbj
∣∣uj
〉
. (30)

Equation (28) can be expressed as:

|ψ3〉 =
1
2

(
∑

j
λ0

j bj
∣∣uj
〉
|00〉+ ∑

j
λ1

j bj
∣∣uj
〉
|01〉+ ∑

j
λ2

j bj
∣∣uj
〉
|10〉+ ∑

j
λ3

j bj
∣∣uj
〉
|11〉

)
. (31)

The two-qubit QFT is used in the control register, and its matrix can be expressed as:

QFT =
1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

. (32)
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Therefore, we can obtain the following quantum state |ψ4〉,

|ψ4〉 = ∑
j

∣∣φj
〉
⊗ bj

∣∣uj
〉
, (33)

where
∣∣φj
〉
∈ {|00〉, |01〉, |10〉, |11〉}; the results are shown in Figure 2.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 8 of 18 
 

 

where { }1, , 1,j i iλ ∈ − − ; 0,1, , 1j n= − . Therefore, Equation (26) can be expressed as: 

( )0 1 2 3
3

1 00 01 10 11 .
2
D D D D uψ = + + + ⊗  (28)

The eigenvector u can be written in accordance with standard orthogonal basis con-
ditions, as shown in Equation (29), 

,j j
j

u b u=  (29)

where jb is the projection length. Thus, we can obtain 

.j j j
j

D u b uλ=  (30)

Equation (28) can be expressed as: 

0 1 2 3
3

1 00 01 10 11 .
2 j j j j j j j j j j j j

j j j j
b u b u b u b uψ λ λ λ λ

 
= + + + 

 
     (31)

The two-qubit QFT is used in the control register, and its matrix can be expressed as: 

1 1 1 1
1 11 .
1 1 1 14
1 1

i i
QFT

i i

 
 − − =
 − −
 

− − 

 (32)

Therefore, we can obtain the following quantum state 4ψ , 

4 ,j j j
j

b uψ φ= ⊗  (33)

where { }00 , 01 , 10 , 11jφ ∈ ; the results are shown in Figure 2. 

0 H

u QFT2

0 H

QFT

QFT

1 00jλ = →

01j iλ = →

1 10jλ = − →

11j iλ = − →

0ψ 1ψ 2ψ 3ψ 4ψ  
Figure 2. Quantum states corresponding with eigenvalues. 

Here, we analyzed the evolutionary process of 3φ  to 4φ  in detail. Equation (28) 
and Equation (31) are equivalent; therefore, we can continue to use Equation (28). Then, 
after the application of the two-qubit QFT, we can obtain 

( )4 0 1 2 3
1 00 01 10 11 ,
4
W W W W uψ = + + + ⊗  (34)

where 

Figure 2. Quantum states corresponding with eigenvalues.

Here, we analyzed the evolutionary process of |φ3〉 to |φ4〉 in detail. Equations (28) and (31)
are equivalent; therefore, we can continue to use Equation (28). Then, after the application
of the two-qubit QFT, we can obtain

|ψ4〉 =
1
4
(W0|00〉+ W1|01〉+ W2|10〉+ W3|11〉)⊗ |u〉, (34)

where 
W0 = D0 + D1 + D2 + D3

W1 = D0 − iD1 − D2 + iD3

W2 = D0 − D1 + D2 − D3

W3 = D0 + iD1 − D2 − iD3

(35)

Equation (35) is consistent with Equation (7); however, we used the description of the
eigenvalues in Equation (7). Furthermore, we know that

W0 = D0 + D1 − D2 + D3

=


λ0

0 + iλ1
0 + λ2

0 + λ3
0

λ0
1 + λ1

1 + λ2
1 + λ3

1
. . .

λ0
n−1 + λ1

n−1 + λ2
n−1 + λ3

n−1

,
(36)

When λj = i,
λ0

j + λ1
j + λ2

j + λ3
j = 0. (38)

When λj = −1,
λ0

j + λ1
j + λ2

j + λ3
j = 0. (39)

When λj = −i,
λ0

j + λ1
j + λ2

j + λ3
j = 0. (40)

Regarding W0, only in the following circumstance, when λj = 1, is the corresponding
element not zero; notably, the elements at the other positions are zero. For W1,

W1= D0 − iD1 − D2 + iD3

=



λ0
0 − iλ1

0 − λ2
0 + iλ3

0
λ0

1 − iλ1
1 − λ2

1 + iλ3
1

. . .

λ0
n−1 − iλ1

n−1 − λ2
n−1 + iλ3

n−1


.

(41)
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When λj = i,
λ0

j − iλ1
j − λ2

j + iλ3
j = 4. (42)

When λj = 1,−1,−i,
λ0

j − iλ1
j − λ2

j + iλ3
j = 0. (43)

For W2,

W2 = D0 − D1 + D2 − D3

=


λ0

0 − λ1
0 + λ2

0 − λ3
0

λ0
1 − λ1

1 + λ2
1 − λ3

1
. . .

λ0
n−1 − λ1

n−1 + λ2
n−1 − λ3

n−1

.
(44)

When λj = −1,
λ0

j − λ1
j + λ2

j − λ3
j = 4. (45)

When λj = 1, i,−i,
λ0

j − λ1
j + λ2

j − λ3
j = 0. (46)

For W3,

W3 = D0 + iD1 − D2 − iD3

=


λ0

0 + iλ1
0 − λ2

0 − iλ3
0

λ0
1 + iλ1

1 − λ2
1 − iλ3

1
. . .

λ0
n−1 + iλ1

n−1 − λ2
n−1 − iλ3

n−1

.
(47)

When λj = −i,
λ0

j + iλ1
j − λ2

j − iλ3
j = 4. (48)

When λj = 1, i,−1,
λ0

j + iλ1
j − λ2

j − iλ3
j = 0. (49)

Therefore, in Equation (34), we know that for W0, only in the following circumstance,
when the eigenvalue is 1, is the corresponding element not zero. For W1, W2, and W3, the
corresponding elements are not zero when the eigenvalues are i, −1, and −i, respectively.
The number of eigenvalues is shown in Table 1 [56,57]. Then, the combined eigenvectors
of W0, W1, W2, and W3 comprise the exact eigenvectors of the DFT. It is evident that
Equations (33) and (34) are equivalent.

Table 1. Multiplicities of the DFT eigenvalues.

N 1 −1 −i i

4n n + 1 n n n − 1
4n + 1 n + 1 n n n
4n + 2 n + 1 n + 1 n n
4n + 3 n + 1 n + 1 n + 1 n

Next, we introduced two phase gates (Equations (50) and (51)) and added them to the
control register, as shown in Figure 3.
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The phase gates RZ(πα) and RZ(πα/2) are expressed as:

RZ(πα) =

(
1 0
0 eπiα

)
, (50)

and

RZ(πα/2) =
(

1 0
0 eπiα/2

)
. (51)

Thus, we can obtain

(
1 0
0 eπiα

)
⊗
(

1 0
0 eπiα/2

)
=


1 0

eπiα/2

e2πiα/2

0 e3πiα/2

. (52)

The diagonal element of the matrix is exactly Bα
k of Equation (8). Then, |ψ5〉 is obtained

|ψ5〉 = ∑
j

eπiαφj/2∣∣φj
〉
⊗ bj

∣∣uj
〉
, (53)

where φj ∈ {0, 1, 2, 3} and
∣∣φj
〉
∈ {|00〉, |01〉, |10〉, |11〉}. Next, we used inverse quantum

phase estimation (IQPE), as shown in Figure 4.
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The two-qubit IQFT of the control register can be expressed as:

IQFT =
1√
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

. (54)

After the IQFT of
∣∣φj
〉

is calculated, the eigenvalues are restored,
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|ψ6〉 = 1
2

(
∑
j

eπiαφj/2λ0
j bj

∣∣∣uj

〉
|00〉+ ∑

j
eπiαφj/2λ1

j bj

∣∣∣uj

〉
|01〉+ ∑

j
eπiαφj/2λ2

j bj

∣∣∣uj

〉
|10〉+ ∑

j
eπiαφj/2λ3

j bj

∣∣∣uj

〉
|11〉

)

= 1
2

(
∑
j

eπiαφj/2bj

∣∣∣uj

〉
|00〉+ ∑

j
eπiαφj/2Fbj

∣∣∣uj

〉
|01〉+ ∑

j
eπiαφj/2F2bj

∣∣∣uj

〉
|10〉+ ∑

j
eπiαφj/2F3bj

∣∣∣uj

〉
|11〉

)
.

(55)

Next,

|ψ7〉 =
1
2

∑
j

eπiαφj/2λ0
j aj

∣∣∣uj

〉
|00〉+ ∑

j
eπiαφj/2Fbj

∣∣∣uj

〉
|01〉+ ∑

j
eπiαφj/2 IF2F2bj

∣∣∣uj

〉
|10〉+ ∑

j
eπiαφj/2 IF2F3bj

∣∣∣uj

〉
|11〉

, (56)

where IF denotes the inverse Fourier transform.

|ψ8〉 = 1
2

(
∑
j

eπiαφj/2λ0
j bj

∣∣∣uj

〉
|00〉+ ∑

j
eπiαφj/2 IFFbj

∣∣∣uj

〉
|01〉+ ∑

j
eπiαφj/2 IF2F2bj

∣∣∣uj

〉
|10〉+ ∑

j
eπiαφj/2 IF3F3bj

∣∣∣uj

〉
|11〉

)

= 1
2

(
∑
j

eπiαφj/2bj

∣∣∣uj

〉
|00〉+ ∑

j
eπiαφj/2bj

∣∣∣uj

〉
|01〉+ ∑

j
eπiαφj/2bj

∣∣∣uj

〉
|10〉+ ∑

j
eπiαφj/2bj

∣∣∣uj

〉
|11〉

)
= ∑

j
eπiαφj/2bj

∣∣∣uj

〉
1√
2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉).

(57)

Finally, through the H gate, we obtain |ψ9〉

|ψ9〉 = |0〉|0〉∑
j

eπiαφj/2bj
∣∣uj
〉
, (58)

where φj ∈ {0, 1, 2, 3}. We know

∑
j

eπiφj/2bj
∣∣uj
〉
= F|u〉, (59)

so
∑

j
eπiαφj/2bj

∣∣uj
〉
= Fα|u〉. (60)

Then, Equation (58) is expressed as:

|ψ9〉 = |0〉|0〉Fα|u〉. (61)

Therefore, the quantum WFRFT (QWFRFT) is obtained.
The QWFRFT was designed as shown in Figure 4. This design provides the foundation

for subsequent quantum WFRHT designs (QWFRHT).

4. Quantum Weighted Fractional Hartley Transform

The quantum Hartley transform (QHT) has been proposed [37]. Next, we use QPE
and QHT to design the circuit of the QWFRHT, as shown in Figure 5. The eigenvalues of
the Hartley transform are 1 and −1; therefore, the control register only needs one qubit to
complete the circuit.
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Here, |u〉 is the eigenvector of the Hartley transform; thus, we can obtain

|ψ0〉 = |0〉 ⊗ |u〉, (62)

|ψ1〉 =
1√
2
(|0〉+ |1〉)⊗ |u〉, (63)

and
|ψ2〉 = 1√

2
(I|0〉|u〉+ QHT|1〉|u〉)

= 1√
2

(
D0|0〉+ D|1〉

)
⊗ |u〉. (64)

We know QHT|u〉 = D|u〉. Here, D is the eigenvalue of the Hartley transform and it
can be expressed as:

D =


λ0 0

λ1
. . .

0 λn−1

, (65)

where λj ∈ {1,−1}; j = 0, 1, · · · , n− 1. This is because

|u〉 = ∑
j

rj
∣∣uj
〉
, (66)

therefore,
D|u〉 = ∑

j
λjrj

∣∣uj
〉
. (67)

Equation (64) can be expressed as:

|ψ2〉 =
1√
2

(
∑

j
λ0

j rj
∣∣uj
〉
|0〉+ ∑

j
λ1

j rj
∣∣uj
〉
|1〉
)

. (68)

Similarly to the abovementioned QWFRFT, after passing through the H gate, we obtain

|ψ3〉 = ∑
j

∣∣φj
〉
⊗ rj

∣∣uj
〉
, (69)

where
∣∣φj
〉
∈ {|0〉, |1〉}; thus, the phase gate of Equation (50) is used,

|ψ4〉 = ∑
j

eπiαφj
∣∣φj
〉
⊗ rj

∣∣uj
〉
. (70)

Next, the IQPE is used, so that the eigenvalues can be recovered:

|ψ5〉 =
1√
2

(
∑

j
eπiαφj λ0

j rj
∣∣uj
〉
|0〉+ ∑

j
eπiαφj λ1

j rj
∣∣uj
〉
|1〉
)

, (71)
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and

|ψ6〉 = 1√
2

(
∑
j

eπiα]φj rj
∣∣uj
〉
|0〉+ ∑

j
eπiαφj rj

∣∣uj
〉
|1〉
)

= ∑
j

eπiαφj rj
∣∣uj
〉 1√

2
(|0〉+ |1〉).

(72)

Finally, we obtain
|ψ7〉 = |0〉∑

j
eπiαφj rj

∣∣uj
〉
. (73)

This is because
∑

j
eπi]φj rj

∣∣uj
〉
= H|u〉, (74)

where H denotes the Hartley transform; therefore,

∑
j

eπiαφj rj
∣∣uj
〉
= Hα|u〉. (75)

Then, Equation (73) is expressed as

|ψ7〉 = |0〉Hα|u〉. (76)

Thus, the QWFRHT is obtained.
Similarly to the QWFRHT, the quantum sine transform, quantum Hadamard transform,

quantum cosine transform, and so on, are periodic functions, and their eigenvalues are
1 and −1; therefore, the designs of these functions are consistent with the findings in
this section.

5. Discussion

With the help of the designs in Sections 3 and 4, in this section, we present the quantum
circuit of the WFRT (QWFRT); that is, the quantum circuit design of the WFRT in Section 2.3.
Moreover, in this section, the unitary matrix TM = I (M is the period and I is the identity
matrix) is determined. In order to fulfil the design requirements, the period should satisfy
M = 2q. We also used QPE to design quantum circuits, as shown in Figure 6.
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Here, |u〉 is the eigenvector of matrix T; thus, we can obtain

|ψ0〉 = |0〉⊗q|u〉, (77)
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where q = logM
2 . Thus

|ψ1〉 =
1√
2q

(|0〉+ |1〉)⊗q|u〉, (78)

and
|ψ2〉 =

1√
2q

(
|0〉+ T2q−1 |1〉

)(
|0〉+ T2q−2 |1〉

)
⊗ · · · ⊗ (|0〉+ T|1〉)⊗ |u〉. (79)

This is because M = 2q and |u〉 = ∑
j

cj
∣∣uj
〉
; therefore, Equation (79) can be expressed as:

|ψ2〉 = 1√
2q

M−1
∑

k=0
|k〉Tk|u〉

= 1√
2q

M−1
∑

k=0
|k〉∑

j
λk

j cj
∣∣uj
〉
.

(80)

Then, after the q-qubit IQFT of
M−1
∑

k=0
λk

j |k〉, we obtain

|ψ3〉 = ∑
j

∣∣φj
〉
cj
∣∣uj
〉
. (81)

Via the phase gates, we can obtain

|ψ4〉 = ∑
j

e2πiαφj/M∣∣φj
〉
cj
∣∣uj
〉
. (82)

Next, the IQPE is used. First, for the q-qubit QFT of
∣∣φj
〉
, the eigenvalues are recovered,

|ψ5〉 =
1√
2q ∑

j
e2πiαφj/M

M−1

∑
k=0

λk
j |k〉cj

∣∣uj
〉
. (83)

Hence,

|ψ6〉 =
1√
2q ∑

j
e2πiαφj/M

M−1

∑
k=0
|k〉cj

∣∣uj
〉
. (84)

where φj ∈ (0, 1, · · · , M− 1). Finally, we obtain

|ψ7〉 = |0〉⊗q∑
j

e2πiαφj/Mcj
∣∣uj
〉
. (85)

Thus
|ψ7〉 = |0〉⊗qTα|u〉. (86)

Ergo, the QWFRT is obtained.
In the quantum circuit of Figure 6, the upper part represents the control register, and

the lower part represents the target register. The quantum bits required in the control
register are closely related to the period of the unitary matrix T, which is q = logM

2 . In the
quantum circuit of Figure 4, the period of the Fourier transform is 4; that is, M = 4; therefore,
in the circuit design, the control register needs two qubits. Similarly, in the quantum
circuit of Figure 5, the period of the Hartley transform is 2; that is, M = 2; therefore, we
used a qubit in the control register. Therefore, it is evident that the schemes proposed in
Sections 3 and 4 are special cases of the scheme proposed in Section 5.

Due to the complexity of the designed quantum algorithm, in space, in order to store
eigenvalues, we use an additional q qubits (control registers). The qubits required for
the control registers of different algorithms may also be different. For example, for the
QWFRFT in Figure 4, we use two auxiliary qubits to store eigenvalues; for the QWFRHT in
Figure 5, we use only one auxiliary qubit to store the eigenvalues. That is to say, the qubit
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of the control register depends on the number of eigenvalues of the algorithm. In time,
when the target register is large, we only consider the complexity of the quantum gate in
the circuit. Taking the QWFRFT in Figure 4 as an example, we use three QFTs and three
IQFTs, and the complexity of each QFT and IQFT is O

(
n2). Therefore, the time complexity

of the QWFRT depends on the complexity of quantum algorithm T.

6. Conclusions

As a generalized Fourier transform algorithm, the quantum circuit design of FRFT
is particularly important. In order to design a QFRFT, we first analyzed the definitions
for WFRFT; then, we proposed a new reformulation. Based on the new reformulation,
we presented the WFRHT, and this fractional-order definition may also be applicable to
the sine transform, cosine transform, and Hadamard transform algorithms; therefore, we
proposed an additional weighted fractional-order definition based on the periodic matrix,
which has wide applicability. Moreover, the proposed new reformulation contributes to the
design of quantum algorithms. We first used QFT and QPE to design the quantum circuit of
WFRFT; then, we designed the QWFRHT, a design which has wide applicability. Moreover,
by designing the quantum circuit of the WFRT, we were able to realize the QWFRT. The
quantum algorithms proposed in this paper will have great value in terms of their ability
to be used as a reference for future quantum information processing.
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