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Abstract: This paper deals with the problem of group consensus for a fractional-order multi-agent
system (FOMAS) without considering the intergroup balance condition. By adopting a dynamic
event-triggered mechanism, the updating frequency of control input is significantly reduced while the
consensus performance is maintained. By utilizing the Lyapunov direct method and the properties
of a fractional-order derivative, several novel criteria are presented for analyzing the Mittag–Leffler
stability of error systems and excluding the Zeno behavior in the triggering mechanism. An example
and its simulations are demonstrated to prove the validity of the theoretical results.
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1. Introduction

The last decades have already witnessed the rapid growth on the research of dis-
tributed cooperation for multi-agent systems (MASs) due mainly to its comprehensive
applications in many fields such as physics, engineering, and military (see [1–7]). As one
of typical cooperative processes, the consensus control aims to design a strategy (by taking
use of the local information from neighbor agents) such that all agents finally converge to
a common state. Until now, a great number of papers have emerged to focus on the con-
sensus control of MASs [8–14]. For instance, in [9], the distributed quasi-consensus control
has been considered for stochastic nonlinear multi-agent systems with a general network
topology. Within the adaptive fuzzy control strategy, the consensus algorithms has been
proposed in [13] for MAS with unknown nonlinearities and a directed network topology.

It should be noted that most existing results have investigated the issue that all agents
finally approach a common dynamics under the control protocol [15]. In practical appli-
cations, agents may need to complete different part of a complex cooperative task, which
requires agents in a communication network to achieve different agreements. Hence, it is
significant to consider the issue of group consensus control of MASs. Specifically, all agents
in a network are usually classified to several different subgroups. The interaction of agents
happens not only in the same subgroup but also among different subgroups. By employing
a proper consensus protocol, each group of agents tend to their own common dynamics. In
other word, the main object of group consensus is to design an appropriate control strategy
by which the agents in a same subgroup achieve the consensus performance while the
agents in different subgroups cannot achieve consensus as time goes on. Compared to the
conventional consensus control, the group consensus shows more flexibility in complex
practical applications due mainly to the existence of more than one common dynamics.
Recently, several research efforts have been devoted to the group consensus of MASs;
please see references [16–19] and papers cited therein.

In most papers mentioned above, the state evolution for each agent has been mod-
eled by a differential equation with integer-order derivative. Actually, fractional-order
differential equations show more advantages in reflecting the characteristics of heredi-
tary and the properties of memory for past processes (see [20–25]). Based on this reason,
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fractional-order dynamical systems have been widely introduced in several practical ap-
plications including electrical engineering, control systems, and robotics (see [26,27] and
references cited therein). For instance, the model-free adaptive sliding mode control of
fractional-order systems has been extensively investigated in [26,27]. Further, more and
more research attention has been focused on the consensus of fractional-order multi-agent
systems (FOMAS) [28–32]. For example, in [30], the leader–following consensus issue has
initially investigated for FOMAS with nonlinear dynamics. It is worth noting that the
intergroup balance condition is required for design of consensus protocol. Up to now,
there have been few papers published to consider the group consensus of FOMAS without
intergroup balance condition. Therefore, it is valuable to further investigate how to design
the consensus control protocol with no intergroup balance condition.

Generally speaking, agents often communicate with each other via a shared dig-
ital channel, which means the signal is sampled first before it is sent to neighboring
agents [33–39]. The traditional periodic triggering mechanism (PTM) is convenient to
operate but would inevitably result in the redundant consumption in energy and com-
munication resources. In order to decrease the waste of communication resources, the
event-triggering mechanism (ETM) has been proposed in the sampling-data control syn-
thesis. For implementing an ETM, a formula is firstly constructed to be the rule of event
generator. Then, the signal will be sampled and transmitted at which the event generator
is triggered. The parameters for event generator can be jointly designed with the control
gain so as to ensure a desired performance. Compared to the traditional PTM, it has
been proven that ETM can save the limited energy and communication resources more
effectively [40]. So far, a large number of research articles have been published to deal with
the event-triggering consensus control for MASs [41–43]. In specific, the ETM control has
been introduced into a class of MASs with fractional-order derivative in [41]. All agents
achieve the required consensus through only communicating with local neighbors at those
certain instants determined by pre-defined events. The combinational measurement and
the iterative event-triggered algorithm have been adopted in [42,43] to avoid continuous
monitor to agent states. It should be pointed out that those ETMs adopted in above papers
are static. That is to say, the parameters for triggering are given previously. In recent
times, several initial researchers have proven that the dynamics event-triggering mech-
anism (DETM) shows higher efficiency than the static one in decreasing the triggering
frequency [44–46]. Therefore, it is more practical to introduce the DETM to the issue of
group consensus control of FOMASs. However, as far as we know, little research attempts
have been devoted to the problem of group consensus of FOMAS via DETM, and thereby
the second motivation of the current research is to abridge such a gap.

Motivated by above discussion, we aims to design a novel control strategy within
DETM by which the leader–following group consensus of FOMASs can be achieved without
considering intergroup balance condition. To complete this work, we need to cope with
two main challenges. The first one is to design an effective DETM by taking use of the
state information of FOMASs and the auxiliary internal dynamic variables. The second
one is to solve the design issue for the group consensus protocols by which the required
performance can be maintained without the intergroup balance condition. The novelties of
this paper are outlined to be three aspects.

(1) By employing the related state information between each agent and its neighbors, a
control protocol is developed to guarantee the leader–following group consensus of
fractional-order multi-agent systems without intergroup balance condition.

(2) To reduce the frequency of state information updates, the DETM is firstly adopted to
the leader–following group consensus of fractional-order multi-agent systems.

(3) Several easy-to-check criteria are derived to assure the required consensus perfor-
mance and exclude the Zeno behavior.

Section 2 provides some preliminaries and the model description. Section 3 gives
several criteria by which the leader–following group consensus of FOMAS is achieved
and the Zeno phenomenon is excluded. In Section 4, an example and its simulations
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are illustrated for the effectiveness of results. Finally, some conclusions are presented in
Section 5.

Notations: Let Rn and Rm×n be the sets of n-dimensional vectors and m× n matrices,
respectively. |G| denotes the node number in graph G. The Kronecker product is repre-
sented as ⊗. M > 0 implies M is positive definite. Let λmin(A) (or λmax(A)) represent the
minimum (or maximum) eigenvalue of a matrix A. Let 1n stand for the n-dimensional
column vector with all components being 1.

2. Model Description and Preliminaries
2.1. Graph Theory

Assume all agents generate a graph G = {V , E ,A} with the adjacent matrix
A = (aij)N×N satisfying aij = aji 6= 0 for (i, j) ∈ E and aij = 0 otherwise. In this pa-
per, we suppose that there is no self-edges in G.

By splitting all nodes into S disjoint groups, we obtain G = ∪S
s=1Gs with Gi ∩ Gj = ∅

for i 6= j. In a same group, the relationship of interaction among agents is assumed to be
cooperative; that is to say, for each s (1 6 s 6 S), the weights aij > 0 when i, j ∈ Gs. It is
naturally noted that Gs(1 6 s 6 S) is the induced subgraph of G with associated Laplacian
matrix Ls = (lij)|Gs |×|Gs | in which lii = ∑j∈Gs ,j 6=i aij and lij = −aij for i 6= j. Obviously,
Ls ≥ 0 takes 0 as an eigenvalue with 1|Gs | being a eigenvector. We denote a block matrix L
in which S diagonal blocks are chosen to be L1, . . . ,LS and elements in other positions be
corresponding ones of −A.

We take Θ = {θ1, θ2, . . . , θS} as the class of leader agents. Qs = diag{a1θs , . . . , aNθs} is
for the communication between leaders and followers. To describe the overall communica-
tion topology, let us introduce a new node 0 and add the new edge between agent i and 0 if
∑S

s=1 aiθs > 0. The overall communication is finally characterized by

H = L+
S

∑
s=1

Qs =


H1 H12 · · · H1S
H21 H2 · · · H2S

...
...

. . .
...

HS1 HS2 · · · HS

, (1)

where Hs ∈ R|Gs |×|Gs |.

2.2. Fractional-Order System with Caputo-Type Derivative

The Grünwald–Letnikov, Riemann–Liouville, and Caputo are three common defini-
tions of fractional-order derivatives. Here, we consider the Caputo derivative.

Definition 1 ([20]). For a positive scalar 0 < α < 1 and x(t) ∈ C1([t0,+∞),R), the derivative
of x(t) with order α is

C
t0

Dα
t x(t) =

1
Γ(1− α)

∫ t

t0

x′(τ)
(t− τ)α dτ,

where t > t0 and Γ(z) =
∫ ∞

0 e−ttz−1dt is Gamma function with variable z being a complex number
and satisfying the real part Re(z) > 0. For simplicity, C

t0
Dα

t x(t) , Dαx(t).

Remark 1. Caputo-type derivative plays a major role in modeling the fractional-order dynamical
systems. The main reason is that the initial value for Caputo-type fractional-order system can
usually be taken as the same form to systems with integer-order derivative. As such, Caputo-type
fractional systems have a broader application range.

Definition 2. The Mittag–Leffler function is

Eα,β(z) =
+∞

∑
j=0

zj

Γ(αj + β)
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where α > 0, β > 0, z ∈ C, Γ(·) is the Gamma function given in Definition 1. Particularly, if
β = 1, then Mittag–Leffler function degenerates to

Eα(z) = Eα,1(z) =
+∞

∑
j=0

zj

Γ(αj + 1)
.

For a fractional-order differential equation (FODE){
Dα p(t) = h(t, p(t)),

p(t0) = p0,
(2)

in which α ∈ (0, 1), the vector-value function h(t, p(t)) defined on [t0,+∞)×Rn is Lips-
chitz continuous. Let p̄ = 0 be an equilibrium point.

Definition 3 ([25] ML-stable). System (2) is Mittag–Leffler stable provided that there are positive
numbers λ, b and a nonnegative function m(x) > 0 such that

‖p(t)‖ 6
[
m(x0)Eα

(
−λ(t− t0)

α)]b,

in which m(x) satisfies |m(x)| ≤ m0‖x‖.

2.3. Model Description

Assume the dynamics of leader is governed through the Caputo-type FODE as follows

Dαxθs(t) = A f (xθs(t)), s ∈ {1, . . . , S} (3)

and the dynamics of follower is governed by

Dαxi(t) = A f (xi(t)) + Bui(t), i ∈ {1, . . . , N}, (4)

in which xθs(t) and xi(t) are the n-dimensional states of agents. ui(t) ∈ Rm stands for the
control input. A and B are matrices with appropriate dimensions. The overall communica-
tion matrix for (3) and (4) is H = L+ ∑S

s=1 Qs defined in (1).
Several assumptions are provided for developing the main result about consensus

control of FOMAS (3) and (4).

Assumption 1. There is a d > 0 such that f (x) satisfies

‖ f (v1)− f (v2)‖ 6 d ‖v1 − v2‖

for v1, v2 ∈ Rn.

Assumption 2. For any agent i, there is a path for reaching the corresponding leader θs, and
∑S

s′=1 aiθs′
> 0.

Assumption 3. For any i ∈ Gs and s′ 6= s, we assume that aiθs′
= −∑j∈Gs′

aij.

Remark 2. In [17], authors have required aiθs′
= 0 for any i ∈ Gs and s′ 6= s, namely, the

communication topology satisfies the intergroup balance condition. It is readily observed from
Assumption 3 that for i ∈ Gs, the total information from the other subgroup Gs′ is allowed to be
arbitrary constants, which includes the intergroup balance condition as its special case.
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Definition 4 ([37]). The FOMAS (3) and (4) is the leader–following group consensus under the
consensus protocol ui(t), if for any s ∈ {1, 2, · · · , S}, there exist positive numbers β, λ, and µ,
such that for i ∈ Gs and the corresponding leader agent θs

‖xi(t)− xθs(t)‖ 6 β
[
Eα

(
−λ(t− t0)

α)]µ, t > t0.

For the simplicity of representation, we introduce the following notations

x(t) =
[

xT
1 (t), xT

2 (t), . . . , xT
N(t)

]T
∈ RnN ,

x̄θs(t) =
[

xT
θs
(t), xT

θs
(t), . . . , xT

θs
(t)
]T
∈ Rn|Gs |,

x̄θ(t) =
[

x̄T
θ1
(t), x̄T

θ2
(t), . . . , x̄T

θS
(t)
]T
∈ RnN .

We obtain that {
Dα x̄θ(t) = (IN ⊗ A) f (x̄θ(t)),

Dαx(t) = (IN ⊗ A) f (x(t)) + (IN ⊗ B)u(t),
(5)

in which f (x) =
[

f (xT
1 ), f (xT

2 ), . . . , f (xT
N)
]T , u =

[
uT

1 , uT
2 , . . . , uT

N
]T

Denoting by ξ(t) = x(t)− x̄θ(t) the consensus error, we derive that

Dαξ(t) = (IN ⊗ A) f̃ (ξ(t)) + (IN ⊗ B)u(t), (6)

with f̃ (ξ(t)) = f (x(t))− f (x̄θ(t)).

Remark 3. According to Definitions 3 and 4, it is clearly seen that the leader–following group
consensus of FOMAS (5) can sufficiently be ensured by proving the global Miattag–Leffler stability
of consensus error system (6).

3. Main Results

In this section, by taking use of the related state between agents, we propose a dis-
tributed consensus protocol such that the group consensus is finally achieved for FO-
MAS (5). By introducing an internal dynamical variable generated from an auxiliary
fractional-order differential equation, the DETM is designed to dramatically reduce the
updating frequency of control signals. In addition, the Zeno phenomenon is fully excluded
in the triggering mechanism and the control gain matrix is finally derived via solving LMIs.

Let {ti
k | k ∈ Z+} represent the event-triggering instants, which is determined later.

We suppose that the follower agent i can communicate with its neighbors in a distributed
manner and can also receive the information from all leader agents θs at triggering instant
ti
k. As such, a control strategy ui(t) is designed to be

ui(t) = cKqi(ti
k), t ∈ [ti

k, ti
k+1),

qi(ti
k) = ∑

j∈Gs∪θs

aij

(
xj(ti

k)− xi(ti
k)
)
+ ∑

s′ 6=s
∑

j∈Gs′

aij

(
xj(ti

k)− xθs′
(ti

k)
)

, (7)

in which c is the coupling strength and K is the gain matrix to be designed in current work.

Remark 4. Owing to the coupling structure of MAS, the control protocol used in our paper depends
on the related state error between agent and its neighbors, which is different from the control of
isolated fractional order dynamic systems involved in [25,26]. In addition, the event-triggering
mechanism makes the control signal update in a aperiodic-sampling manner, which is distinguished
from the continuous-time adaptive control used in [25,26]. In this paper, the coupling strength c is
considered as the inherent link attribute between agents. Hence, we only need to design the gain
matrix K so as to guarantee the required consensus performance.
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For t ∈ [ti
k, ti

k+1), let ei(t) = xi(t)− xi(ti
k)−

[
xθs(t)− xθs(t

i
k)
]

be the measured error
between the follower agent i and its corresponding leader agent θs. The instants sequence
{ti

k| k ∈ Z+} is decided by the rule

ti
k+1 = inf

{
t > ti

k | ∆i(t) > ηi(t)
}

. (8)

where t0 = 0 and ∆i(t) = σi‖ei(t)‖2 − γi‖qi(ti
k)‖

2 with constants γi > 0 and σi > 0 are
triggering parameters. ηi(t) is the dynamic variable generated by an auxiliary FODE

Dαηi(t) = −πiηi(t)− ρi∆i(t), (9)

in which ηi(0) > 0, πi > 0, and ρi > 0.

Remark 5. The internal dynamic variable ηi(t) is generated by using fractional order differential
equation with the same order to MAS (5), which can provide a more natural and more accurate
reflection to the change of states.

For the aim of clarity, the block diagram of control loop is shown in Figure 1.

xθs(t
i
k)

xθs(t
i
k)

xθs(t
i
k)

xj(t
i
k)

xj(t
i
k)

xj(t
i
k)

xi(t
i
k)

xi(t
i
k)

xi(t
i
k)

xi(t
i
k) xi(t)

xi(t)

xi(t)

ηi(t)

ui(t)

Figure 1. Dynamic event-triggered control framework for FOMAS.

By letting e(t) =
[
eT

1 (t), eT
2 (t), . . . , eT

N(t)
]T , x(tk) =

[
xT

1 (t
1
k), xT

2 (t
2
k), . . . , xT

N(t
N
k )
]T ,

one obtains
e(t) = x(t)− x̄θ(t)− x(tk) + x̄θ(tk).

Recalling the definition of qi(ti
k) and denoting q(tk) = [qT

1 (t
1
k), qT

2 (t
2
k), · · · , qT

N(t
N
k )]T ,

we deduce that
q(tk) = (H ⊗ In)(x̄θ(tk)− x(tk)),

which, together with ξ(t) = x(t)− x̄θ(t), yields that e(t)− ξ(t) = x̄θ(tk)− x(tk) and

q(tk) = (H ⊗ In)(e(t)− ξ(t)). (10)

By combining with (7), it is noted that

u(t) = c(IN ⊗ K)(H ⊗ In)(e(t)− ξ(t)). (11)

By substituting (11) into (6), it is concluded the compact vector form for the consensus
error dynamics

Dαξ(t) =(IN ⊗ A) f̃ (ξ(t)) + c(H ⊗ BK)(e(t)− ξ(t)). (12)



Fractal Fract. 2023, 7, 268 7 of 18

The following lemma is proposed to illustrate the internal dynamic variable ηi(t)
remains positive for all t > 0 provided that the initial value ηi(0) is positive.

Lemma 1. If the prescribed scalars ηi(0) > 0, ρi > 0 and πi > 0, then for all t > 0, the internal
dynamic variable ηi(t) satisfies

ηi(t) > 0. (13)

Proof. It is not difficult to see ∪∞
k=0

[
ti
k, ti

k+1

)
= [0, ∞). As such, for any t > 0, there must

exist a k∗ ∈ Z+ such that t ∈
[
ti
k∗ , ti

k∗+1

)
. Considering the mechanism of event-triggering

strategy, it is noted that no event occurs between two consecutive instants ti
k∗ and ti

k∗+1.
Based on this reason, for t ∈ [ti

k∗ , ti
k∗+1), we conclude that

∆i(t) < ηi(t),

which further leads to
Dαηi(t) = −πiηi(t)− ρi∆i(t)

> −πiηi(t)− ρiηi(t)

> −(πi + ρi)ηi(t).

By letting pi = −(πi + ρi), it is readily deduced that

ηi(t) > ηi(ti
k)Eα

[
pi

(
t− ti

k

)α]
, t ∈ [ti

k, ti
k+1),

namely, for any t ∈ [ti
k, ti

k+1), we derive that

ηi(t) > ηi(0)

(
k

∏
j=1

Eα

[
pi(tj − tj−1)

α
])

Eα[pi(t− ti
k)

α].

By recalling the definition and properties of Mittag–Leffler function, one deduces
k

∏
j=1

Eα

[
pi(ti

j − ti
j−1)

α
]

is a positive constant, which together with ηi(0) > 0, further implies

ηi(t) > 0,

for any t ∈ [ti
k, ti

k+1). This completes the proof.

Remark 6. Obviously, when ηi(t) = 0, the triggering mechanism (8) reduces to the static one,
which is more conservative. To be specific, for any given instant ti

k, the next ti
k+1 determined by

the DETM (8) always larger than the one determined by the static ETM. In the proposed method,
the constant parameters are jointly designed with control gain K by using information of the
consensus error, which is similar to those static ETM adopted in [10,43,47]. However, the internal
dynamical variable ηi(t) is generated by a preset fractional-order differential equation, which makes
our method different.

Theorem 1. Let Assumptions 1–3 hold and c be provided. The system (6) is globally ML-stable via
the control protocol (7), if there exist two matrices P > 0 and K satisfying

Ψ = 2d(IN ⊗ PA)− 2c(H ⊗ PBK)

+ 2c
(

HHT ⊗ PBK(PT P)−1KT BT PT
)
+
(

HHT ⊗ In

)
< 0, (14)
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and the triggering parameters γi, ρi and σi satisfy

γi < min{ 1
ρi

,
σi
m1
}, (15)

with m1 = λmax
{

c
[(

IN ⊗ PT P
)
+
(

HHT ⊗ In
)]}

.

Proof. To address the ML-stability for the error (12), we take both the dynamical evolution
governed by (12) and the auxiliary dynamical variable generated by (9) into consideration
and thereby construct a function as follows

W(t) = V(ξ(t)) +
N

∑
i=1

ηi(t), (16)

with V(ξ(t)) = ξT(t)(IN ⊗ P)ξ(t). It is readily observed W(t) > V(ξ(t)) > 0 for all t > 0.
By employing Assumption 1, we calculate the derivative of V(ξ(t)) according to (12)

DαV(ξ(t)) 62ξT(t)(IN ⊗ P)Dαξ(t)

62ξT(t)[d(IN ⊗ PA)− c(H ⊗ PBK)]ξ(t) + 2c ξT(t)(H ⊗ PBK)e(t). (17)

Noting that 2xTy 6 xTQx + yTQ−1y for vectors x, y and Q > 0, it is seen that

2ξT(t)(H ⊗ PBK)e(t) 6 ξT(t)(HHT ⊗ PBK(PT P)−1KT BT PT)ξ(t) + eT(t)
(

IN ⊗ PT P
)

e(t). (18)

By substituting (18) into (17) and noting that constants c > 0, d > 0, we obtain that

DαV(ξ(t)) 6 2ξT(t)
[
d(IN ⊗ PA)− c(H ⊗ PBK) + c

(
HHT ⊗ PBK(PT P)−1KT BT PT

)]
ξ(t)

+ ceT(t)
(

IN ⊗ PT P
)

e(t)

6 2ξT(t)
[
d(IN ⊗ PA)− c(H ⊗ PBK) + c

(
HHT ⊗ PBK(PT P)−1KT BT PT

)]
ξ(t)

+ ceT(t)
(

IN ⊗ PT P
)

e(t)− qT(tk)q(tk) + qT(tk)q(tk). (19)

It follows from q(tk) = (H ⊗ In)(e(t)− ξ(t)) that

qT(tk)q(tk) 6 ξT(t)
(

HHT ⊗ In

)
ξ(t) + eT(t)

(
HHT ⊗ In

)
e(t). (20)

Combining (19) with (20), we have

DαV(ξ(t)) 6ξT(t)
[
2d(IN ⊗ PA)− 2c(H ⊗ PBK) + 2c

(
HHT ⊗ PBK(PT P)−1KT BT PT

)
+
(

HHT ⊗ In

)]
ξ(t) + ceT(t)

[(
IN ⊗ PT P

)
+
(

HHT ⊗ In

)]
e(t)− qT(tk)q(tk)

6− δξT(t)ξ(t) + m1eT(t)e(t)− qT(tk)q(tk). (21)

where−δ = λmax(Ψ) and m1 = λmax
{

c
[(

IN ⊗ PT P
)
+
(

HHT ⊗ In
)]}

. Taking the dynamic
event-triggering mechanism (9) into consideration, we derive that

DαW(t) = DαV(ξ(t)) +
N

∑
i=1

Dαηi(t)

6 −δξT(t)ξ(t)−
N

∑
i=1

πiηi(t) +
N

∑
i=1

(m1 − ρiσi)‖ei(t)‖2 +
N

∑
i=1

(ρiγi − 1)‖qi(tk)‖2. (22)
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According to inequality (15), one selects a scalar ιi ∈ (0, πi) satisfying m1−ρiσi
σi

< ιi <
1−ρiγi

γi
,

which together with (22), further implies that

DαW(t) 6 −δξT(t)ξ(t)−
N

∑
i=1

πiηi(t) +
N

∑
i=1

ιiσi‖ei(t)‖2 −
N

∑
i=1

ιiγi‖qi(tk)‖2

6 −δξT(t)ξ(t)−
N

∑
i=1

πiηi(t) +
N

∑
i=1

ιi
(
σi‖ei(t)‖2 − γi‖qi(tk)‖2). (23)

Noting that the event-triggering mechanism (8) indicates σi‖ei(t)‖2 − γi‖qi(tk)‖2 6
ηi(t) for all i, one obtains from (23) that

DαW(t) 6 −δξT(t)ξ(t) +
N

∑
i=1

ιiηi(t)−
N

∑
i=1

πiηi(t)

6 −δξT(t)ξ(t) +
N

∑
i=1

(ιi − πi)ηi(t). (24)

Let −δ1 = max{ιi − πi, (−δ/ρmax(P))} and we have −δ1 < 0. Thus, we obtain that

DαW(t) 6 −δ1

[
ξT(t)(IN ⊗ P)ξ(t) +

N

∑
i=1

ηi(t)

]
6 −δ1W(t), (25)

which further indicates

W(t) 6 W(t0)Eα

[
−δ1(t− t0)

α], t > t0.

Noting that

λmax(P)ξT(t)ξ(t) 6 V(ξ(t)) 6 W(t), (26)

it is readily observed that

‖ξ(t)‖2 6
W(t0)

λmax(P)
Eα

[
−δ1(t− t0)

α],
which further implies that

‖ξ(t)‖ 6 β
(
Eα

[
−δ1(t− t0)

α]) 1
2 , (27)

with β =
(

W(t0)
λmax(P)

) 1
2 . Therefore, the leader–following group consensus is guaranteed for

FOMASs (5) under the control protocol (7). Thus, the proof is competed.

Theorem 2. Let Assumptions 1–3 hold and c be given. The consensus error system (6) achieves
the global ML-stability by (7) if there are two matrices P̄ > 0 and Y satisfying

Ω =

 W H ⊗ BY H ⊗ P̄
∗ −2c(IN ⊗ In) 0
∗ ∗ −(IN ⊗ In)

 < 0. (28)

The triggering parameters γi, ρi and σi fulfill

γi < min{ 1
ρi

,
σi
m1
}, (29)
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with W = 2(IN ⊗ dAP̄) − 2c(H ⊗ BY) and m1 = λmax
{

c
[(

IN ⊗ PT P
)
+
(

HHT ⊗ In
)]}

.
Further, K can be designed as K = YP̄−1.

Proof. According to Schur Complement lemma, Ψ < 0 is equivalent to Ψ11 H ⊗ PBKP−1 H ⊗ In
∗ −2c(IN ⊗ In) 0
∗ ∗ −(IN ⊗ In)

 < 0, (30)

where Ψ11 = 2d(IN ⊗ PA)− 2c(H ⊗ PBK).
Multiplying (30) by diag

{
IN ⊗ P−1, IN ⊗ In, IN ⊗ In

}
from the left and right sides,

we have  Ω̃11 H ⊗ BKP−1 H ⊗ P−1

∗ −2c(IN ⊗ In) 0
∗ ∗ −(IN ⊗ In)

 < 0, (31)

with Ω̃11 = 2d(IN ⊗ AP−1)− 2c(H ⊗ BKP−1). Obviously, the term KP−1 in (31) is nonlin-
ear with respect to matrix variables, which indicates (31) cannot be solved by MATLAB LMI
toolbox directly. Based on this reason, we denote P̄ = P−1 and Y = KP̄ and thereby obtain
inequality (27). In other words, the LMI (27) is equivalent to inequality (14) in Theorem 1.
Thus, we infer that

‖ξ(t)‖ 6 β
(
Eα

[
−δ3(t− t0)

α]) 1
2 , (32)

with β =
(

W(t0)
λmax(P)

) 1
2 . Accordingly, we complete the proof.

Remark 7. It is observed from Theorem 2 that the control method shows some distribution char-
acteristics due mainly to the related state information between each agent and its neighbors. In
addition, the DETM provides more flexibilities to the control process with resources limitation. The
control gain matrix K can be designed by using linear matrix inequalities toolbox. Furthermore,
there are only two matrix variables P̄ and Y in LMI (28), which implies a lower computational
burden of our method.

Theorem 3. Let Assumptions 1–3 hold. For ETM (8) and (9), there exist constants

ζi = e
1
α ln

(
Γ(α+1)√γi
b√σi−a√γi

)
> 0 (33)

such that ti
k+1 − ti

k > ζi, which means the Zeno phenomenon is excluded.

Proof. According to (8), (9) and Lemma 1, we calculate the α-order derivative for
‖ei(t)‖ and yields

Dα‖ei(t)‖ 6 Dα‖xi(t)− xθs(t)‖
6 ‖A f (xi(t))− A f (xθs(t)) + cBKqi(ti

k)‖
6 ‖A f̃ (ei(t)) + cBKqi(ti

k)‖
6 ‖dA‖ ‖ei(t)‖+ ‖cBK‖ ‖qi(ti

k)‖
6 a‖ei(t)‖+ b‖qi(ti

k)‖, (34)

where a = ‖dA‖ and b = ‖cBK‖.
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It follows from ei(ti
k) = 0 that

ei(t) 6
1

Γ(α)

∫ t

ti
k

(
a‖ei(τ)‖+ b‖qi(ti

k)‖
)
(t− τ)α−1dτ

6
b‖qi(ti

k)‖
Γ(α + 1)

(t− ti
k)

α
+

1
Γ(α)

∫ t

ti
k

a‖ei(τ)‖(t− τ)α−1dτ. (35)

By recalling ETM, one induces ‖ei(ti
k)‖ = 0 and ‖ei(t)‖ 6 ‖ei(ti

(k+1)−
)‖ =

lim
t→ti

(k+1)−

‖ei(t)‖ for t ∈
[
ti
k, ti

k+1

)
. Thus, we have

ei(t) 6
b‖qi(ti

k)‖+ a‖ei(ti
(k+1)−

)‖

Γ(α + 1)
(t− ti

k)
α
, (36)

Let t approach ti
(k+1)−

in (36). We obtain

ei(ti
(k+1)−

) 6
b‖qi(ti

k)‖+ a‖ei(ti
(k+1)−

)‖

Γ(α + 1)
(ti

k+1 − ti
k)

α
. (37)

Hence, one has

‖ei(ti
(k+1)−

)‖ 6
b‖qi(ti

k)‖(t
i
k+1 − ti

k)
α

Γ(α + 1) + a(ti
k+1 − ti

k)
α

6
b‖qi(ti

k)‖(t
i
k+1 − ti

k)
α

Γ(α + 1)
, (38)

Noting that the auxiliary variable ηi(t) > 0, we conclude that (8) implies

σi‖ei(ti
(k+1)−

)‖2 − γi‖qi(ti
k)‖

2
> ηi(ti

(k+1)−
) > 0, (39)

which further yields √
γi
σi
‖qi(ti

k)‖ 6 ‖ei(ti
(k+1)−

)‖. (40)

By taking both (38) and (40) into consideration, we deduce that

√
γi
σi
‖qi(ti

k)‖ 6
b‖qi(ti

k)‖(t
i
(k+1)−

− ti
k)

α

Γ(α + 1) + a(ti
(k+1)−

− ti
k)

α , (41)

namely,

(ti−
k+1 − ti

k)
α >

Γ(α + 1)
√

γi
σi

b
>

Γ(α + 1)
√

γi

b
√

σi
> 0. (42)

By denoting

ζi = e
1
α ln

(
Γ(α+1)√γi

b√σi

)
, (43)

we derive that for any k ∈ Z+

ti
k+1 − ti

k > ζi > 0. (44)

In other words, there is no Zeno phenomenon for the ETM. The proof is complete.

4. An Example and Illustrations

In this section, the validity and flexibility of the proposed theoretical results is checked
by an instance. For convenience of analysis and simulation, we consider a FOMAS con-



Fractal Fract. 2023, 7, 268 12 of 18

sisting of eight agents (two leaders and six followers), namely, leader agents θ1, θ2 and
follower agents i = 1, 2, · · · , 6. The undirected graph is provided as follows.

The model is taken to be (3) and (4) with parameters

A =

[
−1.9 1.2
0.9 −3.1

]
, B =

[
−1.5
−3.6

]
.

In this example, we choose α = 0.618 to be the order of Caputo-type fractional derivative.
Let vector function f (x(t)) = 0.065 sin(x(t)) be for the nonlinear dynamics of individual
agent, which obviously implies Assumption 1 holds with d = 0.073.

It is observed from Figure 2 that all follower agents are classified to two groups
such as V1 = {1, 2, 3, 4}, V2 = {5, 6} with leader agents θ1, θ2, respectively. Denote by G
the graph generated by the communication topology of six follower agents. It must be
emphasized that G is also divided into two subgraphs G1, G2. By taking the adjacency
weights and topology of subgraphs into consideration, we deduce that Assumptions 2 and
3 are satisfied.

Figure 2. The graph of communication topology for FOMAS.

Let us firstly consider the case of open-loop system, namely, all control input ui(t) = 0.
The initial values are taken to be x1(0) = [−7, 1]T , x2(0) = [1,−7]T , x3(0) = [6,−6]T ,
x4(0) = [−7, 2]T , x5(0) = [6,−1]T , x6(0) = [−1, 7]T and xθ1(0) = [9,−9]T , xθ2(0) =

[−1, 1]T , respectively. Under such a case, the state evolution for all agents of FOMASs
are drawn in Figure 3 that explicitly displays that the follower agents in the same group
cannot follow the corresponding leader agent. Hence, the required group consensus is not
achieved ultimately.

By employing the weight parameters for every edge in graph G shown in Figure 2, it
is not difficult to obtain the weighted adjacency matrix A is described as

A =



0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 0 0 0 1
0 0 −1 −1 1 0

,

To facilitate the design of the consensus control protocol for each follower agents, we
calculate the block matrix L for the topology graph G to be
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L = D −A =



2 −1 −1 0 0 0
−1 2 0 −1 0 0
−1 0 0 0 0 1
0 −1 0 0 0 1
0 0 0 0 1 −1
0 0 1 1 −1 −1

,

At the same time, we note that the communication between leader agents θ1, θ2 and
follower agents are characterized by the following matrices

Q1 = diag{1, 2, 0, 0, 0, 2},
Q2 = diag{0, 0, 1, 1, 1, 0},

Figure 3. The evolution of states of leader xθs and follower xi with ui(t) = 0.

By introducing Ḡ to describe the total graph generated by all leader and follower
agents, we deduce that the communication topology of Figure 2 is characterized by the
weighted matrix as follows

H = L+ Q1 + Q2 =



3 −1 −1 0 0 0
−1 4 0 −1 0 0
−1 0 1 0 0 1
0 −1 0 1 0 1
0 0 0 0 2 −1
0 0 1 1 −1 1

.

For the aim of pushing all follower agents towards to their corresponding leaders, we
consider the distributed consensus protocol taking the form of (7). In specific, we take the
parameter c = 3 as the coupling strength for control input. According to Theorem 2, a sort
of solutions for (28) is derived as follows:

P̄ =

[
0.1973 0.0385
0.0385 0.2635

]
, Y =

[
−0.1352 −0.0483

]
.

As such, we obtain the control gain matrix to be

K =
[
−0.6683 −0.0853

]
.
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For the dynamic event-triggered mechanism (8), we choose a set of weight parameters
as σi = 0.95, γi = 0.23, πi = 0.45, and ρi = 0.52 for all i = 1, 2, · · · , 6. It is undoubt-
edly shown that the condition (29) holds. According to Theorem 2, the FOMAS will
finally achieve the leader–following group consensus using the distributed dynamic event-
triggering consensus control strategy (7). The simulations are presented in Figures 4–9.
Specifically, the dynamical evolution for agent states are shown in Figures 4–6, which show
that all 6 follower agents are divided into two groups and each follower agent in the same
group converges to its corresponding leader agent ultimately. The triggering sequences
are provided in Figure 7, which shows that the sampling frequency of the control signal is
considerably diminished for each follower agent while the desired group consensus perfor-
mance is still maintained. In particular, the dynamical evolution of consensus error vector
ξ(t) is presented in Figures 8 and 9. It is clearly seen that the consensus error system (6) is a
global Mittag–Leffler stability, which further implies the leader–following group consensus
of FOMAS. It should be pointed out that our method is also applicable to FOMAS with
more agents, which would be our future research topic.

Figure 4. The evolution of states of fractional-order multi-agents systems with times.
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Figure 5. The evolution of states of leader xθs1 and follower xi1.
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Figure 6. The evolution of states of leader xθs2 and follower xi2.
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Figure 8. The evolution of the states of consensus error ξi1.
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Figure 9. The evolution of the states of consensus error ξi2.

5. Conclusions

This paper focused on the group consensus for a class of FOMASs under DETM. In
the network, each follower agent has been assumed to belong to a certain subgroup with a
corresponding leader agent. The leaders may interact with followers in different subgroups.
By taking use of the relate state information between follower agents and its neighbors,
a general distributed control protocol has been proposed to force each follower agent to
approach its corresponding leader. By constructing an auxiliary FODE, the DETM has been
introduced for the aim of significantly diminishing the control transmission without loss of
the desired target. By employing the properties of fractional-order calculus and Lyapunov
direct method, some sufficient criteria have been established to analyze the stability of error
system and exclude the Zeno phenomenon in event-triggering mechanism. The gain matrix
and the triggering parameters have been co-designed for the control protocol by solving
LMIs. A numerical example and its simulations have been presented for supporting our
results. The theoretical finding in this paper can enrich theory of consensus control for
FOMASs. Moreover, the methodology proposed in this paper can also be used in practical
applications such as group control and formation regulation of intelligent vehicles. It should
be pointed out that the models considered in this paper are relatively simple and still differ
from some real systems with unknown nonlinearity and parameter uncertainty [48,49]. In
the near future, we would like to study the group consensus tracking for FOMASs with
general unknown nonlinearity and parameter uncertainty.
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