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Abstract: When an electro-optical tracking system (ETS) needs higher control precision, system
identification can be considered to improve the accuracy of the system, so as to improve its control
effect. The fractional system model of ETS can describe the characteristics of the system better
and improve the accuracy of the system model. Therefore, this paper presents a fractional system
identification algorithm for ETS that is based on an improved particle swarm optimization algorithm.
The existence of the fractional order system of ETS was verified by identification experiments, and
the fractional order system model was obtained. Under the same conditions, PI controllers were
designed based on a fractional order system and an integer order system, respectively. The results
verify the superiority of fractional order system in ETS.

Keywords: fractional system identification; particle swarm optimization; electro-optical tracking
system

1. Introduction

The electro-optical tracking system (ETS) is one of the critical pieces of equipment for
realizing the acquisition, tracking, and pointing functions. It is a high-precision tracking and
positioning device composed of the mechanical structure, photoelectric sensor, and control
technology, which plays a critical role in target recognition, navigation, and positioning, as
well as in aerospace, telescope systems, beam stability control, space optical communication,
and quantum communication, among other domains [1]. The composite axis tracking
system is an important part of the ETS, and the fast steering mirrors (FSMs) in the composite
axis structure can further suppress the residual of coarse tracking, while also providing
higher bandwidth and accuracy for the system, which is one of the key components of the
absolute tracking accuracy. As a result, the FSM platform control is critical in implementing
ETS’s high accuracy tracking and positioning capabilities [2]. With the advancement of
modern technologies, the demand for ETS equipment is increasing. In the realm of quantum
communication, the laser is sent from the satellite to the ground receiving device, and the
propagation distance can reach 2000 km. Therefore, the propagation process will inevitably
result in the loss of laser energy. In this scenario, to ensure that the receiver can receive
enough energy, the tracking error of the system must be very low, and the tracking accuracy
should reach the level of microradians [3,4]. Environmental conditions and control system
design are currently the most important elements influencing tracking accuracy. The prior
control model was relatively basic, with low accuracy, but it was unable to satisfy the
requirements of the current. At the moment, the ETS model-identification approach is
primarily based on frequency domain response data, with the curve fitting algorithm
used to identify [5,6]. Controlling an inaccurate model is relatively difficult. To fulfill the
ever-increasing model accuracy requirements, it is a necessary and crucial development
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direction to improve the identification and design of control systems while ignoring the
impact of environmental interference and noise [7,8].

At present, ETS model identification is typically an integer order model. When the
model’s order is fixed, the model’s correctness is mostly determined by the accuracy of the
coefficient of the transfer function derived by the identification algorithm. However, the
recent invention of fractional calculus gives a new method for system identification. The
fractional-order system is described by the fractional differential equation. The concept of
fractional calculus theory was first proposed in 1695 [9], but due to a lack of clear physical
meaning and the lack of matching solving tools, the application research on this theory has
been slow to develop. With the development of computer technology, the use of fractional
calculus has gradually permeated numerous engineering applications. The authors of [10]
mentioned that many systems in nature have the characteristics of a fractional system, so
for a system with fractional characteristics, the fractional mathematical model is preferable
to the integer mathematical model for describing system characteristics. Particularly in
the frequently used sector of motors, it appears that a fractional-order system can better
represent the features of RLC electronic devices [11]. Thus, many scholars have conducted
studies on the identification of fractional-order systems of various types of motors and
verified that the fractional order system model can better characterize a motor system’s
features [12]. The FSM platform in ETS is often powered by a voice coil motor, and its
motion performance is highly tied to the motor’s properties. The traditional integer-order
modeling method is used to model the fast mirror system, so the driving link is still
described by the integer-order equation, which cannot adequately explain the mechanical
and electrical features of the system. As a result, it is necessary to verify the existence
of the fractional characteristics in the ETS and to establish the fractional system model
of the ETS based on the fractional calculus theory so as to better characterize the system
characteristics, improve the system identification accuracy, and ultimately improve the
system control performance.

For fractional systems, numerous identification methods have been devised. The time
domain or the frequency domain can be used for parametric identification of fractional-
order systems [13–19]. In comparison to an integer-order system, a fractional-order system
needs to estimate the numerator and denominator polynomial coefficients, as well as iden-
tify the order coefficients, increasing the difficulty of the identification task. It is an efficient
method for converting an identification problem into an optimization problem. Some
scholars have used the particle swarm optimization algorithm to identify fractional-order
systems [20,21]. Unfortunately, in system identification, a large number of differential oper-
ations are required, which greatly limits the running speed of the optimization algorithm.
Because the ETS is easily affected by ambient elements such as location and temperature in
practical applications, and often loaded in the motion platform for use [22], it is frequently
required to precisely identify the model in time.

In this paper, an enhanced particle swarm optimization identification algorithm based
on a fractional model of ETS is proposed. This method makes use of the block pulse function
property to improve the efficiency of identification [23]. By enhancing the performance
index function of the particle swarm optimization algorithm, the algorithm’s computing
performance is considerably improved. Furthermore, when the identification errors of the
fractional order model are compared to those of the integer order model, the identification
accuracy of the fractional order model is clearly better than that of the integer-order system,
and the identification mean square error is reduced by 56.9%, proving the existence of the
ETS’s fractional order model. The PI controller is then developed using the fractional-order
system and the integer-order system, respectively, and the control impact is evaluated
on the actual platform. Lastly, it is demonstrated that a PI controller developed on a
fractional-order system can provide a greater control effect under the same open-loop
correction limitations. This demonstrates that using a fractional system model on the ETS
has more advantages, and it also serves as a foundation for the later design of a fractional
system-based controller. This paper’s primary contributions are as follows:
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(1) To address the issue of tracking precision being limited by the low accuracy of the
system model in the ETS, a fractional model of ETS is presented. Moreover, the fractional-
order system model is proved to be more accurate than the integer-order system model.

(2) To solve the problem that the present fractional model identification methodology
has a sluggish identification speed, an improved particle swarm optimization algorithm is
proposed, and the advantages of the method in running speed are proved by simulation.

(3) It is demonstrated that a fractional system model can have superior control perfor-
mance to an integer system model with the same crossing frequency and phase margin by
building a PI controller for fractional system model.

This paper is organized as follows: Section 2 discusses the mathematical and theoretical
tools used in this paper. Section 3 briefly introduces the ETS model. The improved
identification algorithm is shown in Section 4. Section 5 validates the algorithm’s operating
speed and identification accuracy using simulation and experimentation. Section 6 shows
the control impact of the actual platform. The seventh section is an article summary.

2. Mathematical Preliminaries
2.1. Definitions of Fractional Derivatives and Integrals

Fractional calculus is a generalization of integral calculus and is defined as follows [24]:

aDα
t =


dα

dtα , α > 0
1, α = 0∫ t

a ( dτ)−α, α < 0

(1)

where a and t are the limits and α is the order of the operation. Currently, there are several
different definitions of fractional calculus. Examples include Caputo definitions, G-L
definitions, R-L definitions, and so on [25]. Within the scope of this paper, these definitions
are equivalent, so we chose the definition of R-L to carry out fractional calculus, which is
defined as follows:

aDα
t f (t) =

1
Γ(n− α)

(
d
dt

)n ∫ t

a

f (τ)
(t− τ)α+1−n dτ (2)

where Γ(·) is Euler’s Gamma function and n− 1 < α < n, n ∈ N. The fractional integration
of R–L is given by

(Iα
a f )(t) =

1
Γ(α)

∫ t

a

f (τ)
(t− τ)1−α

dτ (3)

where t > a and α is the real positive integration order.

2.2. The Laplace Transform of Fractional Derivative

The Laplace transform is an important tool to describe fractional calculus. The Laplace
transform of the R-L fractional derivative is defined as [26]:

L{0Dα
t f (t)} = sαF(s)−

n−1

∑
k=0

sk
[

0Dα−k−1
t f (t)

]
t=0

(4)

Under zero initial condition, the Laplace transform of the fractional derivative is
simplified as

L{0Dα
t f (t)} = sαF(s) (5)

The Laplace transform of the fractional integral under zero initial condition is given as

L{Iα
0 f (t)} = 1

Sα
F(s) (6)
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2.3. Mathematical Description of Fractional Systems

For a continuous-time linear time-invariant system with input signal u(t) and output
signal y(t), the general form of the linear SISO system described by fractional differential
equation can be obtained by using fractional differential operators [27]

anDαn y(t) + an−1Dαn−1 y(t) + · · ·+ a0Dα0 y(t)
= bmDβm u(t) + bm−1Dβm−1 u(t) + · · ·+ b0Dβ0 u(t)

(7)

Among them, each order satisfies αn > αn−1 > · · · > α0, βm > βm−1 > · · · > β0.
When the initial conditions of input u(t) and output y(t) are all zero in system (7), the

transfer function expression of the system can be obtained by using the Laplace transform:

G(s) =
Y(s)
U(s)

=
bmsβm + bm−1sβm−1 + · · ·+ b0sβ0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (8)

3. ETS Model Analysis

The ETS based on the FSM is shown in Figure 1, composed of a two-dimensional
mirror, image detector, controller, digital signal processor, power drive amplifier, drive
motor, etc. The deflection direction of the mirror is adjusted through four motors to control
the beam deflection angle and then reflect the beacon light to the target detector. In Figure 2,
using the potential and torque balance equation, we can obtain [28]{

Ua = Ra Ia + La İa + Kb θ̇
Cm Ia = JL θ̈ + fm θ̇ + Kmθ

, (9)

where Ua, Ia, Ra, La, Kb, Cm, fm, and Km are voltage, current, resistance, inductance,
back EMF coefficient, torque coefficient, viscous friction, and spring stiffness of motor,
respectively. Considering that the armature inductance of the motor is relatively small, the
model is further simplified. If La ≈ 0, we can obtain{

Ua = Ra Ia + Kb θ̇
Cm Ia = JL θ̈ + fm θ̇ + Kmθ

(10)

Figure 1. Schematic diagram of ETS.
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Figure 2. Physical model structure of the controlled plant.

The corresponding integer-order transfer function can be given as follows:

Gio(s) =
k

s2 + as + b
(11)

where a = Ra fm+KbCm
JLRa

,b = Km
JL

and k = Cm
JLRa

. In [11], the results show that different
arrangements of RLC (Resistance inductance and capacitance) devices may lead to non-
integer behavior. Therefore, considering the fact that the electrical characteristics of the
capacitor and inductor are fractional, the order of the system should be replaced by a
fractional order:

G f o(s) =
k

sα + asβ + b
(12)

where α and β are any real numbers greater than 0. We thereby obtain the fractional model
of the ETS. When we obtain the integer order model (11) and fractional order model (12),
we can find that model (11) is a special case of model (12). The model (11) has a fixed order
and simple form and few parameters to be identified. The order of model (12) is not fixed,
the form is complex, and more parameters need to be identified, but this also improves
the granularity and freedom of identification. The fractional-order model (12) can describe
the characteristics of ETS more accurately than the integer-order model (11), since this
fractional-order feature in model (12) is closer to the nature of the components in ETS. In
order to solve the more difficult fractional system identification problem, we propose a
new optimization algorithm method in the next section.

4. Improved Particle Swarm Optimization Algorithm
4.1. Particle Swarm Optimization Algorithm

Particle swarm optimization, which was developed in 1995 [29], can be used to find
nonlinear fractional-order systems. In particle swarm optimization, each particle remem-
bers its own previous best value, as well as the best value in its neighborhood, and uses the
most successful information to improve itself, with high storage capacity and efficiency.
Particle swarm optimization has three characteristics, namely fitness, position, and speed.
The fitness value is used to assess particle quality.

Each particle in M-dimensional space represents the point at the intersection of all
search dimensions. The particles in the population are transported to the optimal point by
adding velocity to their positions. The velocity of particles is updated by inertia, cognition,
and society. The inertial component simulates the particle’s previous inertial behavior;
the birds’ memory of their previous best position is modeled by a cognitive component
model; the birds’ memory of the best position in the particle is modeled by the social
component; and the particle moves through the M-dimensional search space until it finds
the best solution.

The velocity update equation is
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V im = wV im + c1r1(Pim − X im) + c2r2
(
Pgm − X im

)
(13)

The position update equation is

X im = X im + V im (14)

where Vim, Xim is the velocity and position of the number i particle in m-dimensional space;
w is inertial weight; c1 and c2 are weighted coefficients; Pim is the optimal position for the
individual particles; Pgm is the optimal particle in the population; m is the dimension of
optimization problem; r1 and r2 are two independently generated uniformly distributed
random numbers within the range of [0, 1].

After setting the operating environment of the particle swarm optimization algorithm,
we can use the following performance index function to identify the fractional-order system:

J =
1
L

L

∑
t=1

[y(t)− ŷ(t)]2 (15)

y(t) is the time domain output data of the measured system, ŷ(t) is the time domain system
estimate output data, and L is the number of data point used for the identification. The
time domain performance index function J reflects the quality of the identification results.
According to Equation (12), when identifying the ETS, the parameters to be identified in J
include the fractional order and the coefficient of the system model. In order to improve
the running speed of the algorithm, we will improve the performance index function in the
next subsection of the article.

Remark 1. J is a performance index function in the form of mean square error, which can reflect
the difference between the estimated value and the real value. In the identification process, a smaller
J value represents a better identification effect [30].

4.2. Block Pulse Functions

The block pulse functions belong to a family of piecewise orthogonal functions. They
are defined over the time interval [0, T] as follows:

ψi(t) =
{

1, i−1
M T ≤ t < i

M T
0 elsewhere

(16)

where i = 1, . . . , M, and M is the number of elementary functions. Any function that is
absolutely integrable on the interval [0, T] can be written as follows:

f (t) ∼= fTψ(M)(t) =
M

∑
i=1

fiψi(t) (17)

where fT = [ f1, f2, . . . , fM] is the coefficient vector defined as

fi =
M
T

∫ T

0
f (t)ψi(t)dt =

M
T

∫ iT/M

(i−1)T/M
f (t)ψi(t)dt (18)

ψT
(M)(t) = [ψ1(t), ψ2(t), . . . , ψM(t)] is the block pulse basis functions vector (T denotes the

transpose). Therefore, we can rewrite Equation (3) in the form of a block pulse function:(
Iα
0 ψ(M)

)
(t) =

1
Γ(α)

∫ t

0
(t− τ)α−1ψ(M)(τ)dτ

=
1

Γ(α)
tα−1 ∗ ψ(M)(t),

(19)

where ∗ denotes convolution. After some manipulations, Equation (19) can be written in a
matrix form:
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(
Iα
0 ψ(M)

)
(t) ≈ Fαψ(M)(t), (20)

where Fα is called the generalized operational matrix of fractional integral [23], which is
given by

Fα =

(
T
M

)α 1
Γ(α + 2)



f1 f2 f3 . . . fM
0 f1 f2 . . . fM−1
...

. . . f1 . . . fM−2
...

. . . . . .
...

0 . . . . . . 0 f1


M×M

, (21)

where f1 = 1, fp = pα+1 − 2(p− 1)α+1 + (p− 2)α+1 . Using Equation (21), the fractional
integral of any absolutely integrable function f (t) can be written as

(Iα
0 f )(t) ∼= fTFαψ(M)(t) (22)

In this way, the original integral operation is converted to a matrix algebra operation,
so the amount of computation is significantly reduced. In the next section, we will construct
the performance index function in the optimization algorithm by such an operation.

4.3. The Performance Index Function Based on Block Pulse Functions

The transfer function of a fractional-order system such as Equation (12) can be gener-
alized as follows:

G(s) =
Y(s)
U(s)

=
bmsβm + bm−1sβm−1 + · · ·+ b0sβ0

ansαn + an−1sαn−1 + · · ·+ a0Sα0
(23)

where αi and β j are arbitrary positive real numbers, U(s) and Y(s) are the input and output
of the system, respectively. The goal of fractional-order system identification is to estimate
the system parameters ai, bj, and the fractional differential orders αi and β j according to
the measured input and output data. First of all, dividing sαn both in numerator and
denominator, one can obtain

G(s) =
Y(s)
U(s)

=
bmsβm−αn + bm−1sβm−1−αn + · · ·+ b0sβ0−αn

an + an−1sαn−1−αn + · · ·+ a0sα0−αn
(24)

Applying Equation (22) to the system input and output, one can obtain

(Iα
0 y)(t) ∼= YTFαψM(t) (25)

Iα
0 u(t) ∼= UTFαψM(t) (26)

Therefore, Equation (24) can be expressed as

YTDψM(t) = UTNψM(t), (27)

where D =
(
an I + an−1Fαn−αn−1 + · · ·+ a0Fαn−α0

)
,

N =
(
bmFαn−βm + bm−1Fαn−βm−1 + · · ·+ b0Fαn−β0

)
. According to Equation (27), the

vector Y can be expressed as

YT = UTND−1 (28)

On the other hand,

y(t) = YTψM(t) (29)

Substituting Equation (28) into Equation (29), one can obtain
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y(t) = UTND−1ψM(t) (30)

According to Equation (30), we change the calculation method of output signal y(t)
from differential calculation to algebraic operation, which greatly improves the efficiency of
calculation. The matrix ND−1 contains the coefficients and fractional orders of the system,
which makes it easy to construct the identification algorithm.

Let âi, b̂j, α̂i and β̂ j be the estimation of ai, bj, αi and β j , respectively. According to
Equation (24), the operational matrix representation of the estimated system output can be
written as:

ŷ(t) = UTN̂D̂−1ψM(t) (31)

where N̂ and D̂ are the estimations of matrices N and D. By substituting Equation (31) into
Equation (15), we obtain the new form of the performance index function. The performance
index function rewritten based on the block pulse function will greatly improve the running
speed of the particle swarm optimization algorithm, which will be verified by simulation
in the next section.

5. ETS System Identification Based on BPF-PSO

In this section, the BPF-PSO method will be utilized to determine ETS based on FSM.
Because fractional calculus is an extension of integer calculus, system identification will be
performed on the experimental platform’s input and output data by setting the range of
parameters to generate the fractional and integer models of the system, respectively. Thus,
the two models’ accuracies can be compared.

5.1. Experimental Apparatus

The FSM-based electro-optical tracking device is typically a two-axis system. Because
of the symmetry of the two axes, only one of them was employed for analysis in the
experiment. Figure 3 shows a laser light installed on a stable platform to imitate a moving
target. A voice coil motor propels the platform. The laser light is reflected to the position-
sensitive detector (PSD) by the mirror. PSD can directly output positional digital signals. In
this system, the control board used was PC104LX3073 (Shenlanyu Technology Co., LTD.,
Shenzhen, China), on which the real-time operating system VxWorks was installed. In the
experiment, the sampling rates of all the sample sensors were 5000 Hz.

Figure 3. Experimental apparatus. The light travels along the red dotted line path in the figure and is
reflected by the mirror before being collected by the PSD.
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5.2. Running Speed Verification

As can be seen from Equation (14), the number of elementary functions (M) is the
main factor affecting the calculation speed. Moreover, when M is close to the number of
sample points, the fractional-order integral calculation function rewritten by the block pulse
function approximates the original function. We set different M values for the following
fractional-order system and verified the identification results.

G(s) =
Y(s)
U(s)

=
0.8s1.2 + 2

1.1s1.8 + 0.8s1.3 + 1.9s0.5 + 0.4
(32)

During identification, the actual number of output data in the time domain is 48,000.
The number of particles in the population is 50, Imax = 10, 000, wmax = 0.9, wmin = 0.1,
c1 = c2 = 2. In the experiments involved in this paper, the algorithms were run on a
computer with 16G RAM. Table 1 shows the identification accuracy and time at different M.

Table 1. Influence of different M values on identification time and accuracy.

M Time/s J

50 36.929 1.5000× 10−3

100 56.954 4.6288× 10−4

200 88.505 1.8083× 10−4

400 122.903 1.0553× 10−4

800 193.838 8.5821× 10−5

1600 989.030 8.2749× 10−5

It can be seen that when M increases, the accuracy of identification is constantly
improved, but more time is spent. It can be predicted that when M approaches 48,000,
in other words, when the ordinary performance index function is used instead of the
performance index function based on the block pulse function, the identification time
will be greatly increased. Therefore, in the actual engineering environment, the selection
of appropriate M can not only meet the accuracy requirements of identification but also
greatly reduce the time cost of identification.

5.3. ETS Identification

The final value of step signal was set as 500 arcsec for the experiment, and 4000 data
points, namely 0.8 s of data, were collected after the experiment. The results are shown in
Figure 4.

Figure 4. ETS open-loop step response output obtained on the experimental platform.
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The system model we need to identify is as follows:

G(s) =
b

a2sα2 + a1sα1 + a0
(33)

There are six unknown parameters in this model, which are α2, α1, a0, a1, a2, and b.
Therefore, the dimension of each particle is 6. The basis function M of the block pulse
function is set to 500, the number of particles in the population is 50, Imax = 10,000,
wmax = 0.9, wmin = 0.1, and c1 = c2 = 2. The minimum value of the performance index
function Jmin = 7.1785 was obtained using Matlab software simulation, and the parameters
of ETS fractional system model are shown in Table 2.

Table 2. Parameter identification results of the fractional-order system.

α2 α1 a2 a1 a0 b Jmin

1.99 0.97 0.0009988 0.005014 0.04895 0.06489 7.1785

Therefore, we obtain the following fractional system model:

G f (s) =
0.06489

0.0009988s1.99 + 0.005014s0.97 + 0.04895
(34)

The fitting result is shown in Figure 5.

Figure 5. Fractional order system fitting.

Next, we fixed the order of the system to α2 = 2 and α1 = 1 to ensure that other
parameters remain unchanged and were identified again to obtain the integer order system
model of the system. In this case, Jmin = 16.6514, and the parameters of the integer order
system are in Table 3.

Table 3. Parameter identification results of integer order system.

α2 α1 a2 a1 a0 b Jmin

2 1 0.0009849 0.005127 0.04961 0.06575 16.6514

The integer-order system model is as follows:
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Gi(s) =
0.06575

0.0009849s2 + 0.005127s + 0.04961
(35)

The fitting result is shown in Figure 6.

Figure 6. Integer-order system fitting.

Figure 7 shows the error analysis between the output of the two models and the output
of the real system. It can be clearly seen from the following error analysis figure that the
fitting effect of the fractional order system is better than that of the integer order system.
From the performance index function’s value, the fitting error of the fractional order system
is 56.9% lower than that of the integer-order system. It is proved that the fractional order
system (34) can be closer to the real characteristics of the system than the integer order
system (35).

Figure 7. Error comparison of two systems. Fractional systems have less error.
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6. Experimental Verification of the Control Performance
6.1. Tracking Performance of Fractional Order ETS

In this section, we verify the controlled effect of the object through the experimen-
tal platform. When considering system robustness and designing a robust controller, a
common method is to analyze robustness based on the frequency-domain response index.
Because the gain margin and phase margin reveal the relative stability of the system, they
can be used to analyze the robustness of the system [31]. On this basis, we designed the
controller based on the fractional-order system and integer-order system to ensure the
robustness of the system. Both PI controllers are designed under the same requirements
with respect to open-loop correction characteristics. The simplified control closed-loop
model is shown in Figure 8.

Based on the controlled object such as Equation (12), the amplitude and phase of the
controlled object are:

|G(jω)| = k√
A(ω)2 + B(ω)2

(36)

Arg[G(jω)] = arctan
(
− B(ω)

A(ω)

)
(37)

where:

A(ω) = ωα cos
(π

2
α
)
+ aωβ cos

(π

2
β
)
+ b (38)

B(ω) = ωα sin
(π

2
α
)
+ aωβ sin

(π

2
β
)

(39)

The form of PI controller is as follows:

C(s) = Kp

(
1 +

Ki
s

)
(40)

where, Kp and Ki are proportional gain and integral gain respectively. The amplitude and
phase of PI controller are as follows:

|C(jω)| = Kp

√
1 +

K2
i

ω2 (41)

Arg[C(jω)] = arctan
(
−Ki

ω

)
(42)

Therefore, given the open loop gain crossing frequency ωc and phase margin ϕm of
the system, the equations can be listed as follows:

|C(jωc)G(jωc)| = 1 (43)

Arg[C(jωc)G(jωc)] = −π + ϕm (44)

According to Equations (43) and (44), it can be solved as follows:

Ki = ωc tan
(

π − ϕm − tan−1 B(ωc)

A(ωc)

)
(45)

Kp =

√
ωc2

ωc2 + Ki
2 ·

√
A(ωc)

2 + B(ωc)
2

c
(46)

In this way, we get all the parameters of the PI controller. And then, we set the
system gain crossing frequency ωc = 10 rad/s (Hz is usually used as the frequency unit in
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engineering applications, rad/s is used here for the convenience of controller design) and
the phase margin ϕm = 45◦. Based on fractional order system Equation (34), we calculated
PI controller parameters as follows:

C f = 1.0264
(

1 +
1.0704

s

)
(47)

The open-loop frequency domain response is shown in Figure 9.

Figure 8. Closed-loop control model of ETS.

Figure 9. Open-loop frequency domain response of fractional order systems.

Based on integer order system Equation (35), we calculated PI controller parameters
as follows:

Ci = 1.0771
(

1 +
0.2386

s

)
(48)

The open-loop frequency domain response is shown in Figure 10.
With the final step response value set to 500 arcsec and the signal input frequency set

to 5000 Hz, the step response of the two systems is shown in Figure 11 and the control
signal is shown in Figure 12. It can be seen that the fractional-order system responds faster
than the integer-order system. Under the condition of no overshoot, the setting time of
the fractional order-system is 0.495s, and that of the integer-order system is 2.379s. This
is because Equations (38) and (39) are greatly simplified when the system takes integers
of that order. Therefore, the fractional-order system provides a higher degree of freedom
for the design of control parameters. Moreover fractional-order systems decay towards
an equilibrium point such as t−α, and hence the amplitude of oscillation is lesser and
smoother as compared to integer-order systems. This makes the fractional order system
better controlled than the integer-order system.
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Figure 10. Open-loop frequency domain response of integer order systems.

Figure 11. Step response of the fractional/integer-order system.

Figure 12. Control signal of fractional/integer-order system.
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6.2. Experimental Platform Control Effect

On the experimental platform shown in Figure 3, we set the final step response value
to 500 arcsec and the signal input frequency to 5000 Hz. The controllers designed based on
the two systems are verified on the platform. The step response effect is shown in Figure 13.

Figure 13. ETS responses using controllers based on fractional/integer-order models.

It can be seen that the actual experimental results basically accord with the simulation
results. The setting time of the fractional-order system is 0.4359s, and that of integer-order
system is 0.8718s. The fractional-order system shows advantages in control effect.

7. Conclusions

In this research, identification method for fractional systems for ETS is proposed.
The fractional-system-identification approach employs a hybrid of block pulse function
and particle swarm optimization. Using identification experiments, the fractional-order
system model of ETS was obtained, and it was demonstrated that the properties of the
fractional-order system is closer to the genuine properties of the system than the integer
order system on the same model scale. The control effect of a fractional-order system is
better than that of an integer order system under identical conditions, as demonstrated by
the design of a simple PI controller.
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