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Abstract: In this paper, we study some relations between different weights in the classes Bp, B∗p,Mp

andM∗p that characterize the boundedness of the Hardy operator and the adjoint Hardy operator.
We also prove that these classes generate the same weighted Lorentz space Λp. These results will
be proven by using the properties of classes Bp, B∗p, Mp and M∗p, including the self-improving
properties and also the properties of the generalized Hardy operatorHp, the adjoint operator Sq and
some fundamental relations between them connecting their composition to their sum.

Keywords: discrete operators; weighted norm inequalities; self-improving properties; Ap−weights;
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1. Introduction

In recent years, the study of regularity and boundedness of discrete operators on `p

analogs for Lp−regularity and boundedness has been considered by some authors; see, for
example, [1–3] and the references they cited. One of the reasons for this upsurge of interest
in discrete cases is due to the fact that the discrete operators may even behave differently
from their continuous counterparts, as is exhibited by the discrete spherical maximal
operator [4]. In some special cases, it is possible to translate or adapt the expressions and
results almost straightforwardly from the continuous setting to the discrete setting or vice
versa; however, in some other cases, that is far from trivial.

For example, in the simplest cases, `p−bounds for discrete analogs of classical opera-
tors, such as Calderón–Zygmund singular integral operators, fractional integral operators,
and the maximal Hardy–Littlewood operator follow from known Lp−bounds for the origi-
nal operators in the Euclidean setting, via elementary comparison arguments (see [5–7]).
However, `p−bounds for discrete analogs of more complicated operators are not implied
by results in the continuous setting, and moreover, the discrete analogs are resistant to con-
ventional methods. The main challenge here is to develop a unique approach, as there are
no general methods to study these questions. Instead these methods have to be purposely
built from the basic concepts and definitions. The discrete weighted Hardy type inequality
is given by (

∞

∑
r=1

u(r)

(
r

∑
s=1

f (s)

)q) 1
q

≤ C

(
∞

∑
r=1

v(r) f p(r)

) 1
p

, (1)

for nonnegative sequence { f (r)}∞
r=1, given nonnegative weights {u(r)}∞

r=1 and {v(r)}∞
r=1,

fixed parameters 0 < p, q < ∞ and a constant C > 0 that is independent of the sequence
{ f (r)}. The `p(v) is the Banach space of sequences defined on Z+ = {1, 2, . . . } and is
given by

`p(v) =

 f (r) : ‖ f (r)‖ :=

(
∞

∑
r=1
| f (r)|pv(r)

)1/p

< ∞

. (2)
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In the unpublished note [8] (problem 92.11), Heinig posed the question of characterizing
the weights for which the discrete inequality (1) holds. The answer to this question is
transacting the characterizations of the weights for nonincreasing sequences and for un-
restricted nonnegative sequences were presented by many authors; we refer the reader
to the papers [9–11] and the references cited therein. The characterizations of the weights
of integral inequalities similar to the inequality (1) for nonincreasing functions have been
established by several authors; see, for example, the papers [12–20] and the references
cited therein. The paper by Ariňo and Muckenhoupt [13] was the first paper to con-
sider this problem. In particular, the authors in [13] established the characterizations
of the weighted functions in connection with the boundedness of the Hardy operator
H f (t) = (1/t)

∫ t
0 f (x)dx, for t > 0 with equal weights on the space Lp

u(R+) subject to
the case when p = q > 1. In paper [21], the authors also considered this problem and
established some new characterizations of the weighted functions when 1 < p < q. The
problem when 0 < q < p < 1 has been studied by Carro and Lorente in paper [16] for
decreasing functions. Despite the variety of ideas related to weighted inequalities that
appeared with the birth of singular integrals, it was only in the 1970s that a better under-
standing of the subject was obtained and the full characterization of the weights w for
which the Hardy–Littlewood maximal operator

M f (x) := sup
x∈I

1
|I|

∫
I

f (y)dy, (3)

is bounded on Lp
w(R) by means of the so-called Ap-condition was achieved by Muckenhoupt

and published in 1972 (see [20]). Muckenhoupt’s result became a landmark in the theory of
weighted inequalities because most of the previously known results for classical operators
had been obtained for special classes of weights (such as power weights) and has been
extended to cover several operators, such as Hardy operator, Hilbert operator, Calderón–
Zygmund singular integral operators, fractional integral operators, etc. For more details
on the structure of the Muckenhoupt weights and the self-improving properties with the
applications of extrapolation theory, we refer the reader to the recent paper [22] and the
references cited therein.

In [21], the authors mentioned that the study of inequality (1) is not an easy task and
more difficult to analyze than its integral counterparts and discovered that the conditions
do not correspond, in any natural way, with those that are obtained by the discretization of
the results of functions but the reverse is true. This means that what goes for sums goes,
with the obvious modifications, for integrals that, in fact, proved the first part of the basic
principle of Hardy, Littlewood and Polya [23] (p. 11). Indeed the proofs for series translate
immediately and become much simpler when applied to integrals, but the converse is
not always true. The famous problem in the stability of discrete logistic equation and the
continuous equation reflects this idea. For example, in the continuous case, we know that
the equilibrium point is globally stable but in the discrete case, there is a local stability of the
fixed point for some values of the net growth rate, and then for different values, the solution
will be periodic of period two and then periodic of period four and periodic of period
eight, and then for a particular value the solution will be chaotic. This, in fact, explains the
differences between the study of continuous and discrete models and hence the authors
should be careful when translating the results from the continuous case to the discrete
analogy. This, in fact, motivated us to consider the inequality (1) and aim to develop a new
technique to prove some new equivalent relations between characterizations of weights,
use the new characterizations to formulate some conditions for the boundedness of the
discrete Hardy operator H(an) = (1/n)∑n

s=1 as, for n ∈ Z+ and prove some embedding
theorems for Lorentz spaces to show the applications of the obtained results.

In the following, for completeness, we give some brief definitions and basic relations
of the classes related to our results and show the motivation of our paper. Throughout
the paper, we assume that 1 < p < ∞, and the weights are positive sequences defined
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on I ⊂ Z+ = {1, 2, 3, . . . }, where I is of the form I = {1, 2, . . . , r} and v is a discrete
nonnegative sequence. Now, we give the definitions of the main two classes that have
been used to characterize the weights in connection with the boundedness of Hardy’s type
operators. A sequence v defined on I ⊆ Z+ is said to belong to the Muckenhoupt class Ap,
for p > 1, if there exists a constant A > 1 satisfying the inequality(

1
r

r

∑
s=1

v(s)

)(
1
r

r

∑
s=1

v
−1
p−1 (s)

)p−1

≤ A, for all r ∈ I. (4)

For a given exponent p > 1, we define the Ap(A)−norm of the discrete weight u by the
following quantity

[Ap(v)] := sup
r∈I

1
r

r

∑
s=1

v(s)

(
1
r

r

∑
s=1

v
1

1−p (s)

)p−1

,

The Hardy–Littlewood maximal operatorM f of the sequence f is defined by

(M f )(r) := sup
r∈I

1
r

r

∑
s=1

f (s). (5)

Observe that M is merely sublinear rather than linear, and it is a contraction on `∞.
The structure and the properties of the discrete Muckenhoupt weights, including the
self-improving properties with applications on extrapolation theory, have been stud-
ied in [24–28] and the references cited therein. The boundedness of the discrete Hardy–
Littlewood maximal operator was characterized in [29], and it has been proven thatM is
bounded on `p(v) if and only if v ∈ Ap.

A sequence v is said to belong to the classMp on the interval I ⊆ Z+ for p > 1 if there
exists a positive constant A > 1 such that the inequality(

∞

∑
s=r

v(s)
sp

)1/p( r

∑
s=1

v
−1
p−1 (s)

)(p−1)/p

≤ A, for all r ∈ I, (6)

holds. In [25], the authors proved that the Hardy operatorH, defined by the form

H f (r) =
1
r

r

∑
s=1

f (s),

is bounded on `p(v), for 1 < p < ∞ if and only if v ∈ Mp. A sequence v is said to belong
to the classM∗

p on the interval I ⊆ Z+ for p > 1 and p′ = p
p−1 is the conjugate of p, if there

exists a positive constant A > 1 such that(
r

∑
s=1

v(s)

)1/p( ∞

∑
s=r

v−p′/p(s)
sp′

)1/p′

≤ A, for all r ∈ I. (7)

In [25], the authors proved that the adjoint Hardy operator S , which is defined by the form

S f (r) =
∞

∑
s=r

f (s)
s

, for all r ∈ I,
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is bounded on `p(v), for 1 < p < ∞, if and only if v ∈ M∗
p. A sequence v is said to belong

to the class Bp in the interval I ⊆ Z+, for p > 0, if there exists a positive constant A > 1
satisfying the inequality

∞

∑
s=r

v(s)
sp ≤

A
rp

r

∑
s=1

v(s), for all r ∈ I. (8)

In [30], Heing and Kufner proved that the Hardy operatorH is bounded on `p(v)d; that is
H : `p(v)d → `p(v), and

∞

∑
r=1

v(r)

(
1
r

r

∑
s=1

f (s)

)p

≤ C
∞

∑
r=1

v(r) f p(r), (9)

for 1 < p < ∞ if and only if v ∈ Bp and limr→∞(v(r + 1)/v(r)) = c and ∑∞
r=1 v(r) = ∞.

In [21], Bennett and Grosse-Erdmann improved the result of Heing and Kufner by excluding
the conditions that have been posed on v. A discrete nonnegative sequence v is said to
belong to the discrete class B∗p of weights on the interval I ⊆ Z+, for p > 0, if there exists a
positive constant A > 1 such that the inequality

r

∑
s=1

v(s)
sp ≤

A
rp

r

∑
s=1

v(s), for all r ∈ I, (10)

holds.
A discrete nonnegative sequence v belongs to the discrete classM1 on the interval

I ⊆ Z+ if there exists a positive constant A > 0 such that the inequality

Sv(r) ≤ Av(r), for all r ∈ I. (11)

A discrete nonnegative sequence v belongs to the discrete classM∗
1 on the interval I ⊆ Z+

if there exists a positive constant A > 0 such that the inequality

Hv(r) ≤ Av(r), for all r ∈ I. (12)

A discrete nonnegative sequence v belongs to the discrete class B∗∞ on the interval I ⊆ Z+

if there exists a positive constant A > 1 such that the inequality

H(Hv(r)) ≤ AHv(r), for all r ∈ I. (13)

In [21], Bennett and Grosse-Erdmann developed a new approach to prove, and even to
formulate, their main results in order to improve the result of Heinig and Kufner by
excluding the conditions posed on v. They proved that (1) holds if and only if

A1 := sup
r≥1

(
∞

∑
s=r

v(s)
sp

)1/p
 r

∑
s=1

s
p

p−1 v(s + 1)

V
1

p−1 (s)V(s + 1)

(p−1)/p

< ∞, V(r) =
r

∑
s=1

v(s). (14)

Inequality (9) states that for a bounded sequence f on `p(v), 1 < p < ∞, the Hardy
operatorH( f ) is also bounded on `p(v), if and only if (6) holds. In [29], the authors proved
that the Hardy operator is bounded on `p(v) and (9) holds if and only if the discrete
Muckenhoupt condition

A2 := sup
r≥1

(
r

∑
s=1

v(s)

)1/p( r

∑
s=1

(v(s))
−1
p−1

)p−1/p

< ∞, (15)
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holds. In [25], the authors proved that inequality (9) holds for 1 < p < ∞ if and only if

A3 := sup
r≥1

(
∞

∑
s=r

v(s)
sp

)1/p( r

∑
s=1

(v(s))
−1
p−1

)(p−1)/p

< ∞. (16)

In [12] (Theorem 4.1), the authors studied the boundedness of the operator in two different
spaces with two different weights, u and v. They proved that if 1 < p ≤ q < ∞, and

A4 := sup
r≥1

(
∞

∑
s=r

u(s)

) 1
q
(

r

∑
s=1

(v(s))1−p∗
) 1

p∗

< ∞, (17)

then inequality (1) holds where p∗ = p/(p− 1). Note that when p = q, then condition (17)
becomes condition (6) with v(r) replaced by v(r)

rp . In [10,11], Bennett established two
more different characterizations of the weights u(r) and v(r) such that inequality (1) holds
when 1 < p ≤ q. He proved that inequality (1) holds for a nonnegative sequence f and
1 < p ≤ q < ∞, if and only if

A5 := sup
r≥1

(
r

∑
s=1

(u(s))1−p∗
)−1

p
(

r

∑
s=1

v(s)

(
s

∑
m=1

(v(m))1−p∗
)q) 1

q

< ∞, (18)

or

A6 := sup
r≥1

(
∞

∑
s=r

u(s)

)−1
q∗
 ∞

∑
s=r

v1−p∗(s)

(
∞

∑
m=s

v(m)

)p∗
 1

p∗

< ∞. (19)

Okpoti in [31] proved, for 1 ≤ p ≤ q < ∞, some characterizations of weights in (1) in
the forms:

A7(δ) := sup
r≥1

(
r

∑
s=1

v1−p∗(s)

) (δ−1)
p

 ∞

∑
s=r

u(s)

(
s

∑
m=1

v1−p∗(m)

) q(p−δ)
p


1
q

< ∞, (20)

for some δ, 1 < δ ≤ p. In [21], Bennett and Grosse-Erdmann proved that the two condi-
tions (8) and (14) are equivalent and in [31], the authors proved that the equivalence of
conditions (15)–(20).

Motivated by the results in [21,31], there is a main question: Is it possible to prove some
equivalence relations between the classes Bp, B∗p,Mp andM∗

p?
Our main purpose in this paper is to give the affirmative answer to this question by

using the notion of the weighted Lorentz space Λp(v). In the following, we give brief
definitions and some properties of the classical Lorentz and its discrete space. The classical
Lorentz space Lp,q(R+) for 1 < p < ∞ and 1 ≤ q < ∞ was introduced by G. Lorentz in [32]
and was defined by

Lp,q(R+) =

{
f : ‖ f ‖p,q =

(
q
p

∫ ∞

0
(t1/p f ∗(t))q dt

t

)1/q
< ∞

}
,

where f ∗ is the nonincreasing rearrangement of f . In [33], the authors proved that Lp,q is
a linear space and ‖.‖p,q is a quasi-norm if and only if 1 ≤ q < p ≤ ∞. Since then, there
has been a wide interest in studying the normability and duality properties of Lp,q(R+);
see [13,34–46] and the references cited therein. We shall denote by A = 2Z

+
, the power set

of Z+, and by µ, a counting measure. The notion Xd denotes the set of all nonincreasing
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and nonnegative sequences of X. The distribution sequence of any real sequence {v(r)}r≥1
is defined by

Dv(λ) = µ{r ∈ Z+ : |v(r)| > λ} = ∑
{r:|v(r)|>λ}

µ(r), for λ ≥ 0.

The nonincreasing rearrangement of v with respect to the counting measure µ is given by

v∗(r) = inf{λ > 0 : Dv(λ) ≤ r}, for r ≥ 0.

For E ⊂ Z+, and v(r) ≥ 0, Proposition 7.6.2 [47] implies, for r ∈ E, that

∑
r∈E

v(r) ≤
µ(E)

∑
r=1

v∗(r),

where the equality holds when v is a nonincreasing sequence. The classical Lorentz
sequence space `p,q(Z+) (or simply `p,q), for 1 < p < ∞ and 1 ≤ q < ∞ is defined by

`p,q(Z+) =

v : ‖v‖p,q =

(
∞

∑
r=1

(r1/pv∗(r))q 1
r

)1/q

< ∞

, (21)

where v∗ is the nonincreasing rearrangement of v, which is obtained by rearranging the
sequence |v(r)| in nonincreasing order. The Lorentz sequence space `p,q, 1 < p < ∞ and
1 ≤ q < ∞ is a linear space and ‖.‖p,q is a quasi-norm. Moreover `p,q, 1 < p ≤ ∞ and
1 ≤ q ≤ ∞, is complete with respect to the quasi-norm ‖.‖p,q and `p,q, 1 ≤ q ≤ p < ∞ is
a complete normed linear space with respect to ‖.‖p,q. The `p-spaces for 1 ≤ p < ∞ are
equivalent to the `p,p-spaces. The weighted Lorentz sequence space Λq(v) for 0 < q < ∞,
is defined by

Λq(v) =

 f : ‖ f ‖q,v =

(
∞

∑
r=1

v(r)( f ∗(r))q

)1/q

< ∞

, (22)

where f ∗ is the nonincreasing arrangement of f and v is a positive weight on Z+.
This paper is organized as follows: In Section 2, we present some basic lemmas that

prove the relation between the composition of operators Sq andHp and their sum Sq +Hp
and then use this to prove some properties of the classes of weights. These results are
essential in the proof of our main results. In Section 3, we prove the main results, which
give the equivalence relations between different weights in the classes Bp, B∗p,Mp and

M∗
p. We will also prove that although the two different weights v and

∼
v (not necessarily

monotone) do not belong to the same class, they generate the same weighted Lorentz space,
i.e., Λp(v) ' Λp(

∼
v). This paper will be ended with a conclusion.

2. Preliminaries and Basic Lemmas

In this section, we present the basic lemmas that prove the relation between the
composition of operators Sq and Hp and their sum Sq +Hp and then use them to prove
some properties of the classes of weights. Recall that two positive quantities A and B are
said to be equivalent, written A ' B, if there exist two constants c and C such that the
inequality cB ≤ A ≤ CB holds. Furthermore, A . B is satisfied if there exists a constant
C such that the inequality A ≤ CB holds. Clearly, the relation . is transitive; that is, if
A . B and B . C hold, then A . C also holds. Throughout this paper, we assume that
v is a positive real-valued weight defined on Z+ = {1, 2, . . . }. The forward difference
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operator, denoted by ∆, is defined by ∆u(s) = u(s + 1) − u(s). Define the generalized
Hardy operatorHp and adjoint Hardy operator Sq, for 0 ≤ p and q > 0, by

Hp f (r) :=
1

r1−p

r

∑
s=1

f (s)
sp , and Sq f (r) :=

1
r1−q

∞

∑
s=r

f (s)
sq . (23)

Clearly, for p = 0, the operator Hp gives the Hardy operator, and for q = 1, the
operator Sq gives the adjoint Hardy operator. We can easily prove for any δ > 0 that

Hδ f (r) =
1

r1−δ

r

∑
s=1

f (s)
sδ

=
1
r

r

∑
s=1

( r
s

)δ
f (s)

≥ 1
r

r

∑
s=1

f (s) = H0 f (r) = H f (r), (24)

and for all 1 < q ≤ p, we have

Sp f (r) = rp−1
∞

∑
s=r

f (s)
sp = rq−1

∞

∑
s=r

( r
s

)p−q f (s)
sq

≤ rq−1
∞

∑
s=r

f (s)
sq = Sq f (r). (25)

The next lemmas, which are adapted from [21,48,49], are essential in the proof of the
main results.

Lemma 1. Assume that υ and ω are two weights such that

r

∑
s=1

υ(s) '
r

∑
s=1

ω(s),

for every r ≥ 1, then for any nonincreasing sequence u, it satisfies that

∞

∑
r=1

u(r)υ(r) '
∞

∑
r=1

u(r)ω(r).

Lemma 2 (Fubini’s Theorem). Let u and v : Z+ → R be two nonnegative sequences, then

N

∑
r=1

v(r)

(
N

∑
s=r

u(s)

)
=

N

∑
r=1

u(r)

(
r

∑
s=1

v(s)

)
, (26)

and as N → ∞, we obtain the inequality

∞

∑
r=1

v(r)

(
∞

∑
s=r

u(s)

)
=

∞

∑
r=1

u(r)

(
r

∑
s=1

v(s)

)
. (27)

Lemma 3. Let v be a nonnegative weight and 1 ≤ p < ∞. Then v ∈ B∗∞ if and only if v ∈ B∗p.

Lemma 4. If v ∈ Bp, for 0 < p < ∞, then v ∈ Bp−ε for some 0 < ε < p.

Lemma 5. If v ∈ M∗
p and 1 ≤ p ≤ q, then v ∈ M∗

q and [v]M∗p ≤ [v]M∗q .

Lemma 6. If v ∈ Mp, and 1 ≤ p ≤ q, then v ∈ Mq.
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Lemma 7. LetHp and Sq be operators defined as in (23). Then for 0 ≤ p < q, the equivalence relations

Sq ◦ Hp '
(
Sq +Hp

)
andHp ◦ Sq '

(
Hp + Sq

)
,

hold.

Proof. For any nonnegative sequence u, and the definitions of the operators Sq and Hp
and by re-writing the summation (switching the order of summation), we have that(

Sq ◦ Hp
)

f (r) = Sq
(
Hp f (r)

)
= rq−1

∞

∑
s=r

1
sq

(
1

s1−p

s

∑
k=1

f (k)
kp

)

= rq−1
∞

∑
s=r

sp−q−1
s

∑
k=1

f (k)
kp

= rq−1
∞

∑
k=r

f (k)
kp

∞

∑
s=k

sp−q−1 + rq−1
r

∑
k=1

f (k)
kp

∞

∑
s=r

sp−q−1. (28)

Since q > p, then by employing inequality (Hardy and Littlewood [23])

γyγ−1(x− y) ≤ xγ − yγ ≤ γxγ−1(x− y), x ≥ y ≥ 0 and γ < 0 or γ ≥ 1, (29)

with γ = p− q < 0, we obtain

∞

∑
s=r

sp−q−1 ≥
∞

∑
s=r

1
p− q

∆sp−q =
1

q− p
rp−q, (30)

and also, by the fact that s ≥ (s + 1)/2 for all s ≥ 1 and employing (29), we have

∞

∑
s=r

sp−q−1 ≤
∞

∑
s=r

2−p+q+1(s + 1)p−q−1 ≤
∞

∑
s=r

2−p+q+1

p− q
∆sp−q

=
2−p+q+1

q− p
rp−q. (31)

By using (28) and (30), we obtain

(
Sq ◦ Hp

)
f (r) ≥ 1

q− p
rq−1

∞

∑
s=r

f (s)
sp sp−q +

1
q− p

rq−1
r

∑
s=1

f (s)
sp rp−q

=
1

q− p
rq−1

∞

∑
s=r

f (s)
sq +

1
q− p

rp−1
r

∑
s=1

f (s)
sp

=
1

q− p
[
Sq f (r) +Hp f (r)

]
,

and by using (28) and (31), we obtain

(
Sq ◦ Hp

)
f (r) ≤ 2−p+q+1

q− p
rq−1

r

∑
s=1

f (s)
sp rp−q +

2−p+q+1

q− p
rq−1

∞

∑
s=r

f (s)
sp sp−q

=
2−p+q+1

q− p
rp−1

r

∑
s=1

f (s)
sp +

2−p+q+1

q− p
rq−1

∞

∑
s=r

f (s)
sq

=
2−p+q+1

q− p
[
Sq f (r) +Hp f (r)

]
.
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This proves that Sq ◦ Hp & Sq +Hp and Sq ◦ Hp . Sq +Hp, which is equivalent to
Sq ◦Hp ' Sq +Hp. This is the required result. Furthermore, by the definitions of operators
Sq andHp and re-writing the summation (switching the order of summation), we have

(
Hp ◦ Sq

)
f (r) = Hp

(
Sq( f (r))

)
=

1
r1−p

r

∑
s=1

1
sp

(
sq−1

∞

∑
k=s

f (k)
kq

)

=
1

r1−p

r

∑
s=1

sq−p−1

(
∞

∑
k=s

f (k)
kq

)

=
1

r1−p

r

∑
s=1

f (s)
sq

(
s

∑
k=1

kq−p−1

)

+
1

r1−p

∞

∑
s=r

f (s)
sq

(
r

∑
k=1

kq−p−1

)
. (32)

We have two cases for p and q, which are q− p < 1 and q− p > 1. Let us first consider the
case q− p < 1, and by employing inequality (Hardy and Littlewood [23])

γyγ−1(x− y) ≥ xγ − yγ ≥ γxγ−1(x− y), x ≥ y ≥ 0, 0 < γ < 1, (33)

with 0 < γ = q− p < 1, we obtain

r

∑
s=1

sq−p−1 ≤
r

∑
s=1

1
q− p

∆(s− 1)q−p =
1

q− p
rq−p, (34)

and also we have
r

∑
s=1

sq−p−1 ≥ rq−p−1
r

∑
s=1

1 = rq−p. (35)

By using (32) and (34), we obtain

(
Hp ◦ Sq

)
f (r) ≤ 1

q− p
1

r1−p

r

∑
s=1

f (s)
sq sq−p +

1
q− p

1
r1−p

∞

∑
s=r

f (s)
sq rq−p

=
1

q− p
1

r1−p

r

∑
s=1

f (s)
sp +

1
q− p

rq−1
∞

∑
s=r

f (s)
sq

=
1

q− p
[
Hp f (r) + Sq f (r)

]
,

and by using (32) and (35), we obtain

(
Hp ◦ Sq

)
f (r) ≥ 1

r1−p

r

∑
s=1

f (s)
sq sq−p +

1
r1−p

∞

∑
s=r

f (s)
sq rq−p

=
1

r1−p

r

∑
s=1

f (s)
sp + rq−1

∞

∑
s=r

f (s)
sq

= Hp f (r) + Sq f (r).

This proves that Hp ◦ Sq . Hp + Sq and Hp ◦ Sq & Hp + Sq for 0 < q− p < 1, which is
equivalent to Hp ◦ Sq ' Hp + Sq. Now, if q− p > 1, by employing inequality (29) with
γ = q− p > 1, we obtain

r

∑
s=1

sq−p−1 ≥
r

∑
s=1

1
q− p

∆(s− 1)q−p =
1

q− p
rq−p, (36)
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and also, we have that
r

∑
s=1

sq−p−1 ≤ rq−p−1
r

∑
s=1

1 = rq−p. (37)

By using (32) and (36), we obtain(
Hp ◦ Sq

)
f (r)

≥ 1
q− p

1
r1−p

r

∑
s=1

f (s)
sq sq−p +

1
q− p

1
r1−p

∞

∑
s=r

f (s)
sq rq−p

=
1

q− p
1

r1−p

r

∑
s=1

f (s)
sp +

1
q− p

rq−1
∞

∑
s=r

f (s)
sq

=
1

q− p
[
Hp f (r) + Sq f (r)

]
,

and by using (32) and (37), we obtain

(
Hp ◦ Sq

)
f (r) ≤ 1

r1−p

r

∑
s=1

f (s)
sq sq−p +

1
r1−p

∞

∑
s=r

f (s)
sq rq−p

=
1

r1−p

r

∑
s=1

f (s)
sp + rq−1

∞

∑
s=r

f (s)
sq

= Hp f (r) + Sq f (r).

This proves that Hp ◦ Sq . Hp + Sq and Hp ◦ Sq & Hp + Sq for q − p > 1, which is
equivalent toHp ◦ Sq ' Hp + Sq. This is the required result. This completes our proof.

Lemma 8. Assume that f is a positive weight and 0 < δ < 1. Then inequality

H(Hδ f (r)) ≤ 1
δ
Hδ f (r), (38)

holds for all r ≥ 1.

Proof. By the definition of operatorHδ and by applying Fubini’s Theorem, we have that

H(Hδ f (r)) =
1
r

r

∑
s=1

1
s1−δ

s

∑
k=1

f (k)
kδ

=
1
r

r

∑
s=1

f (s)
sδ

r

∑
k=s

kδ−1,

and by employing inequality (33) with δ < 1, we obtain

H(Hδ f (r)) ≤ 1
r

r

∑
s=1

f (s)
sδ

r

∑
k=s

1
δ

∆(k− 1)δ

=
1
δ

1
r

r

∑
s=1

f (s)
sδ

[
rδ − (s− 1)δ

]
≤ 1

δ

1
r

r

∑
s=1

f (s)
sδ

rδ ≤ 1
δ

1
r1−δ

r

∑
s=1

f (s)
sδ

=
1
δ
Hδ f (r).

This is required inequality (38). This completes our proof.

3. The Relations between ClassesMp,M∗
p, Bp, B∗p and Λp(v)

In this section, we study the relation between classesMp,M∗
p, Bp and B∗p defined on

the space `p for a general weight v (not necessarily monotone) and the weighted Lorentz
space Λp(v).
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Lemma 9. Assume that v is a positive weight and 0 < δ < 1. If v ∈ B∗∞, then there exists a
constant C > 1 such that the inequality

H(Hδv(r)) ≤ CHv(r), (39)

holds for all r ≥ 1.

Proof. Assume that v ∈ B∗∞, then there exists a constant B such that

H(Hv(r)) ≤ BHv(r), for all r ≥ 1. (40)

By applying Hölder’s inequality twice with exponents 1/δ > 1 and 1/(1− δ), we have

r

∑
s=1
Hδv(s) =

r

∑
s=1

1
s1−δ

s

∑
k=1

v(k)
kδ

=
r

∑
s=1

1
s

s

∑
k=1

( s
k

)δ
vδ(k)v1−δ(k)

≤
r

∑
s=1

(
1
s

s

∑
k=1

s
k

v(k)

)δ(
1
k

s

∑
k=1

v(k)

)1−δ

≤
[

r

∑
s=1

1
s

s

∑
k=1

s
k

v(k)

]δ[ r

∑
s=1

1
s

s

∑
k=1

v(k)

]1−δ

=

[
r

∑
s=1

s

∑
k=1

v(k)
k

]δ[ r

∑
s=1

1
s

s

∑
k=1

v(k)

]1−δ

. (41)

By applying Lemma 3 for p = 1 and (40) into (41), we have

r

∑
s=1

(Hδv(s)) ≤
[

A
r

∑
s=1

1
s

s

∑
k=1

v(k)

]δ[ r

∑
s=1

1
s

s

∑
k=1

v(k)

]1−δ

= Aδ
r

∑
s=1

1
s

s

∑
k=1

v(k) ≤ AδB
r

∑
s=1

v(s),

or equivalently,
H(Hδv(r)) ≤ CHv(r),

where C = AδB > 1. This is the required result. The proof is complete.

Theorem 1. Let v be a positive weight and p ≥ 1. If v ∈ Bp, then there exists
∼
v ∈ Mp such that

v and
∼
v generate equivalent weighted Lorentz spaces.

Proof. Assume that v ∈ Bp, for p ≥ 1, then by Lemma 4, we have that v ∈ Bp−δ for some
0 < δ < p. Fix 0 < δ < p such that v ∈ Bp−δ(B) and define

∼
v(r) = rp−1−δ

∞

∑
s=r

v(s)
sp−δ

= Sp−δv(r). (42)
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Now, by using the fact that f (x) = x/(x + 1) is an increasing function for x ≥ 1 and
bounded below by 1/2, we have, by applying Fubini’s Theorem 2, that

Sp
∼
v(r) = rp−1

∞

∑
s=r

1
sp

(
sp−1−δ

∞

∑
k=s

v(k)
kp−δ

)

= rp−1
∞

∑
s=r

s−1−δ

(
∞

∑
k=s

v(k)
kp−δ

)

= rp−1
∞

∑
s=r

(
s

s + 1

)−1−δ

(s + 1)−1−δ

(
∞

∑
k=s

v(k)
kp−δ

)

≤ 21+δrp−1
∞

∑
s=r

(s + 1)−1−δ

(
∞

∑
k=s

v(k)
kp−δ

)

= 21+δrp−1
∞

∑
s=r

v(s)
sp−δ

(
s

∑
k=r

(k + 1)−1−δ

)
, (43)

and by employing inequality (29) with γ = −δ < 0, we obtain that

s

∑
k=r

(k + 1)−1−δ ≤
s

∑
k=r

−1
δ

∆k−δ =
−1
δ
(s + 1)−δ +

1
δ

r−δ ≤ 1
δ

r−δ. (44)

Then, by using (43) and (44), we have

Sp
∼
v(r) ≤ 21+δ

δ
rp−δ−1

∞

∑
s=r

v(s)
sp−δ

=
21+δ

δ
Sp−δv(r), (45)

that is
Sp
∼
v(r) ≤ C

∼
v(r), (46)

where C = 21+δ/δ > 1. For p = 1, inequality (46) reads S∼v(r) ≤ C
∼
v(r), which is the

M1 condition. If p > 1, then by using the nonincreasing property of ∑∞
s=r v(s)/sp−δ, we

have that (
r

∑
s=1

(∼
v(s)

)1−p′
)p−1

=

 r

∑
s=1

(
sp−1−δ

∞

∑
k=s

v(k)
kp−δ

)1−p′
p−1

=

 r

∑
s=1

s−1+δ/(p−1)

(
∞

∑
k=s

v(k)
kp−δ

)1−p′
p−1

≤
(

∞

∑
s=r

v(s)
sp−δ

)−1( r

∑
s=1

s−1+δ/(p−1)

)p−1

. (47)

If δ/(p− 1) < 1, by applying inequality (33) with 0 < γ = δ/(p− 1) < 1, we obtain

r

∑
s=1

s−1+δ/(p−1) ≤
r

∑
s=1

p− 1
δ

∆(s− 1)δ/(p−1) =
p− 1

δ
rδ/(p−1),

and if δ/(p− 1) > 1, by applying inequality (29) with γ = δ/(p− 1) > 1, we obtain

r

∑
s=1

s−1+δ/(p−1) ≤
r

∑
s=1

p− 1
δ

∆sδ/(p−1) =
p− 1

δ

[
(r + 1)δ/(p−1) − 1

]
≤ p− 1

δ
(r + 1)δ/(p−1) ≤ 2δ/(p−1) p− 1

δ
rδ/(p−1).
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Then (47) implies that(
r

∑
s=1

(∼
v(s)

)1−p′
)p−1

≤
(

p− 1
δ

)p−1
(

1
rδ

∞

∑
s=r

v(s)
sp−δ

)−1

=

(
p− 1

δ

)p−1(
r1−pSp−δv(r)

)−1
, (48)

when δ/(p− 1) < 1, and then we have that(
r

∑
s=1

(∼
v(s)

)1−p′
)p−1

≤ 2δ

(
p− 1

δ

)p−1
(

1
rδ

∞

∑
s=r

v(s)
sp−δ

)−1

= 2δ

(
p− 1

δ

)p−1(
r1−pSp−δv(r)

)−1
, (49)

when δ/(p− 1) < 1. From (46) and (48) together with (45), we can easily see that(
∞

∑
s=r

∼
v(s)
sp

)1/p( r

∑
s=1

(∼
v(s)

)1−p′
)(p−1)/p

≤A,

for δ/(p− 1) < 1, where the constant A is given by

A =

(
21+δ

δ

)1/p( p− 1
δ

)(p−1)/p
.

From (46) and (49) together with (45), we can easily see that(
∞

∑
s=r

∼
v(s)
sp

)1/p( r

∑
s=1

(∼
v(s)

)1−p′
)(p−1)/p

≤A,

for δ/(p− 1) > 1, where the constant A, in this case, is given by

A =

(
21+2δ

δ

)1/p( p− 1
δ

)(p−1)/p
.

This proves that
∼
v ∈ Mp. Now, by applying summation by parts formulae

r

∑
s=1

∆u(s)w(s + 1) = u(s)w(s)|r+1
s=1 −

r

∑
s=1

u(s)∆w(s), (50)

with w(s) = ∑∞
k=s v(k)/kp−δ and ∆u(s) = sp−1−δ, we obtain

r

∑
s=1

∼
v(s) =

r

∑
s=1

sp−1−δ

(
∞

∑
k=s

v(k)
kp−δ

)

=

(
∞

∑
k=s

v(k)
kp−δ

)(
s−1

∑
k=1

kp−1−δ

)∣∣∣∣∣
r+1

s=1

−
r

∑
s=1

(
− v(s)

sp−δ

)( s

∑
k=1

kp−1−δ

)

=

(
∞

∑
s=r+1

v(s)
sp−δ

)(
r

∑
s=1

sp−1−δ

)
+

r

∑
s=1

v(s)
sp−δ

(
s

∑
k=1

kp−1−δ

)

≥
r

∑
s=1

v(s)
sp−δ

(
s

∑
k=1

kp−1−δ

)
. (51)



Fractal Fract. 2023, 7, 261 14 of 19

If p− δ > 1, by applying inequality (29) with γ = p− δ > 1, then we have from (51) that

r

∑
s=1

∼
v(s) ≥

r

∑
s=1

v(s)
sp−δ

(
s

∑
k=1

1
p− δ

∆(k− 1)p−δ

)

=
r

∑
s=1

v(s)
sp−δ

(
sp−δ

p− δ

)
=

1
p− δ

r

∑
s=1

v(s),

and if p− δ < 1, since kp−1−δ ≥ sp−1−δ for all k ≤ s, then (51) becomes

r

∑
s=1

∼
v(s) ≥

r

∑
s=1

v(s)
sp−δ

(
sp−1−δ

s

∑
k=1

1

)
=

r

∑
s=1

v(s)
sp−δ

(
sp−δ

)
=

r

∑
s=1

v(s),

This proves that
r

∑
s=1

∼
v(s) &

r

∑
s=1

v(s).

Furthermore, by using Lemma 7 for p = 0 and q replaced by p− δ satisfying 0 < q− p and
since v ∈ Bp−δ, we see that there exists a positive constant C > 0 such that

r

∑
s=1

∼
v(s) =

r

∑
s=1

sp−1−δ

(
∞

∑
k=s

v(k)
kp−δ

)
= r
(
H0 ◦ Sp−δ

)
v(r)

≤ Cr
(
H0 + Sp−δ

)
v(r)

≤ C[V(r) + BV(r)] = C∗V(r),

where C∗ = (B + 1)/C. That is, ∑r
s=1
∼
v(s) . ∑r

s=1 v(s). Hence, we have that

r

∑
s=1

∼
v(s) '

r

∑
s=1

v(s),

and then by applying Lemma 1, we have that

∞

∑
r=1

(u∗(r))p∼v(r) '
∞

∑
r=1

(u∗(r))pv(r).

This proves that Λp(v) is equivalent to Λp(
∼
v), which is the required result. This completes

our proof.

Theorem 2. Let v be a positive weight and p ≥ 1. If v ∈ B∗∞, then there exists
∼
v ∈ M∗

p such that

v and
∼
v generate equivalent weighted Lorentz spaces.

Proof. Assume that v ∈ B∗∞. Now, fix 0 < δ < 1 and define

∼
v(r) = v(r) +Hδv(r) = v(r) +

1
r1−δ

r

∑
s=1

v(s)
sδ

.

Now, we have
H∼v(r) = H[v(r) +Hδv(r)] = Hv(r) +H(Hδv(r)),

and by using (24), (38) and the nonnegative nature of v, we have that

H∼v(r) ≤ Hδv(r) + CHδv(r) ≤ (1 +
1
δ
)Hδv(r) ≤ (1 +

1
δ
)
∼
v(r),
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where C ≥ 1. This proves that
∼
v ∈ M∗

1 , and then Lemma 5 implies that v ∈ M∗
p.

Furthermore, we have

r

∑
s=1

∼
v(s) =

r

∑
s=1

[v(s) +Hδv(s)] ≥
r

∑
s=1

v(s). (52)

That is ∑r
s=1
∼
v(s) & ∑r

s=1 v(s). Further, since v ∈ B∗∞, then by using (39), we have that

r

∑
s=1

∼
v(s) =

r

∑
s=1

[v(s) +Hδv(s)] =
r

∑
s=1

v(s) + rH(Hδv)(r),

≤
r

∑
s=1

v(s) + CrHv(r) = (1 + C)
r

∑
s=1

v(s).

That is, we have
r

∑
s=1

∼
v(s) .

r

∑
s=1

v(s), (53)

Then, from (52) and (53), we see that

r

∑
s=1

∼
v(s) '

r

∑
s=1

v(s),

holds for all r ≥ 1. Then by applying Lemma 1, we have that

∞

∑
r=1

(u∗(r))p∼v(r) '
∞

∑
r=1

(u∗(r))pv(r),

and then Λp(v) is equivalent to Λp(
∼
v), which is the required result. This completes

our proof.

Theorem 3. Let v be a positive weight and p ≥ 1. If v ∈ Bp ∩ B∗∞, then there exists
∼
v ∈

Mp ∩M∗
p such that v and

∼
v generate equivalent weighted Lorentz spaces.

Proof. Assume that v ∈ Bp ∩ B∗∞, then v ∈ Bp(B) and v ∈ B∗∞(C). Without loss of
generality, we choose 0 < δ < p such that δ ≤ p− 1, v ∈ Bp−δ(B) and define

∼
v(r) = Sp−δv(r) +Hδv(r).

Now, we have
Sp
∼
v(r) =

(
Sp ◦ Sp−δ

)
v(r) +

(
Sp ◦ Hδ

)
v(r), (54)

and by applying Lemma 7 for q− p = p− δ > 0, then (54) becomes

Sp
∼
v(r) ≤

(
Sp ◦ Sp−δ

)
v(r) +

2p−δ+1

p− δ

(
Sp +Hδ

)
v(r). (55)

By using inequality (25) for p− δ < p and inequality (45), then (55) becomes

Sp
∼
v(r) ≤ 21+δ

δ
Sp−δv(r) +

2p−δ−1

p− δ

(
Sp−δ +Hδ

)
v(r)

≤
(

21+δ

δ
+

2p−δ−1

p− δ

)(
Sp−δ +Hδ

)
v(r) = L

∼
v(r), (56)

where

L =
21+δ

δ
+

2p−δ−1

p− δ
> 1.
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If p = 1, then (56) proves that
∼
v ∈ M1. If p > 1, then by using Lemma 7 for

q− p = (p− δ)− δ ≥ 1− δ > 0, we have that

r

∑
s=1

(∼
v(s)

)−1/(p−1)
=

r

∑
s=1

(
Sp−δv(s) +Hδv(s)

)−1/(p−1)

≤
(

p− 2δ

2p−2δ−1

)−1/(p−1) r

∑
s=1

((
Sp−δ ◦ Hδ

)
v(s)

)−1/(p−1)

=

(
p− 2δ

2p−2δ−1

)−1/(p−1) r

∑
s=1

(
sp−δ−1

∞

∑
k=s

Hδv(k)
kp−δ

)−1/(p−1)

≤
(

p− 2δ

2p−2δ−1

)−1/(p−1)
(

∞

∑
s=r

1
sp−δ
Hδv(s)

)−1/(p−1) r

∑
s=1

s−1+δ/(p−1). (57)

Since δ ≤ p − 1, then by employing inequality (33) with 0 < γ = δ/(p − 1) < 1, we
have that

r

∑
s=1

s−1+δ/(p−1) ≤
r

∑
s=1

p− 1
δ

∆(s− 1)δ/(p−1) =
p− 1

δ
rδ/(p−1), (58)

By using (58) and (57) and using Lemma 7, we have that

r

∑
s=1

(∼
v(s)

)−1/(p−1)

≤
(

p− 2δ

2p−2δ−1

)−1/(p−1) p− 1
δ

rδ/(p−1)

(
∞

∑
s=r

1
sp−δ
Hδ(s)

)−1/(p−1)

=

(
p− 2δ

2p−2δ−1

)−1/(p−1) p− 1
δ

[
r1−p(Sp−δ ◦ Hδ

)
v(r)

]−1/(p−1)

≤ C∗
[
r1−p(Sp−δ +Hδ

)
v(r)

]−1/(p−1)
= C∗

[
r1−p∼v(r)

]−1/(p−1)
, (59)

where C∗ = p−1
δ 21−2δ/(p−1). Then (56) and (59) imply that(

∞

∑
s=r

∼
v(s)
sp

)1/p( r

∑
s=1

(∼
v(s)

)−1/(p−1)
)(p−1)/p

=
[
r1−pSp

∼
v(r)

]1/p
(

r

∑
s=1

(∼
v(s)

)−1/(p−1)
)(p−1)/p

≤
[
r1−pL

∼
v(r)

]1/p
(C∗)(p−1)/p

[
r1−p∼v(r)

]−1/p

= C∗∗,

where C∗∗ = L1/p(C∗)(p−1)/p. This proves that
∼
v ∈ Mp. Furthermore, by using the fact

that H = H0, applying Lemma 7 with q− p = p− δ > 0 and using inequalities (24) and
(38), then we have that

H∼v(r) = H
(
Sp−δv(r) +Hδv(r)

)
=

(
H0 ◦ Sp−δ

)
v(r) + (H ◦Hδ)v(r)

≤
(
H0 + Sp−δ

)
v(r) +

1
δ
Hδv(r)

≤
(
Hδ + Sp−δ

)
v(r) +

1
δ
Hδv(r) ≤ D

∼
v(r),
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where D = 1 + (1/δ). This proves that
∼
v ∈ M∗1 and then Lemma 5 implies that v ∈M∗p.

Finally, by the fact that v ∈ Bp−δ(B), v ∈ B∗∞(C) and inequality (39), then we have that

r

∑
s=1

∼
v(s) =

r

∑
s=1

(
Hδ + Sp−δ

)
v(s) = rH(Hδ)v(r) +

r

∑
s=1

sp−δ−1
∞

∑
k=s

v(k)
kp−δ

≤ CrHv(r) +
r

∑
s=1

B
s

s

∑
k=1

v(k) = CrHv(r) + BrH(Hv(r))

≤ CrHv(r) + BArHv(r) = (C + BA)
r

∑
s=1

v(s).

This proves that ∑r
s=1
∼
v(s) . ∑r

s=1 v(s). Furthermore, by using relation (24) and the fact
that v ∈ Bp−δ(B), we have that

r

∑
s=1

∼
v(s) =

r

∑
s=1

[
Sp−δv(s) +Hδv(s)

]
≥

r

∑
s=1

[
Sp−δv(s) +Hv(s)

]
=

r

∑
s=1

[
sp−δ−1

∞

∑
k=s

v(k)
kp−δ

+
1
s

s

∑
k=1

v(k)

]

≥
r

∑
s=1

[
sp−δ−1

∞

∑
k=s

v(k)
kp−δ

+
1
s

sp−δ

B

∞

∑
k=s

v(k)
kp−δ

]

= (1 +
1
B
)

r

∑
s=1

sp−δ−1

(
∞

∑
k=s

v(k)
kp−δ

)

≥ (1 +
1
B
)

r

∑
s=1

sp−δ−1

(
r

∑
k=s

v(k)
kp−δ

)
,

which by Fubini’s Theorem and inequality (29) with γ = p− δ > 1, implies that

r

∑
s=1

∼
v(s) ≥ (1 +

1
B
)

r

∑
s=1

v(s)
sp−δ

(
s

∑
k=1

kp−δ−1

)

≥ (1 +
1
B
)

r

∑
s=1

v(s)
sp−δ

(
s

∑
k=1

1
p− δ

∆(k− 1)p−δ

)

= (1 +
1
B
)

1
p− δ

r

∑
s=1

v(s).

This proves that
r

∑
s=1

∼
v(s) &

r

∑
s=1

v(s).

Hence ∑r
s=1
∼
v(s) ' ∑r

s=1 v(s). By applying Lemma 1, we have

∞

∑
r=1

(u∗(r))p∼v(r) '
∞

∑
r=1

(u∗(r))pv(r),

and then Λp(v) is equivalent to Λp(
∼
v), which is the required result. This completes

our proof.

4. Conclusions

In this paper, we were able to prove some equivalence relations between different
weights in the classes Bp, B∗p,Mp andM∗

p—classes that have been used in proving the
boundedness of Hardy’s operator and its adjoint form. We also proved that although the
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two different weights, v and
∼
v (not necessarily monotone), do not belong to the same class,

they generate the same weighted Lorentz space, i.e., Λp(v) ' Λp(
∼
v).
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