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Abstract: In this research, three numerical methods, namely the variational iteration method, the
Adomian decomposition method, and the homotopy analysis method are considered to achieve an
approximate solution for a third-order time-fractional partial differential Equation (TFPDE). The
equation is obtained from the classical (FW) equation by replacing the integer-order time derivative
with the Caputo fractional derivative of order η = (0, 1] with variable coefficients. We consider
homogeneous boundary conditions to find the approximate solutions for the bounded space variable
l < χ < L and l, L ∈ R. To confirm the effectiveness of the proposed methods of non-integer
order η, the computation of two test problems was presented. A comparison is made between the
obtained results of the (VIM), (ADM), and (HAM) through tables and graphs. The numerical results
demonstrate the effectiveness of the three numerical methods.

Keywords: fractional Fornberg–Whitham equation; approximate solution; partial differential equa-
tion; Riemann–Liouville derivatives; Caputo’s derivatives; variational iteration method; Adomian
decomposition method; homotopy analysis method

1. Introduction

The concept of fractional partial differential equations (FPDEs) has been the focus of
many studies and an essential topic in computational mathematics due to their various
applications in scientific fields. The fractional derivative allows for a more accurate descrip-
tion of the diffusion process, considering the effects of long-range interactions and memory
effects in most biological systems and phenomena in physics [1]. In recent years, researchers
have demonstrated that many phenomena are successfully described by mathematical
models of non-integer order using mathematical tools, for example, the Keller–Segel model
for chemotaxis [1], fractional Riccati differential equations [2], and diffusion wave equa-
tions [3,4]. The cost of solving large nonlinear systems and related large linear systems after
linearization can vary depending on various factors, including the complexity of the system
and the method used for solving the system. It is worth noticing that different discretization
methods for fractional diffusion equations (FDEs) have been proposed to solve a large
linear system. In [5], Donatelli et al. have studied the diffusion equation, which arises in
many applications that involves fractional derivatives in the case of variable coefficients
(FDE). The proposed method was based on spectral analysis and structure preserving pre-
conditioners for solving the (FDE). The method involves discretization in the space of the
fractional diffusion equation, which leads to a linear system with coefficient matrices having
a Toeplitz-like structure. In addition, they have shown that the variable coefficient matrix
sequence belongs to the generalized locally Toeplitz (GLT) sequences. In [6], Donatelli et al.
have implemented a finite volume (FV) method to discretize the space-fractional diffusion
Equation (SFDE) with variable coefficients and obtain a large linear system resulting in a
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sequence of coefficient matrices. The fractional derivative is considered in the Riesz-space
fractional derivative. They showed that the resulting sequence of coefficient matrices
belongs to the generalized locally Toeplitz (GLT) sequences. They also developed a good
preconditioner and multigrid method to efficiently solve the obtained linear system of
equations. In [7], Lin et al. developed fast algorithms for solving the linear systems that
arise from the discretized time-dependent space-fractional diffusion Equation (SFDE) with
non-constant coefficients. They also proved the convergence of two iteration schemes, one
pre-smoother and the other post-smoother. In [8], Bu et al. presented a numerical method
for solving a large linear system of the multi-term time-fractional advection–diffusion
Equation (MTADE) using the finite element multigrid method. The method is based on the
fractional derivative in the Riesz–Caputo sense, and the finite element approximation is
considered in the space direction and time direction, respectively. They also discussed the
stability and convergence of fully discrete schemes of (MTADE) in two situations.

The fractional derivative (FD) is even more significant in modeling real-life situations;
for example, the fractional partial nonlinear Fornberg–Whitham (FPNFW) equation is a
mathematical model that describes the evolution of nonlinear dispersive waves in fluid
dynamics and the behavior of waves in plasmas.

Consider the nonlinear time-fractional Fornberg–Whitham equation

ψ
η
ζ(χ, ζ)−ψχχζ(χ, ζ) +ψχ(χ, ζ) +ψ(χ, ζ)ψχ(χ, ζ)−ψ(χ, ζ)ψχχχ(χ, ζ)− 3ψχ(χ, ζ)ψχχ(χ, ζ) = 0 (1)

where ψ(χ, ζ) is the fluid velocity, 0 < η ≤ 1 is the order of fractional equation, ζ > 0 is the
time, and χ is the spatial coordinate. In addition, when η = 1, Equation (1) is reduced to the
original Fornberg–Whitham equation, which was first proposed by Whitham in 1967 for
studying the qualitative behavior of wave breaking [9]. In 1978, Fornberg and Whitham [10]

obtained a peaked solution of the form ψ(χ, ζ) = Kexp
(
− 1/2|χ− 4ζ/3|

)
, where K is an

arbitrary constant. In the literature, several mathematical methods have been implemented
to obtain the approximate solutions of fractional differential equations, such as the Adomian
decomposition method (ADM), variational iteration method (VIM), homotopy analysis
method (HAM), homotopy perturbation method (HPM), Hermite wavelet method (HWM),
optimal homotopy asymptotic method (OHAM), Shehu decomposition method (SDM),
variational iteration transform method (VITM), Laplace decomposition method (LDM),
direct power series method (DPSM), and others.

In [11], Kumar et al. solved the time-fractional Fornberg–Whitham equation involv-
ing the Atangana–Baleanu (AB) fractional derivative of non-integer order of the function
ψ(χ, ζ) by using the Laplace decomposition method (LDM). This method is a mix of Ado-
mian’s decomposition method and the Laplace transform approach. The existence of the
solution and the uniqueness of the solution of the nonlinear Fornberg–Whitham equation
of fractional order were examined. In [12], Gupta and Singh used the homotopy pertur-
bation method (HPM) to find the approximate numerical solution of the time-fractional
Fornberg–Whitham equation where the derivatives are taken in the Caputo sense. In [13],
Merdan et al. implemented a differential transformation method (DTM) to obtain an
approximate analytical solution of the fractional Fornberg–Whitham equation. In [14],
Alderremy et al. used the natural transform decomposition method (NTDM) to obtain the
approximate numerical solution of the fractional Fornberg–Whitham equation in view of
the Caputo operator. In [15], Fayçal and Omrani used two powerful techniques, namely
the homotopy analysis method (HAM) and the Adomian’s decomposition method (ADM)
to obtain an approximate analytical solution of the nonlinear Fornberg–Whitham equation,
where η = 1, and concluded that these methods have perfect accuracy and reductions in
the size of calculations. In [16], Wang et al. combined He’s (HPM) and the fractional com-
plex transform to find an approximate solution to the nonlinear time-fractional Fornberg–
Whitham equation. Recently, in [17], Sartanpara et al. used the p-Homotopy analysis Shehu
transform method for the time-fractional Fornberg–Whitham equation with the derivative
of the fractional-order in the Caputo sense to obtain the approximate analytical solution.
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In [18], Hijaz et al. numerically solved the Fornberg–Whitham classical type and modified
type equations via the variational iteration algorithm-I. They used an auxiliary parameter
to speed up the convergence rate to the exact solution. In [19], Shah et al. implemented
modified techniques, namely the Shehu decomposition method (SDM) and the variational
iteration transform method (VITM), to achieve an approximate analytical solution for the
time-fractional Fornberg–Whitham equation. The fractional derivative is considered in the
Caputo sense. In [20], Iqbal et al. successfully applied two modified methods to investi-
gate the approximate solutions of the fractional Fornberg–Whitham equation. There was
agreement between the numerical results obtained by the modified decomposition method
(MDM) and modified variational iteration method (MVIM) involving fractional-order
derivatives with Mittag–Leffler kernel.

In this paper, we consider the third-order time-fractional partial differential Equation
(TFPDE) with variable coefficients

∂ηψ(χ, ζ)
∂ζη

− α(χ)∂3ψ(χ, ζ)
∂χ2∂ζ

+ 2κ(χ)
∂ψ(χ, ζ)

∂χ
+ β(χ)ψ(χ, ζ)

∂ψ(χ, ζ)
∂χ

− γ(χ)ψ(χ, ζ)
∂3ψ(χ, ζ)

∂χ3 −ω(χ)
∂ψ(χ, ζ)

∂χ

∂2ψ(χ, ζ)
∂χ2 = 0, l < χ < L, l, L ∈ R

(2)

with the initial and homogeneous boundary conditions

ψ(χ, 0) = φ(χ)

ψ(l, ζ) = 0, ψ(L, ζ) = 0, ζ > 0
(3)

where α(χ), κ(x),β(χ),γ(χ),ω(χ) are the variable coefficients and p− 1 < η ≤ p, (p ∈ N)
is a parameter describing the order of the time-fractional equation. The reason behind
including variable coefficients in the time-fractional Fornberg–Whitham equation is that it
becomes a more accurate model for the propagation of waves. This makes it a useful tool
for studying a variety of phenomena, including fluid dynamics, plasma physics, and others.
It is important to note that Equation (2) contains different interesting nonlinear equations.
In particular, for η = 1, when β = 6 γ = −1 and α = κ = ω = 0 in Equation (2), we obtain
the well-known Korteweg–de Vries Equation (KdV), as given in [21]

ψζ + 6ψψχ +ψψχχχ = 0, χ ∈ R, ζ > 0. (4)

When α = γ = 1, κ = 0, β = 4, and ω = 3 in Equation (2), we obtain the Degasperis–
Procesi equation (DPE), as given in [22]

ψζ −ψχχζ + 4ψψχ −ψψχχχ − 3ψχψχχ = 0, χ ∈ R, ζ > 0. (5)

When α = ω = 1, β = 3, γ = 2 in Equation (2), and κ ∈ R is a parameter related to
the critical shallow water speed, we obtain the Camassa–Holm Equation (CHE), as given
in [21]

ψζ −ψχχζ + 2κψχ + 3ψψχ − 2ψψχχχ −ψχψχχ = 0, χ ∈ R, ζ > 0. (6)

When α = β = γ = 1, κ = 1
2 andω = 3 in Equation (2), we obtain the Fornberg–Whitham

Equation (FWE), as given in [9]

ψζ −ψχχζ +ψχ +ψψχ −ψψχχχ − 3ψχψχχ = 0, χ ∈ R, ζ > 0 (7)

We organize the paper as follows. Section 2 defines preliminary definitions and some
properties of the Riemann–Liouville integral and Caputo fractional derivative. In Section 3,
the analysis of (VIM) for the nonlinear fractional equation is established. In Section 4,
the analysis of (ADM) for the nonlinear fractional equation is established. In Section 5,
the analysis of (HAM) for the nonlinear fractional equation is established. Section 6
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illustrates the methods for solving time-fractional partial differential equations (TFPDEs)
with suitable initial conditions.

2. Problem Formulation and Preliminaries

In this section, we present the definitions of partial Riemann–Liouville integrals,
partial Riemann–Liouville derivatives, and Caputo time-fractional derivatives with some
properties of the Caputo fractional derivatives, which will be used later.

Definition 1 ([23]). Let η ∈ (0, 1) and ψ ∈ L−1(D). The partial Riemann–Liouville fractional
integrals of order η of a function ψ(χ, ζ) with respect to ζ are defined as

RL
a I

η
ζ (ψ(χ, ζ)) =

1
Γ(η)

∫ ζ
a
(ζ− ξ)η−1ψ(χ, ξ)dξ (8)

for almost all (χ, ζ) ∈ D and Γ(η) is the well-known Gamma function.

Definition 2 ([23]). Let p− 1 < η ≤ p, p ∈ N and ψ ∈ L−1(D). The partial Riemann–Liouville
fractional derivatives of order η of a function ψ(χ, ζ) with respect to ζ are defined as

aDηζ (ψ(χ, ζ)) =
∂p

∂ζp aI p−η
ζ (ψ(χ, ζ)) =

∂p

∂ζp

(
1

Γ(p− η)

∫ ζ
a
(ζ− ξ)p−η−1ψ(χ, ξ)dξ

)
(9)

for almost all (χ, ζ) ∈ D.
For ψ ∈ Cµ, µ ≥ −1, γ > −1 and η,β ≥ 0, the operator aIηζ satisfies the following

properties [24].

(1) aIηζ aIβζ (ψ(ζ)) = aIβζ aIηζ (ψ(ζ)) = aIη+βζ (ψ(ζ))

(2) aIηζ (ζ− a)γ = Γ(γ+1)
Γ(η+γ+1) (ζ− a)η+γ

Definition 3 ([25]). Let p be the smallest integer that exceeds η, and the Caputo time-fractional
derivative operator of order η > 0 of a function ψ(χ, ζ) is defined as

CDηζ (ψ(χ, ζ)) =

I
p−η
ζ

(
∂pψ(χ,ζ)

∂ζp

)
= 1

Γ(p−η)
∫ ζ

0 (ζ− ξ)p−η−1 ∂pψ(χ,ξ)
∂ξp dξ, p− 1 < τ < p

∂pψ(χ,ζ)
∂ζp η = p ∈ N

(10)

The operator Dηζ satisfies the following properties [24]. Let ζ > 0, p− 1 < η ≤ p, (p ∈ N), then

(1) IηζD
η
ζ (ψ(χ, ζ)) = ψ(χ, ζ)−

p−1

∑
k=0

ζk

k!
∂k

∂ζkψ(χ, ζ)
∣∣
ζ=0

(2) DηζI
η
ζ (ψ(χ, ζ)) = ψ(χ, ζ)

3. Analysis of Variational Iteration Method

In this section, we discuss the (VIM) solution for the time-fractional partial differ-
ential Equation (TFPDE) with variable coefficients. This method can reduce the size of
calculations and directly handle both linear and nonlinear equations, homogeneous or
non-homogeneous [26,27].

We consider the following time-fractional partial differential equation

Dηζψ(χ, ζ) + Lψ(χ, ζ) +Nψ(χ, ζ) = G(χ, ζ) (11)

whereDηζ is the Caputo fractional derivative of order p− 1 < η ≤ p, (p ∈ N), L is the linear
operator,N is the nonlinear operator, and G(χ, ζ) is a known analytical function. According
to the variational iteration method [28,29], to solve the third-order time-fractional partial
differential Equation (TFPDE) with variable coefficients in Equation (2), the correction
functional can be constructed as follows
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ψk+1(χ, ζ) = ψk(χ, ζ) + Iγζ
[
λ

(
Dηζψk(χ, ζ) + Lψ̃k(χ, ζ) +N ψ̃k(χ, ζ)

)]
= ψk(χ, ζ) +

1
Γ(γ)

∫ ζ
0
(ζ− ξ)γ−1λ(ξ)

(
∂ηψk(χ, ξ)

∂ξη
− α(χ)∂3ψ̃k(χ, ξ)

∂χ2∂ξ
+ 2κ(χ)

∂ψ̃k(χ, ξ)
∂χ

+ β(χ)ψ̃k(χ, ξ)
∂ψ̃k(χ, ξ)

∂χ
− γ(χ)ψ̃k(χ, ξ)

∂3ψ̃k(χ, ξ)
∂χ3 −ω(χ)

∂ψ̃k(χ, ξ)
∂χ

∂2ψ̃k(χ, ξ)
∂χ2

)
dξ

(12)

where Iγζ denotes the Riemann–Liouville integral operator of order γ = η+ 1− p, subject
to the initial and boundary conditions in Equation (3), where λ is a general Lagrange
multiplier which can be identified by variational theory, ψk is the kth approximate solution
and ψ̃k is considered as a restricted variation, i.e., δψ̃k = 0. This method first requires
determining the Lagrange multiplier λ, and it can be easily identified as

λ(ξ) =
(−1)p(ξ− ζ)p−1

(p− 1)!
(13)

where p is the highest order of the differential equation. By determining the value of
Lagrange multiplier λ, the successive approximations ψk+1 will be calculated using the
given initial function ψ0.

Making the above correction functional stationary and noticing that δψ̃k = 0, we obtain

δψk+1(χ, ζ) = δψk(χ, ζ) +
1

Γ(γ)
δ
∫ ζ

0
(ζ− ξ)γ−1λ(ξ)

(
∂ηψk(χ, ξ)

∂ξη
− α(χ)∂3ψ̃k(χ, ξ)

∂χ2∂ξ
+ 2κ(χ)

∂ψ̃k(χ, ξ)
∂χ

+ β(χ)ψ̃k(χ, ξ)
∂ψ̃k(χ, ξ)

∂χ
− γ(χ)ψ̃k(χ, ξ)

∂3ψ̃k(χ, ξ)
∂χ3 −ω(χ)

∂ψ̃k(χ, ξ)
∂χ

∂2ψ̃k(χ, ξ)
∂χ2

)
dξ

= δψk(χ, ζ) +
1

Γ(γ)
δ
∫ ζ

0
(ζ− ξ)γ−1λ(ξ)

(
∂pψk(χ, ξ)

∂ξp

)
dξ

(14)

This yields the Lagrange multipliers λ(ξ) = −1 for p = 1, and substituting this value of
the Lagrange multiplier into the corrections functional Equation (12) gives the iteration
formula for 0 < η ≤ 1

ψk+1(χ, ζ) = ψk(χ, ζ)− Iηζ
(

∂ηψk(χ, ζ)
∂ζη

− α(χ)∂3ψk(χ, ζ)
∂χ2∂ζ

+ 2κ(χ)
∂ψk(χ, ζ)

∂χ

+ β(χ)ψk(χ, ζ)
∂ψk(χ, ζ)

∂χ
− γ(χ)ψk(χ, ζ)

∂3ψk(χ, ζ)
∂χ3 −ω(χ)

∂ψk(χ, ζ)
∂χ

∂2ψk(χ, ζ)
∂χ2

) (15)

Considering the given initial condition values, ψ0(χ, ζ) = φ(χ), and using this selection in
Equation (15), we obtain the following successive approximations for k = 0, 1, · · ·

ψ1(χ, ζ) = ψ0(χ, ζ)− Iηζ
(

∂ηψ0(χ, ζ)
∂ζη

− α(χ)∂3ψ0(χ, ζ)
∂χ2∂ζ

+ 2κ(χ)
∂ψ0(χ, ζ)

∂χ

+ β(χ)ψ0(χ, ζ)
∂ψ0(χ, ζ)

∂χ
− γ(χ)ψ0(χ, ζ)

∂3ψ0(χ, ζ)
∂χ3 −ω(χ)

∂ψ0(χ, ζ)
∂χ

∂2ψ0(χ, ζ)
∂χ2

) (16)

ψ2(χ, ζ) = ψ1(χ, ζ)− Iηζ
(

∂ηψ1(χ, ζ)
∂ζη

− α(χ)∂3ψ1(χ, ζ)
∂χ2∂ζ

+ 2κ(χ)
∂ψ1(χ, ζ)

∂χ

+ β(χ)ψ1(χ, ζ)
∂ψ1(χ, ζ)

∂χ
− γ(χ)ψ1(χ, ζ)

∂3ψ1(χ, ζ)
∂χ3 −ω(χ)

∂ψ1(χ, ζ)
∂χ

∂2ψ1(χ, ζ)
∂χ2

)
...

(17)
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Thus, the corrections’ functional Equation (15) will give a sequence of approximations
ψk(χ, ζ) = ∑k−1

m=0ψm(χ, ζ).
Therefore, the solution of Equation (2) is given by

ψ(χ, ζ) = lim
k→∞

ψk(χ, ζ) (18)

4. Analysis of Adomian Decomposition Method

In this section, we discuss the (ADM) solution for the time-fractional partial differ-
ential Equation (TFPDE) with variable coefficients. This method provides an analytical
approximation to a rather wide class of nonlinear and stochastic equations without lin-
earization, perturbation, closure approximations, or discretization methods resulting in
massive numerical computation [30,31].

We consider the following time-fractional partial differential equation

Dηζψ(χ, ζ) + Lψ(χ, ζ) +Nψ(χ, ζ) = G(χ, ζ) (19)

where Dηζ is the Caputo fractional derivative of order p− 1 < η ≤ p, (p ∈ N), L is the
linear operator, N is the nonlinear operator, and G(χ, ζ) is a known analytical function.
To solve the third-order time-fractional partial differential Equation (TFPDE) with the
variable coefficients shown in Equation (2), by Adomin decomposition method, we express
this equation in the operator form as

Dηζψ(χ, ζ)− α(χ)Lχχζψ(χ, ζ) + 2κ(χ)Lχψ(χ, ζ) + β(χ)ψ(χ, ζ)Lχψ(χ, ζ)

− γ(χ)ψ(χ, ζ)Lχχχψ(χ, ζ)−ω(χ)Lχψ(χ, ζ)Lχχψ(χ, ζ) = 0
(20)

with the initial and boundary conditions shown in Equation (3), which are equivalent to

Dηζψ(χ, ζ)− α(χ)Lχχζψ(χ, ζ) + 2κ(χ)Lχψ(χ, ζ) +Nψ(χ, ζ) = 0 (21)

Solving Equation (21) for Dηζψ(χ, ζ), we obtain

Dηζψ(χ, ζ) = α(χ)Lχχζψ(χ, ζ)− 2κ(χ)Lχψ(χ, ζ)−Nψ(χ, ζ) (22)

where α(χ), κ(χ), β(χ), γ(χ), and ω(χ) are continuous functions, η is the parameter de-
scribing the order of the time-fractional derivative, the notations Dηζ = ∂η

∂ζη , Lχχζ = ∂3

∂χ2∂ζ
,

Lχ = ∂
∂χ , Lχχ = ∂2

∂χ2 , and Lχχχ = ∂3

∂χ3 are the symbolize of the linear operators, and
Nψ(χ, ζ) = β(χ)ψ(χ, ζ)Lχψ(χ, ζ)−γ(χ)ψ(χ, ζ)Lχχχψ(χ, ζ)−ω(χ)Lχψ(χ, ζ)Lχχψ(χ, ζ)
symbolizes the nonlinear operators. Applying the operator Iηζ on both sides of Equa-
tion (22), with the basic properties of the operator Dηζ , we obtain

IηζD
η
ζψ(χ, ζ) = Iηζ

[
α(χ)Lχχζψ(χ, ζ)− 2κ(χ)Lχψ(χ, ζ)−Nψ(χ, ζ)

]
(23)

ψ(χ, ζ)−
p−1

∑
k=0

ζk

k!
∂k

∂ζkψ(χ, ζ)
∣∣∣∣
ζ=0

= Iηζ
[
α(χ)Lχχζψ(χ, ζ)− 2κ(χ)Lχψ(χ, ζ)−Nψ(χ, ζ)

]
(24)

ψ(χ, ζ) =
p−1

∑
k=0

ζk

k!
∂k

∂ζkψ(χ, ζ)
∣∣∣∣
ζ=0

+ Iηζ
[
α(χ)Lχχζψ(χ, ζ)− 2κ(χ)Lχψ(χ, ζ)−Nψ(χ, ζ)

]
(25)

Since the Adomain decomposition method is in the form of an infinite series

ψ(χ, ζ) =
∞

∑
m=0

ψm(χ, ζ) (26)
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and the nonlinear term Nψ(χ, ζ) can be decomposed into an infinite series of polynomials
given by

Nψ(χ, ζ) =
∞

∑
m=0
Am(χ, ζ) (27)

where Am(χ, ζ) are the Adomain polynomials of ψ0,ψ1, · · · ,ψm defined by

Am(ψ0,ψ1, · · · ,ψm) =
1

m!
dm

dλm

[
N
( ∞

∑
j=0
λjψj

)]
λ=0

, m = 0, 1, . . . (28)

Therefore, the first Adomain polynomials for Nψ(χ, ζ) are defined by

A0 = N (ψ0)

A1 = ψ1

(
dN (ψ0)

dψ0

)
A2 = ψ2

(
dN (ψ0)

dψ0

)
+
ψ2

1
2!

(
d2N (ψ0)

dψ2
0

)
A3 = ψ3

(
dN (ψ0)

dψ0

)
+ψ1ψ2

(
d2N (ψ0)

dψ2
0

)
+
ψ3

1
3!

(
d3N (ψ0)

dψ3
0

)
A4 = ψ4

(
dN (ψ0)

dψ0

)
+ψ1ψ3

(
d2N (ψ0)

dψ2
0

)
+
ψ2

2
2!

(
d2N (ψ0)

dψ2
0

)
+
ψ2

1ψ2

2!

(
d3N (ψ0)

dψ3
0

)
+
ψ3

1
4!
N (4)(ψ0)

...

(29)

Substituting Equations (26) and (27) into Equation (25), we obtain

∞

∑
m=0

ψm(χ, ζ) =
p−1

∑
k=0

ζk

k!
∂k

∂ζkψ(χ, ζ)
∣∣∣∣
ζ=0

+ Iηζ
[
α(χ)Lχχζ

∞

∑
m=0

ψm(χ, ζ)− 2κ(χ)Lχ
∞

∑
m=0

ψm(χ, ζ)−
∞

∑
m=0
Am(χ, ζ)

]
(30)

The Adomain decomposition method transforms Equation (30) into a set of recursive
relations given by

ψ0(χ, ζ) =
p−1

∑
k=0

ζk

k!
∂k

∂ζkψ(χ, ζ)
∣∣∣∣
ζ=0

ψm+1(χ, ζ) = Iηζ
[
α(χ)Lχχζψm(χ, ζ)− 2κ(χ)Lχψm(χ, ζ)−Am(χ, ζ)

]
, m ≥ 0

(31)

Let the expression

ψm(χ, ζ) =
m−1

∑
k=0

ψk(χ, ζ) (32)

be the m-term approximation of ψ. Using the above recursive relation Equation (31), we
can obtain the first terms of (ADM) series solution for m = 0, 1, · · ·

ψ1(χ, ζ) = Iηζ
[
α(χ)Lχχζψ0(χ, ζ)− 2κ(χ)Lχψ0(χ, ζ)−A0(χ, ζ)

]
(33)

ψ2(χ, ζ) = Iηζ
[
α(χ)Lχχζψ1(χ, ζ)− 2κ(χ)Lχψ1(χ, ζ)−A1(χ, ζ)

]
...

(34)

Therefore, the approximate solution is

ψ(χ, ζ) = lim
m→∞

ψm(χ, ζ) (35)



Fractal Fract. 2023, 7, 260 8 of 18

5. Analysis of Homotopy Analysis Method

In this section, we discuss the (HAM) solution for the time fractional partial differential
Equation (TFPDE) with variable coefficients. Liao proposed a powerful and efficient method
for nonlinear problems [32–34].

We consider the following time-fractional partial differential equation

Dηζψ(χ, ζ) + Lψ(χ, ζ) +Nψ(χ, ζ) = G(χ, ζ) (36)

where Dηζ is the Caputo fractional derivative of order p− 1 < η ≤ p, (p ∈ N), L is the
linear operator, N is the nonlinear operator, and G(χ, ζ) is a known analytical function.
To solve the third-order time-fractional partial differential Equation (TFPDE) with variable
coefficients Equation (2) by homotopy analysis method, we consider the nonlinear operator

N
[
ϕ(χ, ζ; ρ)

]
=

∂ηϕ(χ, ζ; ρ)
∂ζη

− α(χ)∂3ϕ(χ, ζ; ρ)
∂χ2∂ζ

+ 2κ(χ)
∂ϕ(χ, ζ; ρ)

∂χ
+ β(χ)ϕ(χ, ζ; ρ)

∂ϕ(χ, ζ; ρ)
∂χ

− γ(χ)ϕ(χ, ζ; ρ)
∂3ϕ(χ, ζ; ρ)

∂χ3 −ω(χ)
∂ϕ(χ, ζ; ρ)

∂χ

∂2ϕ(χ, ζ; ρ)
∂χ2 = 0, ζ > 0

(37)

and the linear operator

L[ϕ(χ, ζ; ρ)] = Dηζ [ϕ(χ, ζ; ρ)] =
∂ηϕ(χ, ζ; ρ)

∂ζη
(38)

subject to the initial and boundary conditions Equation (3), with the property Dηζ (k) = 0,
where k is the integration constant. According to Liao [33], we can construct the zero-order
deformation equation

(1− ρ)Dηζ
[
ϕ(χ, ζ; ρ)−ψ0(χ, ζ)

]
= ρh̄H(χ, ζ)N

[
ϕ(χ, ζ; ρ)

]
(39)

where ρ ∈ [0, 1] is an embedding parameter, Dηζ is an auxiliary linear operator, ϕ(χ, ζ; ρ)
is a mapping function for ψ(χ, ζ), ψ0(χ, ζ) is an initial guess of ψ(χ, ζ), h̄ is a nonzero
auxiliary parameter, andH(χ, ζ) is a nonzero auxiliary function. Obviously, for ρ = 0 and
ρ = 1, we have

ϕ(χ, ζ; 0) = ψ0(χ, ζ)

ϕ(χ, ζ; 1) = ψ(χ, ζ)
(40)

Thus, as ρmoves from 0 to 1, the solution ϕ(χ, ζ; ρ) varies from the initial guess ψ0(χ, ζ)
to the solution ψ(χ, ζ). Expanding ϕ(χ, ζ; ρ) into the Taylor series with respect to the
embedding parameter ρ, we obtain

ϕ(χ, ζ; ρ) = ψ0(χ, ζ) +
∞

∑
m=1

ψm(χ, ζ)ρm (41)

where

ψm(χ, ζ) =
1

m!
∂mϕ(χ, ζ; ρ)

∂ρm

∣∣∣∣
ρ=0

(42)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h̄, and the auxiliary
function are so properly chosen, the series Equation (41) converges at ρ = 1, then we have

ϕ(χ, ζ; 1) = ψ(χ, ζ) = ψ0(χ, ζ) +
∞

∑
m=1

ψm(χ, ζ) (43)

which must be one of the solutions of the original nonlinear equation, as proven by Liao [35].
For h̄ = −1 andH(χ, ζ) = 1, Equation (39) becomes

(1− ρ)Dηζ
[
ϕ(χ, ζ; ρ)−ψ0(χ, ζ)

]
+ ρN

[
ϕ(χ, ζ; ρ)

]
= 0 (44)
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According to Equation (42), the governing equation can be deduced from the zero-order
deformation Equation (39).

Define the vector

~ψm = {ψ0(χ, ζ),ψ1(χ, ζ), . . . ,ψm(χ, ζ)}

By differentiating Equation (39) m number of times with respect to the embedding parame-
ter ρ then setting ρ = 0, and finally dividing them by m!, we obtain the so-called mth-order
deformation equation

Dηζ [ψm(χ, ζ)− χmψm−1(χ, ζ)] = h̄H(χ, ζ)Rm[~ψm−1(χ, ζ)] (45)

where

Rm[~ψm−1(χ, ζ)] =
1

(m− 1)!
∂m−1N [ϕ(χ, ζ; ρ)]

∂ρm−1

∣∣∣∣
ρ=0

(46)

and

χm =

{
0 m ≤ 1
1 m > 1

(47)

Applying the operator Iηζ on both sides of Equation (45), with the basic properties of the
operator Dηζ , we obtain the solution of the above mth-order deformation equation, with the
assumptionH(χ, ζ) = 1

ψm(χ, ζ) = χmψm−1(χ, ζ) + h̄IηζRm[~ψm−1(χ, ζ)] (48)

where

Rm[~ψm−1(χ, ζ)] =
∂ηψm−1(χ, ζ)

∂ζη
− α(χ)∂3ψm−1(χ, ζ)

∂χ2∂ζ
+ 2κ(χ)

∂ψm−1(χ, ζ)
∂χ

+
m−1

∑
k=0

(
β(χ)ψk(χ, ζ)

∂ψm−1−k(χ, ζ)
∂χ

− γ(χ)ψk(χ, ζ)
∂3ψm−1−k(χ, ζ)

∂χ3 −ω(χ)
∂ψk(χ, ζ)

∂χ

∂2ψm−1−k(χ, ζ)
∂χ2

) (49)

By using the above relation Equation (48) with the initial and boundary conditions
Equation (3), we can obtain the first terms of the (HAM) series solution for m = 1, 2, · · ·

ψ1(χ, ζ) = χ1ψ0(χ, ζ) + h̄IηζR1[~ψ0(χ, ζ)]

= h̄Iηζ
[

∂ηψ0(χ, ζ)
∂ζη

− α(χ)∂3ψ0(χ, ζ)
∂χ2∂ζ

+ 2κ(χ)
∂ψ0(χ, ζ)

∂χ

+ β(χ)ψ0(χ, ζ)
∂ψ0(χ, ζ)

∂χ
− γ(χ)ψ0(χ, ζ)

∂3ψ0(χ, ζ)
∂χ3 −ω(χ)

∂ψ0(χ, ζ)
∂χ

∂2ψ0(χ, ζ)
∂χ2

] (50)

ψ2(χ, ζ) = χ2ψ1(χ, ζ) + h̄IηζR2[~ψ1(χ, ζ)]

= ψ1(χ, ζ) + h̄Iηζ
[

∂ηψ1(χ, ζ)
∂ζη

− α(χ)∂3ψ1(χ, ζ)
∂χ2∂ζ

+ 2κ(χ)
∂ψ1(χ, ζ)

∂χ

+ β(χ)ψ0(χ, ζ)
∂ψ1(χ, ζ)

∂χ
− γ(χ)ψ0(χ, ζ)

∂3ψ1(χ, ζ)
∂χ3 −ω(χ)

∂ψ0(χ, ζ)
∂χ

∂2ψ1(χ, ζ)
∂χ2

+ β(χ)ψ1(χ, ζ)
∂ψ0(χ, ζ)

∂χ
− γ(χ)ψ1(χ, ζ)

∂3ψ0(χ, ζ)
∂χ3 −ω(χ)

∂ψ1(χ, ζ)
∂χ

∂2ψ0(χ, ζ)
∂χ2

]
...

(51)
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Therefore, we obtain an accurate approximation of Equation (2)

ψ(χ, ζ) =
m

∑
k=0

ψk(χ, ζ) (52)

6. Applications and Results

In this section, we apply (VIM), (ADM), and (HAM) to obtain the approximate solu-
tions to the third-order time-fractional partial differential Equation (TFPDE) with variable
coefficients and suitable initial conditions.

Example 1. Consider the third-order time-fractional partial differential Equation (TFPDE) with
variable coefficients

∂ηψ(χ, ζ)
∂ζη

− χ∂3ψ(χ, ζ)
∂χ2∂ζ

+ 2χ
∂ψ(χ, ζ)

∂χ
+ χψ(χ, ζ)

∂ψ(χ, ζ)
∂χ

− χψ(χ, ζ)
∂3ψ(χ, ζ)

∂χ3 − χ∂ψ(χ, ζ)
∂χ

∂2ψ(χ, ζ)
∂χ2 = 0, ζ > 0, 0 ≤ χ ≤ 1, 0 < η ≤ 1

(53)

and the initial and boundary conditions

ψ(χ, 0) = eχ

ψ(0, ζ) = 0, ψ(1, ζ) = 0, ζ > 0
(54)

Applying VIM: the iteration formula for Equation (53) can be constructed as

ψk+1(χ, ζ) = ψk(χ, ζ)− Iηζ
(

∂ηψk(χ, ζ)
∂ζη

− χ∂3ψk(χ, ζ)
∂χ2∂ζ

+ 2χ
∂ψk(χ, ζ)

∂χ

+ χψk(χ, ζ)
∂ψk(χ, ζ)

∂χ
− χψk(χ, ζ)

∂3ψk(χ, ζ)
∂χ3 − χ∂ψk(χ, ζ)

∂χ

∂2ψk(χ, ζ)
∂χ2

) (55)

Considerin the given initial condition values, and using this selection in Equation (55), we
obtain the following successive approximations

ψ0(χ, ζ) = eχ

ψ1(χ, ζ) = eχ
(
1 +

χ(eχ − 2)ζη

Γ(η+ 1)
)

ψ2(χ, ζ) = eχ
(
1 +

χ(eχ − 2)ζη

Γ(η+ 1)
+

2χ(2χeχ + 2eχ − χ− 2)ζ2η−1

Γ(2η)
− 4χ(−3χe2χ − 4e2χ + 2χeχ + 3eχ − χ− 1)ζ2η

Γ(2η+ 1)

− Γ(2η+ 1)χeχ(24eχχ2 − 14χ2e2χ + 52χeχ − 23χe2χ − 4χ2 + 12eχ − 4e2χ − 20χ− 8)ζ3η

Γ(3η+ 1) Γ(η+ 1)2

)
(56)

Hence, the approximate solution for Equation (53) is

ψ2(χ, ζ) = eχ
(
3 +

2χ(eχ − 2)ζη

Γ(η+ 1)
+

2χ(2χeχ + 2eχ − χ− 2)ζ2η−1

Γ(2η)
− 4χ(−3χe2χ − 4e2χ + 2χeχ + 3eχ − χ− 1)ζ2η

Γ(2η+ 1)

− Γ(2η+ 1)χeχ(24eχχ2 − 14χ2e2χ + 52χeχ − 23χe2χ − 4χ2 + 12eχ − 4e2χ − 20χ− 8)ζ3η

Γ(3η+ 1) Γ(η+ 1)2

) (57)

Applying ADM: The recursive relations for Equation (53) can be constructed as

ψ0(χ, ζ) =
p−1

∑
k=0

ζk

k!
∂k

∂ζkψ(χ, ζ)
∣∣∣∣
ζ=0

ψm+1(χ, ζ) = Iηζ
[
χLχχζψm(χ, ζ)− 2χLχψm(χ, ζ)−Am(χ, ζ)

]
, m ≥ 0

(58)
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Using the above recursive relations, we can obtain the first terms of the (ADM) series
solution

ψ0(χ, ζ) = eχ

ψ1(χ, ζ) =
χeχ(eχ − 2)ζη

Γ(η+ 1)

ψ2(χ, ζ) = χeχ
(
(4χeχ + 4eχ − 2χ− 4)ζ2η−1

Γ(2η)
+

(2χe3χ + e3χ − 4χe2χ − 2e2χ − 4χeχ − 2eχ + 4χ+ 4)ζ2η

Γ(2η+ 1)

) (59)

Hence, the (ADM) series solution for Equation (53) is

ψ(χ, ζ) = eχ
(

1 +
χ(eχ − 2)ζη

Γ(η+ 1)
+
χ(4χeχ + 4eχ − 2χ− 4)ζ2η−1

Γ(2η)
+
χ(2χe3χ + e3χ − 4χe2χ − 2e2χ − 4χeχ − 2eχ + 4χ+ 4)ζ2η

Γ(2η+ 1)

)
(60)

Applying HAM: the mth-order deformation equation for Equation (53) is given by

ψm(χ, ζ) = χmψm−1(χ, ζ) + h̄Iηζ
(

∂ηψm−1(χ, ζ)
∂ζη

− χ∂3ψm−1(χ, ζ)
∂χ2∂ζ

+ 2χ
∂ψm−1(χ, ζ)

∂χ

+
m−1

∑
k=0

(χψk(χ, ζ)
∂ψm−1−k(χ, ζ)

∂χ
− χψk(χ, ζ)

∂3ψm−1−k(χ, ζ)
∂χ3 − χ∂ψk(χ, ζ)

∂χ

∂2ψm−1−k(χ, ζ)
∂χ2 )

) (61)

where

χm =

{
0 m ≤ 1
1 m > 1

(62)

Using the above relation Equation (61), we can obtain the first terms of (HAM) series
solution

ψ0(χ, ζ) = eχ

ψ1(χ, ζ) = −χeχ(eχ − 2)h̄ζη

Γ(η+ 1)

ψ2(χ, ζ) = χeχ
(
− (eχ − 2)(h̄ + 1)h̄ζη

Γ(η+ 1)
+

4(3χe2χ + 4e2χ − 2χeχ − 3eχ + χ+ 1)h̄2ζ2η

Γ(2η+ 1)
+

4((χ+ 1)eχ − χ
2 − 1)h̄2ζ2τ−1

Γ(2η)

) (63)

Hence, the (HAM) series solution for Equation (53) is

ψ(χ, ζ) = eχ
(

1− χ(e
χ − 2)h̄2ζη

Γ(η+ 1)
+

4χ(3χe2χ + 4e2χ − 2χeχ − 3eχ + χ+ 1)h̄2ζ2η

Γ(2η+ 1)
+

4χ(χeχ + eχ − χ
2 − 1)h̄2ζ2τ−1

Γ(2η)

)
(64)

Example 2. Consider the third-order time-fractional partial differential Equation (TFPDE) with
variable coefficients

∂ηψ(χ, ζ)
∂ζη

− χ2 ∂3ψ(χ, ζ)
∂χ2∂ζ

+ 2
∂ψ(χ, ζ)

∂χ
+ψ(χ, ζ)

∂ψ(χ, ζ)
∂χ

−ψ(χ, ζ)
∂3ψ(χ, ζ)

∂χ3 − ∂ψ(χ, ζ)
∂χ

∂2ψ(χ, ζ)
∂χ2 = 0, ζ > 0, 0 ≤ χ ≤ 1, 0 < η ≤ 1

(65)

and the initial and boundary conditions

ψ(χ, 0) = χ2

ψ(0, ζ) = 0, ψ(1, ζ) = 0, ζ > 0
(66)
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Applying VIM: the iteration formula for Equation (65) can be constructed as

ψk+1(χ, ζ) = ψk(χ, ζ)− Iηζ
(

∂ηψk(χ, ζ)
∂ζη

− χ2 ∂3ψk(χ, ζ)
∂χ2∂ζ

+ 2
∂ψk(χ, ζ)

∂χ

+ψk(χ, ζ)
∂ψk(χ, ζ)

∂χ
−ψk(χ, ζ)

∂3ψk(χ, ζ)
∂χ3 − ∂ψk(χ, ζ)

∂χ

∂2ψk(χ, ζ)
∂χ2

) (67)

Considering the given initial condition values, and using this selection in Equation (66), we
obtain the following successive approximations

ψ0(χ, ζ) = χ2

ψ1(χ, ζ) = χ2 − (2χ3 − 8χ)ζη

Γ(η+ 1)

ψ2(χ, ζ) = χ2 − (2χ3 − 8χ)ζη

Γ(η+ 1)
+

12χ3ζ2η−1

Γ(2η)
+

(−10χ4 + 132χ2 − 32)ζ2η

Γ(2η+ 1)
+

Γ(2η+ 1)(12χ5 − 304χ3 + 448χ)ζ3η

Γ(3η+ 1)Γ(η+ 1)2

(68)

Hence, the approximate solution for Equation (65) is

ψ(χ, ζ) = 3χ2 − 2(2χ3 − 8χ)ζη

Γ(η+ 1)
+

12χ3ζ2η−1

Γ(2η)
+

(−10χ4 + 132χ2 − 32)ζ2η

Γ(2η+ 1)
+

Γ(2η+ 1)(12χ5 − 304χ3 + 448χ)ζ3η

Γ(3η+ 1)Γ(η+ 1)2 (69)

Applying ADM: the recursive relations for Equation (65) can be constructed as

ψ0(χ, ζ) =
p−1

∑
k=0

ζk

k!
∂k

∂ζkψ(χ, ζ)
∣∣∣∣
ζ=0

ψm+1(χ, ζ) = Iηζ
[
χ2Lχχζψm(χ, ζ)− 2Lχψm(χ, ζ)−Am(χ, ζ)

]
, m ≥ 0

(70)

Using the above recursive relations, we can obtain the first terms of the (ADM) series
solution

ψ0(χ, ζ) = χ2

ψ1(χ, ζ) = − (2χ3 − 8χ)ζη

Γ(η+ 1)

ψ2(χ, ζ) =
4
(
3χ5 − 18χ3 + 3χ2 + 24χ− 4

)
ζ2η

Γ(2η+ 1)
− 12χ3ζ2η−1

Γ(2η)

(71)

Hence, the (ADM) series solution for Equation (65) is

ψ(χ, ζ) = χ2 − (2χ3 − 8χ)ζη

Γ(η+ 1)
+

4
(
3χ5 − 18χ3 + 3χ2 + 24χ− 4

)
ζ2η

Γ(2η+ 1)
− 12χ3ζ2η−1

Γ(2η)
(72)

Applying HAM: the mth-order deformation equation for Equation (65) is given by

ψm(χ, ζ) = χmψm−1(χ, ζ) + h̄Iηζ
(

∂ηψm−1(χ, ζ)
∂ζη

− χ2 ∂3ψm−1(χ, ζ)
∂χ2∂ζ

+ 2
∂ψm−1(χ, ζ)

∂χ

+
m−1

∑
k=0

(ψk(χ, ζ)
∂ψm−1−k(χ, ζ)

∂χ
−ψk(χ, ζ)

∂3ψm−1−k(χ, ζ)
∂χ3 − ∂ψk(χ, ζ)

∂χ

∂2ψm−1−k(χ, ζ)
∂χ2 )

) (73)

where

χm =

{
0 m ≤ 1
1 m > 1

(74)



Fractal Fract. 2023, 7, 260 13 of 18

Using the above relation Equation (73), we can obtain the first terms of (HAM) series
solution

ψ0(χ, ζ) = χ2

ψ1(χ, ζ) =
(2χ3 − 8χ)h̄ζη

Γ(η+ 1)

ψ2(χ, ζ) =
2χ(χ− 2)(χ+ 2)(h̄ + 1)h̄ζη

Γ(η+ 1)
+

2(5χ4 − 66χ2 + 16)h̄2ζ2η

Γ(2η+ 1)
− 12χ3h̄2ζ2η−1

Γ(2η)

(75)

Hence, the (HAM) series solution for Equation (65) is

ψ(χ, ζ) = χ2 +
2χ(χ− 2)(χ+ 2)(h̄ + 2)h̄ζη

Γ(η+ 1)
+

2(5χ4 − 66χ2 + 16)h̄2ζ2η

Γ(2η+ 1)
− 12χ3h̄2ζ2η−1

Γ(2η)
(76)

7. Conclusions

This paper presents three numerical methods considered to achieve an approximate
solution for a third-order time-fractional partial differential equation (TFPDE). The equation
is obtained from the classical (FW) equation by replacing the integer-order time derivative
with the Caputo fractional derivative of order η = (0, 1] with variable coefficients. The
numerical results and graphs have been implemented using Maple 2022. In Figures 1–4 the
graphical simulations for the approximate series solutions and the comparison in the form
of absolute errors were presented to show the rate of change of the solutions when η = 0.75
and h̄ = −1. In Figures 5–8 we have shown the behavior of the solution with respect to the
different values of η. As we can see in Tables 1 and 2, as ζ increases to 1, and χ increases
to 1, the absolute errors slowly decrease. The agreement between the numerical results
obtained by variational iteration method (VIM), Adomian decomposition method (ADM),
and homotopy analysis method (HAM) involves fractional-order derivatives.

Table 1. This table shows the absolute errors for W = Abso.Error(VIM,ADM),
U = Abso.Error(VIM,HAM), and V = Abso.Error(ADM,HAM) for Example 1.

ζ χ W U V
0 0 2 2 0

0.1 0.1 2.541025554 1.991394551 0.549631003
0.2 0.2 3.977083804 1.738334153 2.238749651
0.3 0.3 7.163139295 1.104283175 6.058856120
0.4 0.4 14.00596958 0.26301164 13.74295794

η = 0.25 0.5 0.5 28.80747376 0.69271694 28.11475682
0.6 0.6 61.19402329 7.56126741 53.63275588
0.7 0.7 132.1993350 35.0418419 97.15749309
0.8 0.8 286.4869258 117.4884319 168.9984939
0.9 0.9 616.2555191 331.9641125 284.2914066
1 1 1306.952037 842.2302549 464.7217817

0 0 2 2 0
0.1 0.1 2.289636497 2.099416352 0.190220145
0.2 0.2 3.053697547 2.085683315 0.968014232
0.3 0.3 4.954885502 1.897138477 3.057747025
0.4 0.4 9.382828821 1.54535058 7.837478241

η = 0.50 0.5 0.5 19.47518759 1.73147878 17.74370881
0.6 0.6 42.52650372 5.62861132 36.89789240
0.7 0.7 95.44637321 23.41453671 72.03183650
0.8 0.8 216.6411190 82.8281667 133.8129523
0.9 0.9 490.9981703 252.3203983 238.6777720
1 1 1100.897757 689.6370408 411.2607162
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Table 1. Cont.

ζ χ W U V
0 0 2 2 0

0.1 0.1 2.219088227 2.152357150 0.066731077
0.2 0.2 2.628656823 2.243794656 0.384862167
0.3 0.3 3.627226957 2.269200185 1.358026772
0.4 0.4 6.084771319 2.229972343 3.854798976

η = 0.75 0.5 0.5 11.96807065 2.40088841 9.567182238
0.6 0.6 25.89804802 4.30750395 21.59054406
0.7 0.7 58.93797052 13.61183285 45.32613767
0.8 0.8 137.4703988 47.6301328 89.84026597
0.9 0.9 323.2302447 153.3892413 169.8410034
1 1 756.9909123 448.5531203 308.4377920

(a) ψ(2, VIM) (b) ψ(2, ADM) (c) ψ(2, HAM)

Figure 1. Graphical simulation of the second-level approximate solution ψ2(χ, ζ) when η = 0.75 and
h̄ = −1 for Example 1.

(a) AbsoErorr(VIM, ADM) (b) AbsoError(VIM, HAM) (c) AbsoError(ADM, HAM)

Figure 2. Graphical simulation of the absolute error when η = 0.75 and h̄ = −1 for Example 1.
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(a) ψ(1, VIM) (b) ψ(1, ADM) (c) ψ(1, HAM)

Figure 3. Graphical simulation of the first-level approximate solution ψ1(χ, ζ) when η = 0.75 and
h̄ = −1 for Example 2.

(a) AbsoErorr(VIM, ADM) (b) AbsoError(VIM, HAM) (c) AbsoError(ADM, HAM)

Figure 4. Graphical simulation of the absolute error when η = 0.75 and h̄ = −1 for Example 2.

Figure 5. Plot of the second-level approximate solution ψ2(χ, ζ) at χ = 0.1 for different values of η
when h̄ = −1 for Example 1.

Figure 6. Plot of the absolute errors at χ = 0.1 for different values of ηwhen h̄ = −1 for Example 1.
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Figure 7. Plot of the first-level approximate solution ψ1(χ, ζ) at χ = 0.1 for different values of ηwhen
h̄ = −1 for Example 2.

Table 2. This table shows the absolute errors for W = Abso.Error(VIM,ADM),
U = Abso.Error(VIM,HAM), and V = Abso.Error(ADM,HAM) for Example 2.

ζ χ W U V
0 0 0 0 0

0.1 0.1 1.163766699 12.05048415 13.21425085
0.2 0.2 17.02984022 5.10644444 11.92339578
0.3 0.3 42.93553452 37.84546649 5.090068030
0.4 0.4 76.65912143 82.86707406 6.20795263

η = 0.25 0.5 0.5 115.6963634 137.0397754 21.34341200
0.6 0.6 157.0968959 196.8876146 39.79071872
0.7 0.7 197.4322793 258.4945593 61.06227998
0.8 0.8 232.7973816 317.5061666 84.70878500
0.9 0.9 258.8244368 369.1656052 110.3411684
1 1 270.7035747 408.3658330 137.6622584

0 0 0 0 0
0.1 0.1 0.7564569989 4.459744999 3.703288000
0.2 0.2 2.570402463 2.155229537 4.725632000
0.3 0.3 12.49304336 10.02229136 2.470752000
0.4 0.4 30.39666054 33.87621254 3.479551997

η = 0.50 0.5 0.5 56.60474123 69.97974123 13.37500000
0.6 0.6 90.31573016 117.6308022 27.31507200
0.7 0.7 129.5188924 174.7947804 45.27588800
0.8 0.8 170.9122578 238.0579858 67.14572800
0.9 0.9 209.8305525 302.5997445 92.76919200
1 1 240.1867606 362.1867606 122

0 0 0 0 0
0.1 0.1 0.2413076664 1.122257724 0.8809500575
0.2 0.2 0.1238826704 1.465903435 1.589786105
0.3 0.3 2.829465294 1.811451685 1.018013609
0.4 0.4 9.761568790 11.41702283 1.655454036

η = 0.75 0.5 0.5 22.59293105 29.70740172 7.114470668
0.6 0.6 42.43691686 58.35320436 15.91628749
0.7 0.7 69.50572834 98.00145900 28.49573066
0.8 0.8 102.7699335 147.9479522 45.17801869
0.9 0.9 139.6218079 205.8265090 66.20470108
1 1 175.5469776 267.3218165 91.77483894
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Figure 8. Plot of the absolute errors at χ = 0.1 for different values of ηwhen h̄ = −1 for Example 2.
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