
Citation: Alyousef, H.A.; Shah, R.;

Shah, N.A.; Chung, J.D.; Ismaeel,

S.M.E.; El-Tantawy, S.A. The

Fractional Analysis of a Nonlinear

mKdV Equation with Caputo

Operator. Fractal Fract. 2023, 7, 259.

https://doi.org/10.3390/

fractalfract7030259

Academic Editor: Haci Mehmet

Baskonus

Received: 19 January 2023

Revised: 2 March 2023

Accepted: 4 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

The Fractional Analysis of a Nonlinear mKdV Equation with
Caputo Operator
Haifa A. Alyousef 1,†, Rasool Shah 2 , Nehad Ali Shah 3,†, Jae Dong Chung 3,* , Sherif M. E. Ismaeel 4,5

and Samir A. El-Tantawy 6,7

1 Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428,
Riyadh 11671, Saudi Arabia

2 Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
3 Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
4 Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz

University, Al-Kharj 11942, Saudi Arabia
5 Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
6 Department of Physics, Faculty of Science, Port Said University, Port Said 42521, Egypt
7 Research Center for Physics (RCP), Department of Physics, Faculty of Science and Arts, Al-Mikhwah,

Al-Baha University, Al-Baha 1988, Saudi Arabia
* Correspondence: jdchung@sejong.ac.kr
† These authors contributed equally to this work and are co-first authors.

Abstract: In this study, we aim to provide reliable methods for the initial value problem of the
fractional modified Korteweg–de Vries (mKdV) equations. Fractional differential equations are
essential for more precise simulation of numerous processes. The hybrid Yang transformation
decomposition method (YTDM) and Yang homotopy perturbation method (YHPM) are employed
in a very simple and straightforward manner to handle the current problems. The derivative of
fractional order is displayed in a Caputo form operator. To illustrate the conclusion given from the
findings, a few numerical cases are taken into account for their approximate analytical solutions.
We looked at two cases and contrasted them with the actual result to validate the methodologies.
These techniques create recurrence relations representing the proposed problem’s solution. It is
possible to find the series solutions to the given problems, and these solutions have components that
converge to precise solutions more quickly. Tables and graphs are used to describe the new results,
which demonstrate the present methods’ adequate accuracy. The actual and estimated outcomes are
demonstrated in graphs and tables to be quite similar, demonstrating the usefulness of the proposed
approaches. The innovation of the current work resides in the application of effective methods
that require less calculation and achieve a greater level of accuracy. Additionally, the suggested
approaches can be applied in the future to resolve other nonlinear fractional problems, which will be
a scientific contribution to the research community.

Keywords: fractional mKdV equation; analytical techniques; Caputo operator; Yang transform

1. Introduction

The study of fractional order derivatives and integrations is known as fractional cal-
culus (FC). When L’Hospital questioned Leibniz in 1965 about the derivative of fractional
order, he first proposed the concept of FC. The theory of FC was initially given as an
apparent paradox, but as time went on, it grew in popularity as a topic of study. Many
mathematicians were drawn to the field of FC due to its wide range of uses in several fields
of study. By employing FC rather than regular calculus, some of the significant physical
events in nature have been modeled more precisely. In the literature, the applications
of FC can be found in fluid traffic [1], airfoil [2], modeling of earthquake nonlinear os-
cillation [3], finance [4], cancer chemotherapy [5], electrodynamics [6], Zener model [7],
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Chaos theory [8], diabetes [9], Poisson–Nernst–Planck diffusion [10], hepatitis B disease
model [11], tuberculosis [12], fractional COVID-19 model [13], pine wilt disease [14], hepati-
tis B virus [15], and other applications in various areas of research [16–18]. Furthermore, the
FC can contribute significantly to modeling many nonlinear phenomena that can propagate
in different plasma models such as solitary waves, cnoidal waves, shock waves, rogue
waves, and so on [19–25].

Fractional partial differential equations (FPDEs) are currently regarded as the most
dependable and efficient method for creating the most precise mathematical models of a
variety of significant phenomena in physics and other applied sciences [26]. FPDEs are
more accurate at simulating many natural processes than simple PDEs, such as tuber-
culosis [27] and optics [28]. Since many complicated natural events are described using
nonlinear FPDEs, the study of FPDEs and the nonlinearity related to each topic is of greater
importance. Nehad et al. have provided the solutions to a few nonlinear FPDEs that can be
found in [29]. Similar to this, Hilfer and Ray have presented several effective methods for
solving specific nonlinear FPDEs in Refs. [30,31], respectively.

The study of this topic has become intriguing for scholars because of the aforemen-
tioned valuable uses of FC in real issues. In order to further expand the analysis of this
topic, mathematicians understood it was necessary to look into the numerical or analytical
solutions of FPDEs and their systems. As we all know, numerous significant mathematical
models that describe some physical processes in nature have been solved using numerical
and analytical approaches. To solve FPDEs to related systems, mathematicians have put
a lot of effort into creating and developing a number of methods. To solve FPDEs and
associated systems, significant and effective approaches are addressed, such as the first
integral method [32], the extended direct algebraic method [33], the modified Kudryashov
method [34], the finite difference method [35], the optimal homotopy asymptotic method
(OHAM) [36], the Adomian decomposition method (ADM) [37], the standard reductive
perturbation method (RPM) [38], the homotopy perturbation technique (HPT) [39–41],
the Elzaki transform decomposition method [42], the Haar wavelet method [43], the frac-
tional sub-equation method [44], the differential transform method (DTM) [45], and the
variational iteration method (VIM) with transformation [46].

The KdV equation was developed by Korteweg and de Vries in 1895 and used to
examine the waves that occur on shallow water surfaces. Many investigations have been
conducted on this precisely solvable model. The creation of acoustic waves in plasma
from ions and crystal lattices has several new applications that have been proposed by
researchers. A typical KdV equation has the following structure:

Kθ + 6KKς +Kςςς = 0. (1)

Numerous scientific fields have benefited from the massive use of the KdV equation,
such as the study of acoustic waves (AWs) in different plasma models, shallow water waves,
magneto-hydrodynamic waves in warm plasma, and bubble liquid mixes [47–52]. The KdV
model also is used to explain particular theoretical physical aspects related to quantum
mechanics. The algorithm is employed in the fields of aerodynamics, continuum mechanics,
fluid dynamics, and mass transport for the generation of solitons, shock waves, boundary
layer behavior, and turbulence. It has long been researched and applied. The basic KdV
equation has given rise to a number of revisions and generalizations, as documented in the
literature [53,54].

In this paper, we consider the following form of the modified Korteweg–de Vries
(mKdV) equation

D℘
θ K(ς, θ) + 6K2(ς, θ)Kς(ς, θ) +Kςςς(ς, θ) = 0, 0 < ℘ ≤ 1. (2)

Numerous scholars have made efforts to improve the methods already used to solve
FPDEs and associated systems by applying various transformations. The Laplace, natural,
and Mohand transformations [55–57], among others, are well-known transformations that
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can be used to reduce the original problem before using VIM, ADM, HPM, DTM, and other
techniques to solve the desired problems. The Yang transformation (YT) is essential in
resolving FPDEs and associated systems in the same framework. Differential equations
with constant coefficients can be solved using this transformation, which was developed by
Xiao-Jun Yang. The YT was initially applied to the solution of PDEs before being applied
to the solution of ordinary differential equations. Many researchers have now coupled
this transformation with other already-used techniques to solve more complex nonlinear
issues. The Homotopy perturbation transform technique (HPTM) and Yang transform
decomposition method (YTDM), which combines Yang transformation with the HPM and
ADM to develop new approaches based on YT, are used to solve the mKdV equation.

The rest of the study is organized as follows. Section 2 compiles some basic definitions.
Section 3 introduces the concept of HPTM, whereas Section 4 introduces the concept of
YTDM. The proposed methods convergence analysis is provided in Section 5. In Section 6,
various approximate solutions to the fractional mKdV equation are derived by using the
form of the initial value, and the structure of the solutions is displayed using graphs and
tables. In Section 8, the work’s conclusion is examined.

2. Preliminaries

Here, some important definitions are discussed which are necessary to complete the
present research task.

Definition 1. The operator in Caputo sense for the fractional derivative is [58]

D℘
θ K(ς, θ) =

1
Γ(k− ℘)

∫ θ

0
(θ − ℘)k−℘−1K(k)(ς, ψ)dψ, k− 1 < ℘ ≤ k, k ∈ N. (3)

Definition 2. The YT for the given function is [59]

Y{K(θ)} = M(u) =
∫ ∞

0
e
−θ
u K(θ)dθ, θ > 0, u ∈ (−θ1, θ2), (4)

and the inverse of the YT is
Y−1{M(u)} = K(θ). (5)

Definition 3. The YT of a function having the nth derivative is [59]

Y{Kn(θ)} = M(u)
un −

n−1

∑
k=0

Kk(0)
un−k−1 , ∀ n = 1, 2, 3, · · · (6)

Definition 4. The YT of the function having fractional derivative is [59]

Y{K℘(θ)} = M(u)
u℘

−
n−1

∑
k=0

Kk(0)
u℘−(k+1)

, n− 1 < ℘ ≤ n. (7)

3. Analysis of HPTM

Here, the general methodology of HPTM is applied for solving the FPDE.

D℘
θ K(ς, θ) = P1[ς]K(ς, θ) +Q1[ς]K(ς, θ), 0 < ℘ ≤ 1, (8)

having initial guess
K(ς, 0) = ξ(ς).

Here, D℘
θ = ∂℘

∂θ℘ is the Caputo-type operator, P1[ς] is linear, and Q1[ς] is nonlin-
ear function.
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By utilizing the YT, we get

Y[D℘
θ K(ς, θ)] = Y[P1[ς]K(ς, θ) +Q1[ς]K(ς, θ)], (9)

1
u℘
{M(u)− uK(0)} = Y[P1[ς]K(ς, θ) +Q1[ς]K(ς, θ)], (10)

where
M(K) = uK(0) + u℘Y[P1[ς]K(ς, θ) +Q1[ς]K(ς, θ)]. (11)

When utilizing the inverse of YT, we get

K(ς, θ) = K(0) + Y−1[u℘Y[P1[ς]K(ς, θ) +Q1[ς]K(ς, θ)]]. (12)

In terms of HPM, the basic solution in a power series is:

K(ς, θ) =
∞

∑
k=0

εkKk(ς, θ) (13)

with parameter ε ∈ [0, 1].
The nonlinear term is considered as

Q1[ς]K(ς, θ) =
∞

∑
k=0

εk Hn(K). (14)

Additionally, Hk(K) represents He’s polynomials, which reads [60]

Hk(K0,K1, ...,Kn) =
1

Γ(n + 1)
Dk

ε

[
Q1

(
∞

∑
k=0

εiKi

)]
ε=0

, (15)

where Dk
ε = ∂k

∂εk .
By putting (13) and (14) in (12), we have

∞

∑
k=0

εkKk(ς, θ) = K(0) + ε×
(

Y−1

[
u℘Y{P1

∞

∑
k=0

εkKk(ς, θ) +
∞

∑
k=0

εk Hk(K)}
])

. (16)

By comparing the coefficients of similar orders of ε, we obtain

ε0 : K0(ς, θ) = K(0),

ε1 : K1(ς, θ) = Y−1[u℘Y(P1[ς]K0(ς, θ) + H0(K))],

ε2 : K2(ς, θ) = Y−1[u℘Y(P1[ς]K1(ς, θ) + H1(K))],

.

.

.

εk : Kk(ς, θ) = Y−1[u℘Y(P1[ς]Kk−1(ς, θ) + Hk−1(K))],

k > 0, k ∈ N.

(17)

Lastly, the solution of Kk(ς, θ) is stated as

K(ς, θ) = lim
M→∞

M

∑
k=1

Kk(ς, θ). (18)
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4. Analysis of the YTDM

Here, the general methodology of the YTDM is applied to solve the FPDE

D℘
θ K(ς, θ) = P1(ς, θ) +Q1(ς, θ), 0 < ℘ ≤ 1, (19)

having initial guess
K(ς, 0) = ξ(ς).

Here, D℘
θ = ∂℘

∂θ℘ is the Caputo type operator, P1 is linear and Q1 is nonlinear function.
By utilizing the YT, we get

Y[D℘
θ K(ς, θ)] = Y[P1(ς, θ) +Q1(ς, θ)],

1
u℘
{M(u)− uK(0)} = Y[P1(ς, θ) +Q1(ς, θ)].

(20)

where
M(K) = uK(0) + u℘Y[P1(ς, θ) +Q1(ς, θ)], (21)

When utilizing the inverse of the YT, we get

K(ς, θ) = K(0) + Y−1[u℘Y[P1(ς, θ) +Q1(ς, θ)]. (22)

The series form solution of K(ς, θ) reads:

K(ς, θ) =
∞

∑
m=0

Km(ς, θ) (23)

and the nonlinear term reads

Q1(ς, θ) =
∞

∑
m=0
Am (24)

with

Am =
1

m!

[
∂m

∂`m

{
Q1

(
∞

∑
k=0

`kςk,
∞

∑
k=0

`kθk

)}]
`=0

. (25)

Inserting (23) and (24) into (22), we get

∞

∑
m=0

Km(ς, θ) = K(0) + Y−1u℘

[
Y

{
P1(

∞

∑
m=0

ςm,
∞

∑
m=0

θm) +
∞

∑
m=0
Am

}]
. (26)

Thus, by comparison we have

K0(ς, θ) = K(0), (27)

K1(ς, θ) = Y−1[u℘Y+{P1(ς0, θ0) +A0}
]
.

Hence, in general, for m ≥ 1, we have

Km+1(ς, θ) = Y−1[u℘Y+{P1(ςm, θm) +Am}
]
.

5. Convergence Analysis

In this part, we give the suggested techniques for convergence analysis.

Theorem 1. Let us assume that K and Kn(ς,℘) are defined in Banach space. If this is the case, the
series solution described by Equation (13) converges to the solution of Equation (8) if ∃ ς ∈ (0, 1)
such that ||Kn+1|| ≤ ς||Kn||, the convergence condition has been demonstrated [61].
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Theorem 2. The nonlinear term Q1(ς,℘) described by (24) that satisfies the Lipschitz condition
||K(Q1)−K(Q∗1)|| ≤ $||Q1 −Q∗1 ||. By means of the Lipschitz constant $, 0 ≤ $ < 1, for any
Q1,Q∗1 ∈ C[0, 1], The sequence leads to the accurate solution K if ||a0|| < ∞.

Proof. See [62]

6. Applications

Example 1. Let us consider the following nonlinear fractional mKdV equation

D℘
θ K(ς, θ) + 6K2(ς, θ)Kς(ς, θ) +Kςςς(ς, θ) = 0, 0 < ℘ ≤ 1, (28)

subjected to initial source

K(ς, 0) = − 2κ exp (κς)

exp (2κς) + 1
.

By utilizing YT, we get

Y
(

∂℘K
∂θ℘

)
= Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
. (29)

After that we obtain

1
u℘
{M(u)− uK(0)} = Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
, (30)

M(u) = uK(0) + u℘

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
. (31)

When utilizing the inverse of the YT, we get

K(ς, θ) = K(0) + Y−1

[
u℘

{
Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)}]
,

K(ς, θ) = − 2κ exp (κς)

exp (2κς) + 1
+ Y−1

[
u℘

{
Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)}]
.

(32)

Thus, by HPM

∞

∑
k=0

εkKk(ς, θ) = − 2κ exp (κς)

exp (2κς) + 1
+ ε

(
Y−1

[
u℘Y

[
−
(

∞

∑
k=0

εk Hk(K)

)
−
(

∞

∑
k=0

εkKk(ς, θ)

)
ςςς

]])
. (33)

Additionally, the nonlinear terms are taken in the form of He’s polynomial Hk(K) as

∞

∑
k=0

εk Hk(K) = K2(ς, θ)Kς(ς, θ). (34)

The first few nonlinear terms are determined as

H0(K) = K2
0(K0)ς,

H1(K) = K2
0(K1)ς + 2K0K1(K0)ς,

H2(K) = K2
0(K2)ς + 2K0K1(K1)ς + (K2

1 + 2K0K2)(K0)ς,

By comparing the coefficients of similar orders of ε, we have
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ε0 : K0(ς, θ) = − 2κ exp (κς)

exp (2κς) + 1
,

ε1 : K1(ς, θ) = Y−1

(
u℘Y

[
− (K0)ςςς − H0(K)

])
= −2κ4 exp (κς)(exp (2κς)− 1)

(exp (2κς) + 1)2
θ℘

Γ(℘+ 1)
,

ε2 : K2(ς, θ) = Y−1

(
u℘Y

[
− (K1)ςςς − H1(K)

])
= −κ7 exp (κς)(exp (4κς)− 6 exp (2κς)− 1)

(exp (2κς) + 1)3
θ2℘

Γ(2℘+ 1)
,

...

The obtained solution can be taken in series form as

K(ς, θ) = K0(ς, θ) +K1(ς, θ) +K2(ς, θ) + · · ·

K(ς, θ) = − 2κ exp (κς)

exp (2κς) + 1
− 2κ4 exp (κς)(exp (2κς)− 1)

(exp (2κς) + 1)2
θ℘

Γ(℘+ 1)
−

κ7 exp (κς)(exp (4κς)− 6 exp (2κς)− 1)
(exp (2κς) + 1)3

θ2℘

Γ(2℘+ 1)
+ · · ·

Utilizing the YTDM

By utilizing the YT, we get

Y
{

∂℘K
∂θ℘

}
= Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
. (35)

After that, we have

1
u℘
{M(u)− uK(0)} = Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
, (36)

M(u) = uK(0) + u℘Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
. (37)

When utilizing the inverse of the YT, we get

K(ς, θ) = K(0) + Y−1

[
u℘

{
Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)}]
,

K(ς, θ) = − 2κ exp (κς)

exp (2κς) + 1
+ Y−1

[
u℘

{
Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)}]
.

(38)

Thus, the series form solution is taken as

K(ς, θ) =
∞

∑
m=0

Km(ς, θ). (39)
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The Adomian polynomial is used to determine the nonlinear terms asK2(ς, θ)Kς(ς, θ) =

∑∞
m=0Am. Hence, we have

∞

∑
m=0

Km(ς, θ) = K(ς, 0) + Y−1

[
u℘Y

[
−Kςςς(ς, θ)−

∞

∑
m=0
Am

]]
,

∞

∑
m=0

Km(ς, θ) = − 2κ exp (κς)

exp (2κς) + 1
+ Y−1

[
u℘Y

[
−Kςςς(ς, θ)−

∞

∑
m=0
Am

]]
.

(40)

The first few nonlinear terms are determined as

A0 = K2
0(K0)ς,

A1 = K2
0(K1)ς + 2K0K1(K0)ς,

A2 = K2
0(K2)ς + 2K0K1(K1)ς + (K2

1 + 2K0K2)(K0)ς.

When comparing both sides, we have

K0(ς, θ) = − 2κ exp (κς)

exp (2κς) + 1
.

For m = 0

K1(ς, θ) = −2κ4 exp (κς)(exp (2κς)− 1)
(exp (2κς) + 1)2

θ℘

Γ(℘+ 1)
.

For m = 1

K2(ς, θ) = −κ7 exp (κς)(exp (4κς)− 6 exp (2κς)− 1)
(exp (2κς) + 1)3

θ2℘

Γ(2℘+ 1)
.

In the same sense, the remaining terms for (m ≥ 3) are easily obtained

K(ς, θ) =
∞

∑
m=0

Km(ς, θ) = K0(ς, θ) +K1(ς, θ) +K2(ς, θ) + · · ·

K(ς, θ) = − 2κ exp (κς)

exp (2κς) + 1
− 2κ4 exp (κς)(exp (2κς)− 1)

(exp (2κς) + 1)2
θ℘

Γ(℘+ 1)
−

κ7 exp (κς)(exp (4κς)− 6 exp (2κς)− 1)
(exp (2κς) + 1)3

θ2℘

Γ(2℘+ 1)
+ · · ·

By taking ℘ = 1 we get

K(ς, θ) = − 2κ exp (κ(ς− κ2θ))

exp (2κ(ς− κ2θ)) + 1
. (41)

Example 2. Let us assume the nonlinear fractional mKdV equation

D℘
θ K(ς, θ) + 6K2(ς, θ)Kς(ς, θ) +Kςςς(ς, θ) = 0, 0 < ℘ ≤ 1, (42)

subjected to initial source

K(ς, 0) =
4 exp (ς)

exp (2ς) + 1
.

By utilizing the YT, we get

Y
(

∂℘K
∂θ℘

)
= Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
. (43)
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After that, we obtain

1
u℘
{M(u)− uK(0)} = Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
, (44)

M(u) = uK(0) + u℘

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
. (45)

When utilizing the inverse of the YT, we get

K(ς, θ) = K(0) + Y−1

[
u℘

{
Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)}]
,

K(ς, θ) =
4 exp (ς)

exp (2ς) + 1
+ Y−1

[
u℘

{
Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)}]
.

(46)

Thus, by HPM

∞

∑
k=0

εkKk(ς, θ) =
4 exp (ς)

exp (2ς) + 1
+ ε

(
Y−1

[
u℘Y

[
−
(

∞

∑
k=0

εk Hk(K)

)
−
(

∞

∑
k=0

εkKk(ς, θ)

)
ςςς

]])
. (47)

Additionally, the nonlinear terms are taken in the form of He’s polynomial Hk(K) as

∞

∑
k=0

εk Hk(K) = K2(ς, θ)Kς(ς, θ). (48)

The first few nonlinear terms are determined as

H0(K) = K2
0(K0)ς,

H1(K) = K2
0(K1)ς + 2K0K1(K0)ς,

H2(K) = K2
0(K2)ς + 2K0K1(K1)ς + (K2

1 + 2K0K2)(K0)ς.

By comparing the coefficients of similar orders of ε, we have

ε0 : K0(ς, θ) =
4 exp (ς)

exp (2ς) + 1
,

ε1 : K1(ς, θ) = Y−1

(
u℘Y

[
− (K0)ςςς − H0(K)

])
=

4 exp (ς)

(exp (2ς) + 1)4 (exp (6ς) + 73 exp (4ς)−

73 exp (2ς)− 1)
θ℘

Γ(℘+ 1)
,

ε2 : K2(ς, θ) = Y−1

(
u℘Y

[
− (K1)ςςς − H1(K)

])
=

4 exp (ς)

(exp (2ς) + 1)7 (exp (12ς) + 2158 exp (10ς)+

2863 exp (8ς)− 26236 exp (6ς) + 2863 exp (4ς) + 2158 exp (2ς) + 1)
θ2℘

Γ(2℘+ 1)
,

...

The obtained solution in series form will take the form
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K(ς, θ) = K0(ς, θ) +K1(ς, θ) +K2(ς, θ) + · · ·

K(ς, θ) =
4 exp (ς)

exp (2ς) + 1
+

4 exp (ς)

(exp (2ς) + 1)4 (exp (6ς) + 73 exp (4ς)− 73 exp (2ς)− 1)
θ℘

Γ(℘+ 1)
+

4 exp (ς)

(exp (2ς) + 1)7 (exp (12ς) + 2158 exp (10ς) + 2863 exp (8ς)− 26236 exp (6ς) + 2863 exp (4ς)+

2158 exp (2ς) + 1)
θ2℘

Γ(2℘+ 1)
+ · · ·

Utilizing the YTDM

By utilizing the YT, we get

Y
{

∂℘K
∂θ℘

}
= Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
. (49)

After that, we have

1
u℘
{M(u)− uK(0)} = Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
, (50)

M(u) = uK(0) + u℘Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)
. (51)

When utilizing the inverse of the YT, we get

K(ς, θ) = K(0) + Y−1

[
u℘

{
Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)}]
,

K(ς, θ) =
4 exp (ς)

exp (2ς) + 1
+ Y−1

[
u℘

{
Y

(
− 6K2(ς, θ)Kς(ς, θ)−Kςςς(ς, θ)

)}]
.

(52)

Thus, the solution in series form reads

K(ς, θ) =
∞

∑
m=0

Km(ς, θ). (53)

The Adomian polynomial is used to determine nonlinear terms as K2(ς, θ)Kς(ς, θ) =

∑∞
m=0Am. Hence, we have

∞

∑
m=0

Km(ς, θ) = K(ς, 0) + Y−1

[
u℘Y

[
−Kςςς(ς, θ)−

∞

∑
m=0
Am

]]
,

∞

∑
m=0

Km(ς, θ) =
4 exp (ς)

exp (2ς) + 1
+ Y−1

[
u℘Y

[
−Kςςς(ς, θ)−

∞

∑
m=0
Am

]]
.

(54)

The first few nonlinear terms are determined as

A0 = K2
0(K0)ς,

A1 = K2
0(K1)ς + 2K0K1(K0)ς,

A2 = K2
0(K2)ς + 2K0K1(K1)ς + (K2

1 + 2K0K2)(K0)ς.
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When comparing both sides, we have

K0(ς, θ) =
4 exp (ς)

exp (2ς) + 1
.

For m = 0

K1(ς, θ) =
4 exp (ς)

(exp (2ς) + 1)4 (exp (6ς) + 73 exp (4ς)− 73 exp (2ς)− 1)
θ℘

Γ(℘+ 1)
.

For m = 1

K2(ς, θ) =
2 exp (ς)

(exp (2ς) + 1)7 (exp (12ς) + 2158 exp (10ς) + 2863 exp (8ς)− 26236 exp (6ς) + 2863 exp (4ς)+

2158 exp (2ς) + 1)
θ2℘

Γ(2℘+ 1)
.

and in the same sense, the other terms for (m ≥ 3) are easily obtained

K(ς, θ) =
∞

∑
m=0

Km(ς, θ) = K0(ς, θ) +K1(ς, θ) +K2(ς, θ) + · · ·

K(ς, θ) =
4 exp (ς)

exp (2ς) + 1
+

4 exp (ς)

(exp (2ς) + 1)4 (exp (6ς) + 73 exp (4ς)− 73 exp (2ς)− 1)
θ℘

Γ(℘+ 1)
+

2 exp (ς)

(exp (2ς) + 1)7 (exp (12ς) + 2158 exp (10ς) + 2863 exp (8ς)− 26236 exp (6ς) + 2863 exp (4ς)+

2158 exp (2ς) + 1)
θ2℘

Γ(2℘+ 1)
+ · · ·

By taking ℘ = 1, we get

K(ς, θ) =
4(exp (θ − ς) + 3 exp (27θ − 3ς) + 3 exp (29θ − 5ς) + exp (55θ − 7ς))

1 + 4 exp (2θ − 2ς) + 6 exp (28θ − 4ς) + 4 exp (54θ − 6ς) + exp (56θ − 8ς)
. (55)

7. Numerical Simulation Studies

The graphical and numerical results indicate the usefulness of the method, and its
accuracy is evaluated in view of exact results. The implementation of our methods gives
results with good performance and simplicity. The solution plot of K(ς, θ) has been
compared to the actual solution plot, which is depicted in Figure 1. Figure 2 illustrates the
mathematical representations of K(ς, θ) for λ = 0.8 and 0.6. Similar plots of K(ς, θ) are
shown in Figure 3 for various values of λ = 0.25, 0.50, 0.75, and 1. For several values of ς
and θ of problem 1, the approximation to the equation K(ς, θ) is displayed in Table 1. The
solution plot of K(ς, θ) has been compared to the actual solution plot, which is depicted in
Figure 4. Figure 5 illustrates the mathematical representations of K(ς, θ) for λ = 0.8 and
0.6. Similar plots of K(ς, θ) are shown in Figure 6 for various values of λ = 0.25, 0.50, 0.75,
and 1. For several values of ς and θ of problem 2, the approximation to the equation K(ς, θ)
is displayed in Table 2. There would have been better approximation solutions if we had
increased the order of the approximation, which would have increased the number of terms
in the solution.
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Figure 1. The profile of both the exact solution (a) and obtained solution (b) are considered.

Figure 2. The obtained solution is graphically depicted at (a) ℘ = 0.8 and (b) ℘ = 0.6.

Figure 3. The obtained solution is graphically depicted for various order of ℘ in (a) three dimensions
and (b) two dimensions.

Figure 4. The profile of both exact solution (a) and obtained solution (b) are considered.
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Figure 5. The obtained solution is graphically depicted at (a) ℘ = 0.8 and (b) ℘ = 0.6.

Figure 6. The obtained solution is graphically depicted for various order of ℘ in (a) three dimensions
and (b) two dimensions.

Table 1. Behavior of both the obtained approximate solution and exact solution are considered for
various orders of ℘, for example, 1.

θ ς ℘ = 0.4 ℘ = 0.6 ℘ = 0.8 ℘ = 1 (Approx) ℘ = 1 (Exact)

0.2 0.986366 0.984417 0.982469 0.980521 0.980521
0.4 0.935975 0.932435 0.928896 0.925358 0.925358

0.01 0.6 0.857688 0.853125 0.848563 0.844003 0.844003
0.8 0.763194 0.758193 0.753193 0.748196 0.748196
1 0.663457 0.658485 0.653515 0.648547 0.648547

0.2 0.986590 0.984630 0.982672 0.980713 0.980713
0.4 0.936382 0.932823 0.929265 0.925709 0.925709

0.02 0.6 0.858213 0.853625 0.849039 0.844456 0.844456
0.8 0.763770 0.758741 0.753715 0.748692 0.748692
1 0.664029 0.659029 0.654034 0.649041 0.649041

0.2 0.986811 0.984842 0.982874 0.980904 0.980904
0.4 0.936783 0.933206 0.929632 0.926058 0.926058

0.03 0.6 0.858730 0.854119 0.849512 0.844908 0.844908
0.8 0.764336 0.759283 0.754234 0.749189 0.749189
1 0.664591 0.659568 0.654549 0.649535 0.649535

0.2 0.987029 0.985051 0.983076 0.981094 0.981094
0.4 0.937180 0.985051 0.929998 0.926407 0.926407

0.04 0.6 0.859241 0.854611 0.849984 0.845359 0.845359
0.8 0.764896 0.759821 0.754751 0.749685 0.749685
1 0.665149 0.660104 0.655063 0.650029 0.650029

0.2 0.987246 0.985260 0.983277 0.981284 0.981284
0.4 0.937574 0.933967 0.930364 0.926756 0.926756

0.05 0.6 0.859749 0.855099 0.850455 0.845811 0.845811
0.8 0.765453 0.760357 0.755267 0.750181 0.750181
1 0.665702 0.660636 0.655576 0.650523 0.650523
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Table 2. Behavior of both the obtained approximate solution and the exact solution for various orders
of ℘ are considered, for example, 2.

θ ς ℘ = 0.4 ℘ = 0.6 ℘ = 0.8 ℘ = 1 (Approx) ℘ = 1 (Exact)

0.2 2.110317 2.039013 1.974863 1.967541 1.967541
0.4 2.093671 1.977584 1.873145 1.861473 1.861473

0.01 0.6 1.951520 1.825541 1.712203 1.699649 1.699649
0.8 1.727575 1.616957 1.517440 1.506470 1.506470
1 1.474678 1.389601 1.313060 1.304643 1.304643

0.2 2.118130 2.046452 1.981980 1.974024 1.974024
0.4 2.106391 1.989695 1.884731 1.872782 1.872782

0.02 0.6 1.965324 1.838684 1.724776 1.712267 1.712267
0.8 1.739696 1.628498 1.528480 1.517709 1.517709
1 1.484001 1.398477 1.321551 1.313350 1.313350

0.2 2.125862 2.053852 1.989092 1.980094 1.980094
0.4 2.118979 2.001743 1.896311 1.883925 1.883925

0.03 0.6 1.978985 1.851759 1.737343 1.724946 1.724946
0.8 1.751690 1.639979 1.539514 1.529116 1.529116
1 1.493226 1.407307 1.330038 1.322232 1.322232

0.2 2.133542 2.061228 1.996203 1.985736 1.985736
0.4 2.131482 2.013751 1.907887 1.894886 1.894886

0.04 0.6 1.992553 1.864790 1.749905 1.737675 1.737675
0.8 1.763604 1.651421 1.550545 1.540690 1.540690
1 1.502389 1.416107 1.338522 1.331291 1.331291

0.2 2.141182 2.068584 2.003311 1.990940 1.990940
0.4 2.143921 2.025728 1.919460 1.905650 1.905650

0.05 0.6 2.006053 1.877788 1.762464 1.750447 1.750447
0.8 1.775457 1.662833 1.561573 1.552427 1.552427
1 1.511506 1.424885 1.347003 1.340528 1.340528

8. Conclusions

In conclusion, we successfully applied the homotopy perturbation transform method
and Yang transform decomposition method to the initial value problem-related mKdV
equation with variable coefficients to obtain an analytical approximation. Two stages are
taken to finish the numerical solutions. The Yang transformation is used to break down the
target issues into simpler forms in the first stage, after which the perturbation method and
decomposition method are utilized to get the solutions. The tables and graphs demonstrate
that sophisticated methods are more effective in analyzing how successfully the targeted
problems are being addressed. The solutions are given at several fractional orders, and it
has been shown that fractional solutions quickly converge to integer-order solutions. The
graphical representation makes it very clear how the fractional-order and integer-order
solutions are related to one another. Due to the approaches’ precision and simplicity, they
can be used to solve high nonlinear FPDEs and related systems.
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