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Abstract: In this study, we perform a dynamical analysis of a generalized tumor model using the
Caputo fractional-order derivative. Tumor growth models are widely used in biomedical research to
understand the dynamics of tumor development and to evaluate potential treatments. The Caputo
fractional-order derivative is a mathematical tool that is recently being applied to model biological
systems, including tumor growth. We present a detailed mathematical analysis of the generalized
tumor model with the Caputo fractional-order derivative and examine its dynamical behavior. Our
results show that the Caputo fractional-order derivative provides a more accurate description of
the tumor growth dynamics compared to classical integer-order derivatives. We also provide a
comprehensive stability analysis of the tumor model and show that the fractional-order derivative
allows for a more nuanced understanding of the stability of the system. The least-square curve fitting
method fits several biological parameters, including the fractional-order parameter α. In conclusion,
our study provides new insights into the dynamics of tumor growth and highlights the potential of
the Caputo fractional-order derivative as a valuable tool in biomedical research. The results of this
study shall have significant implications for the development of more effective treatments for tumor
growth and the design of more accurate mathematical models of tumor development.

Keywords: tumor–immune interaction; Caputo fractional derivative; stability analysis; parameter
fitting; numerical simulation

1. Introduction

This century is characterized by a high frequency of advanced research and investiga-
tions involving fractional-order integrals and derivatives. For example, big data, artificial
intelligence, and machine learning are the top trending topics in applied scientific re-
search. To better understand them, we need fractional dynamics as well as fractional-order
thinking [1]. In this article, we use the Caputo fractional-order derivative to analyze the
tumor–macrophage model using real medical data due to the fact that the study of tumor–
immune system interactions has been ranked as one of the most complicated and varied
phenomena in the field. Various effector cells, including monocytes and macrophages,
make up the immune system. Fast-acting effector cells that release cytokines that activate
and attract other effector cells constitute the front line of defense against malignancies.
These effector cells launch the immune response against transformed or tumor cells after
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they have been activated [2]. One type of white blood cell in the body, macrophages,
is responsible for squishing invading germs in the tissues. They assist in the repair of
damaged tissue as well.

Recent research on tumor–macrophage interaction systems [3,4] shows that macrophages
can perform both anti-tumor and pro-tumor activities, denoted by M1 designating macrophages
of type-1 cells called anti-tumor macrophages, and M2 designating macrophages of type-2 cells
called pro-tumor macrophages [5]. Furthermore, in [6], it is proposed that re-polarizing
macrophages towards these traditionally activated anti-tumor cells (M1) is a successful treat-
ment for tumor eradication. Tumors, on the other hand, have a reputation for being extremely
lethal. According to a 2015 estimate by the World Health Organization, the global incidence
of cancer and other tumors is expected to increase by as much as 70 percent over the next
two decades. As a result, a lot of effort is required to keep tumors under control. Because of
this, there has been an explosion of theoretical and practical information regarding cancer as
well as the underlying mechanisms of tumor–immune interaction dynamics [7–10].

The immune system plays a vital role in eliminating cancer cells. T cells (including
CD4+ T cells and CD8+ T cells), B cells, macrophages, and natural killer (NK) cells are
among the most vital components of the immune system [11]. Innate and adaptive immune
responses rely heavily on macrophages. These cells populate the tumor microenvironment
in the greatest numbers. Scientific studies have demonstrated that macrophages are partic-
ularly effective at destroying cancer cells. It is also crucial to focus on macrophages while
developing novel oncological therapies. By blocking CSF1 receptors on macrophages using
antibodies and small molecule medicines, tumor reduction can be achieved as a therapeutic
goal. However, peripheral events in the tumor microenvironment are both complicated and
dynamic. Because of this, developing strategies for curing or managing cancer is a daunting
challenge. Tumor–immune dynamics is a field that greatly benefits from mathematical mod-
eling because it allows researchers to better understand the complex interaction between
immune cells and cancer cells. Mathematical models have been helpful to many scientists
who are trying to unravel the mysteries of cancer development. Banerjee and Sarkar [12]
are one group that has considered the delay-induced tumor–immune system model and
cancerous tumor progression. The mathematical model of the interaction between tumor
cells and macrophages has been investigated. Furthermore, in [13], the authors suggest a
tumor growth model that takes into account the impact of radiotherapy by building it on
the foundation of tumor radio-biologic pathways. They are looking into how radiotherapy
for tumors can be improved by re-oxygenating hypnotized cells. Another study [14] used
GWN to assess the quality of interactions between tumor cells and immune cells, as well
as the efficacy of chemotherapy. By using an integer-order differential equation system,
Eftimie and Barelle [15] modeled the dynamics of interactions between lung cancer and
macrophages of varying phenotypes. For DNA damage and autophagy in lung cancer,
Sarmah et al. [16] developed a seven-dimensional mathematical model. They also did a
parameter recalibration analysis and a local and global sensitivity analysis to have a better
understanding of the system dynamics.

In order to gain an understanding of the intricate workings of the tumor–macrophage
interaction system, a significant amount of research has been conducted in this area [17–19].
The majority of the research work that is performed on tumor–macrophage interaction
models is carried out with the use of integer-order differential equations. In the realm
of biology, the idea of fractional-order differential equations with time delay has been
applied often during the past few decades [20–23]. This is only due to the fact that models
of biological systems developed by differential equations with fractional order display
more realistic results and are more accurate for the description of hereditary and memory
properties of the system in comparison to models described by integer-order differential
equations. This is the only reason why this is a rare one. Nearly every mathematical model
of a biological system has some form of long-range historical memory. This might take the
form of a delay caused by the incubation period before vectors become infectious, a delay
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in the activation of effector cells such as macrophages by tumor interaction, or something
along those lines.

For 300 years, only mathematicians, physicists, and engineers have had any need for
fractional calculus. Fractional operations have traditionally been used in the traditional
fields of commerce, healthcare, physics, synchronization of unstable systems, atmospheric
ocean problems, fractal dynamics, geology, remote sensing, heat diffusion models, preda-
tory species, epidemiology, and biology. Recent years have seen the introduction of a
number of distinct fractional-order epidemiological models that are founded on the Caputo
differential operator. Either the researchers have made new models, or they have shown
that the existing models work better when the Caputo operator is used to look at them. A
fractional-order Gompertz model was developed by researchers in [24], and they showed
that the fractional-order Gompertz model demonstrated a better fit to the available real
data when the order of the fractional derivative is taken as 0.68 as compared to a model
of integer-order. This was demonstrated by citing the study in which the fractional-order
Gompertz model was developed. In the article [25], the authors investigate the stability fea-
tures of a fractional-order model of the interaction between the immune system and tumors.
In the article [26], researchers suggested a fundamental and straightforward fractional-
order model to explore and investigate the dynamical behavior of the tumor–immune
interaction system.

2. Advantages of Fractional Epidemic Models

Fractional epidemic models are mathematical models that use fractional calculus to
describe the spread of infectious diseases. Here are some advantages of using fractional
epidemic models:

1. Improved accuracy: Fractional calculus allows for more accurate modeling of com-
plex systems that cannot be easily described by traditional integer-order differential
equations. This leads to more accurate predictions of disease dynamics and better
decision making in public health;

2. Flexibility: Fractional models can be adapted to fit a variety of data sets, including
nonlinear and non-stationary data. This allows for a more flexible and adaptable
approach to modeling infectious disease spread;

3. Early detection: Fractional models can help detect disease outbreaks earlier than
traditional models, which rely on historical data. This allows for more rapid imple-
mentation of control measures and containment strategies;

4. Capturing long-term memory: Fractional models can account for long-term memory
effects, such as the influence of previous outbreaks or social interactions, that may
affect the spread of disease. This can lead to a more accurate description of disease
dynamics and better prediction of future outbreaks;

5. Improving public health policies: Fractional models can be used to evaluate the
effectiveness of different public health policies and interventions, such as vaccination
programs or social distancing measures. This allows policymakers to make informed
decisions based on data and modeling results.

3. Why Caputo Operator?

Traditional models make use of local differential and integral operators; however,
these operators neglect the specifics of the epidemic that is being researched. Because of
this, the memory characteristics of the underlying system are not taken into account by
standard calculus. Recent research has demonstrated that nonlocal operators are preferable
to classical ones. As a result, these operators are the only option for including memory
effects in a deterministic model of the epidemic. Recently, in the scientific literature, a
number of various epidemic models for the infection caused by the interaction between
tumors and macrophages have been presented.

The fractional-order differential operators have been applied in the development of a
good number of them, with Caputo being the one that is used the majority of the time. On
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the other hand, the vast majority of study articles hardly ever offer an explanation for why
the Caputo operator was applied in the research. In this regard, we made an attempt to
describe some of the important reasons why one should keep in mind the Caputo operator
while modeling an infectious disease using nonlinear differential equations. These reasons
are discussed in more detail below, along with other important justifications for the use of
the fractional-order operator in the tumor–macrophage interaction model considered in
this research work.

1. By simply replacing n ∈ N with α ∈ C, Re(α) > 0, the famous Riemann–Liouville
integral formula is derived from the Cauchy formula for repeated integration; this
fractional integral formula is now the foundation for the development of various
numerical methods used to solve fractional ordinary and partial differential equations;

2. Caputo’s version of classical epidemiological models has been successfully applied in
recent works [27–30], coupled with specifics for the presence of a unique solution and
stability analysis. There, numerical simulations were used to show why the Caputo
variant is better than the traditional one;

3. Recent publications in the field of epidemiology show that traditional models were
not able to accurately capture the complicated and chaotic dynamics of the spread of
infections. Instead, real data about the epidemic, mostly from reliable sources such as
the World Health Organization and empirically published papers, were used to verify
and confirm the Caputo versions;

4. Furthermore, when we use Caputo’s differential operator to examine the disease’s
behavior under different biological parameter values, we obtain a clear picture of
the basic reproductive number, which explains the average number of secondary
infections produced when an infectious individual enters a completely susceptible
class. Consider, for instance, [31,32] and the majority of the references therein.

In this paper, we generalize an integer-order tumor–macrophage interaction model
given by S. Yaqin et al. [5] by introducing the Caputo-type fractional-order derivative. The
mathematical model proposed by S. Yaqin et al. [5] is given by the following three nonlinear
ordinary differential equations:

dT
dt

= aT(1− bT)− f TM1 + gTM2,

dM1

dt
= e1TM1 − d1M1 − r1M1 + r2M2,

dM2

dt
= e2TM2 − d2M2 + r1M1 − r2M1,

(1)

where T, M1, and M2 represent the populations of tumor cells, anti-tumor cells (M1 type of
cells), and pro-tumor cells (M2 type of cells), respectively. Furthermore, a, b, f , g, e1, d1, r1, r2, e2,
and d2 are all positive constants. For biological presumptions of model (1) and its dimen-
sionless form, see [5]. The parameters of the above model are mentioned in Table 1. Now,
our proposed Caputo-based fractional-order tumor–macrophage interaction model in
dimensionless form is given by

Dα
0,tx(t) = $

′
x(t)(1− β

′
x(t))− δ

′
x(t)y(t) + η

′
x(t)z(t),

Dα
0,ty(t) = ζ

′
0x(t)y(t)− µ

′
1y(t)− γ

′
1y(t) + γ

′
2z(t),

Dα
0,tz(t) = ζ

′
x(t)z(t)− µ

′
2z(t) + γ

′
1y(t)− γ

′
2z(t),

(2)

where α > 0 is the order of derivative and α ∈ (n− 1, n), n ∈ N. Furthermore, x(t), y(t)
and, z(t) represent the population size of tumor cells, M1 cells, and M2 cells, respectively, at
time t. For the biological meaning of parameters involved in our proposed models, see [5].

The remaining sections of the paper are presented as follows: In Section 4, we intro-
duce some fundamental ideas, definitions, and theorems of fractional-order derivatives
that were employed in the study of the model. Both the existence and the uniqueness of
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solutions to the model are examined in Section 5. In Section 6, we fitted some biological
parameters and found the best value for the fractional order α with the help of real medical
data. We determined equilibrium states, performed linearization, and conducted a stability
analysis of the Caputo model in Section 7. The results of the numerical simulation are
discussed in Section 8. The article concludes with some final thoughts and potential next
steps in Section 9.

Table 1. System parameters and variables used for numerical simulation.

Parameters Values Biological Interpretation Dimensionless Form Source

T (0) 106 cells (c) No. of initial T cells x0
M1 (0) 106 cells No. of initial M1 cells y0
M2 (0) 106 cells No. of initial M2 cells z0

a 0.565/day Growth rate of T cells $
′

b−1 2× 109/cells Environmental carrying capacity
1
β
′

d1 0.2/day (d) Mortality rate of M1 cells µ
′
1

d2 0.2/day (d) Mortality rate of M2 cells µ
′
2 [33]

f 2× 10−6/cd Death rate of T cells by M1 cells δ
′

g 10−7/cd Death rate of T cells by M2 cells η
′

e1 10−6/cd Enabling rate of M1 by T cells ζ
′
0 = 1

e2 9× 10−7/cd Enabling rate of M2 by T cells ζ
′

r1 0.05/day M1 to M2 conversion rate γ
′
1

r2 0.04/day M2 to M1 conversion rate γ
′
2

4. Preliminaries

This section reviews some important definitions and concepts of fractional-order
derivatives required to analyze our proposed model based on the Caputo fractional-
order operator.

Definition 1 ([34]). Consider a function ϕ(t), t > 0. The Riemann–Liouville integral operator
ϕ(t) of order α is defined by the following:

Iα ϕ(t) =
∫ t

0

(t− r)α−1

Γ(α)
ϕ(r)dr,

where n := dαe is the smallest integer ≥ α and for n = 1, the above integral operator reduces to
first-order integral operator.

The fractional-order derivative of the above function is defined by the following:

Dα ϕ(t) = In−αD(n)ϕ(t),

where
(

D =
d
dt

)
.

Definition 2 ([35]). Consider a real valued function ϕ(t), t > 0.The Caputo-type fractional
derivative of order α > 0 is given by the following:

Dα ϕ(t) =
1

Γ(n− α)

∫ t

0
(t− r)n−α−1 ϕ(n)(r)dr,

where n is an integer, α ∈ (n− 1, n) and Dα ϕ(t) denotes the Caputo-type fractional-order
operator CDα

0,t ϕ(t).
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Theorem 1 ([36]). Consider a system of fractional-order differential equations:

Dα
b ϕ(t) = ϕ(t, Y(t)), Y(t0) = Y0. (3)

Let J(Y∗) be the Jacobian matrix of system (3) estimated at the equilibrium point Y∗. The
following statements will always be true:

1 The equilibrium point Y∗ is locally asymptotically stable if and only if all eigenvalues λi,
i = 1, 2, 3, . . . , n of Jacobian matrix J(Y∗) satisfy | arg λi| > απ/2;

2 The equilibrium point Y∗ is stable if and only if all eigenvalues λi, i = 1, 2, 3, . . . , n of
jacobian matrix J(Y∗) satisfy | arg λi| ≥ π/2 and eigenvalues with | arg λi|=απ/2 have
same algebraic and geometric multiplicity;

3 The equilibrium point Y∗ is unstable if and only if there exist eigenvalues λi, for some
i = 1, 2, 3, . . . , n of Jacobian matrix J(Y∗) such that | arg λi| < απ/2.

5. Existence and Uniqueness of Solutions of Caputo System

In this section, we prove the existence, uniqueness, and positivity of the solutions of
the fractional-order tumor model (2) with the help of the following lemma and definitions.

Lemma 1 ([37]). Consider the system of equations given by (2):

Dαx(t) = $
′
x(1− β

′
x)− δ

′
xy + η

′
xz,

Dαy(t) = xy− µ
′
1y− γ

′
1y + γ

′
2z,

Dαz(t) = ζ
′
xz− µ

′
2z + γ

′
1y− γ

′
2z.

We will choose the initial conditions as follows: x(t0) = x0, y(t0) = y0, z(t0) = z0.
The system (2) can be written in the following form:

DαY(t) = R1Y(t) + x(t)R2Y(t), Y(t0) = Y0, (4)

where, Y(t)=

x(t)
y(t)
z(t)

, Y(0)=

x(0)
y(0)
z(0)

, R1=

$
′

0 0
0 −µ

′
1 − γ

′
1 γ

′
2

0 γ
′
1 −µ

′
2 − γ

′
2

, and

R2=

−$
′
β
′ −δ

′
η
′

1 0 0
0 0 ζ

′

.

The following definitions are required for the existence and uniqueness of solutions of
system (4) [37,38].

Definition 3. Let us consider C[0, θ] to be a class of continuous column vector Y(t), with compo-
nents (functions) x(t), y(t), z(t) ∈ C[0, θ], as the class of continuous function on the interval [0, θ].
Then, the norm of Y ∈ C[0, θ] is given by the following:

‖Y‖ = sup
t
| exp(−nt)x(t)|+ sup

t
| exp(−nt)y(t)|+ sup

t
| exp(−nt)z(t)|.

Definition 4. Y ∈ C[0, θ] is a column vector that satisfies the initial value problem (4) and,
therefore, is the solution of the system of equations given by (4) if

1. (t, Y(t)) ∈ D, t ∈ [0, θ]. Where D = [0, θ] × U, U = [(x, y, z) ∈ R3
+ : |x| ≤ u,

|y| ≤ v, |z| ≤ w], and u, v, w are positive constants;
2. Y(t) satisfies the system (4).

Theorem 2. The system of equations given by (4) has a unique solution Y ∈ C[0, θ].
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Proof. With the help of properties of fractional-order derivatives, the system of fractional-
order differential Equation (4) can be written as follows:

I1−α d
dt

Y(t) = R1Y(t) + x(t)R2Y(t).

Operating Iα on both sides, we have

Y(t) = Y(0) + Iα[R1Y(t) + x(t)R2Y(t)]. (5)

Now, let us consider an operator G : C[0, θ] −→ C[0, θ], which is defined by the following:

G[Y(t)] = Y(0) + Iα[R1Y(t) + x(t)R2Y(t)]. (6)

Therefore, we have

exp(−nt)[G[Y(t)]− G[Z(t)]] ≤ exp(−nt)Iα[R1[Y(t)− Z(t)] + x(t)R2[Y(t)− Z(t)]]

≤ 1
Γ(α)

∫ t
0 (t− c)α−1 exp(−n(t− c))[Y(c)− Z(c)]

exp(−nc)[R1 + uR2]ds

≤ (R1 + uR2)

nα
‖Y(t)− Z(t)‖

∫ t
0

cα−1

Γ(α)

=⇒ ‖G[Y(t)− Z(t)]‖ ≤ R1 + uR2

nα
‖Y(t)− Z(t)‖. (7)

Let us choose the value of n, such that R1 + uR2 < nα ( see [39]). Then, from (7), we obtain

‖G[Y(t)− Z(t)]‖ < ‖Y(t)− Z(t)‖.

The operator G given by (6) has a fixed point. Consequently, system (5) has a unique
solution Y ∈ C[0, θ]. Now from system (5), we have

Y(t) = Y(0) +
tα

Γ(α + 1)
[R1Y(0) + x(0)R2Y(0)] + Iα+1[R1Y

′
(t) + x

′
(t)R2Y(t) + x(t)R2Y

′
(t)],

and

exp(−nt)Y
′
(t) = exp(−nt)[

tα−1

Γ(α)
[R1Y(0) + x(0)R2Y(0)] + Iα[R1Y

′
(t)

+x
′
(t)R2Y(t) + x(t)R2Y

′
(t)]].

Therefore, from the above analysis, it can be deduced that Y
′
(t) ∈ C[0, θ].

Again, from system (5), we have

DαY(t) = R1Y(t) + x(t)R2Y(t),

and

Y(0) = Y0 + Iα[R1Y(t)+x(t)R2Y(t)].

Hence, the system of equations given by (5) is equivalent to the system of equations
given by (2).

6. Fitting of Biological Parameters with Real Medical Data

When working with mathematical models that make use of real data, the most impor-
tant issue that has to be addressed is validating the models and finding the ideal values
for the parameters. This is due to the fact that the majority of the time, the parameter
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values cannot be precisely determined from the obtained data. It is absolutely necessary to
acquire fitted parameter values for the model in question. By taking into account both the
early behavior of the epidemic as well as the demographic aspects that are linked with the
disease, it is possible to simply compute some of the parameters that are associated with
epidemics. The values of the parameters can also be obtained from the existing literature,
which can then be used as a guide for creating estimations, despite the fact that the latter
technique can occasionally cause the results to behave in an unpredictable way. It is vital
to discover the right biological parameters that characterize the cells in order to collect
the data for an authentic and reliable number of tumor cells. This will allow the data
to be collected. These kinds of real-life examples can be provided for a length of time
spanning from days, to weeks, to months, and even years at a time. There is a chance that
the conclusion is not accurate as a result of the inaccuracies that were introduced during
the data analysis. Although there are a number of approaches for estimating parameter
values, the least-squares method is the most commonly used. This is despite the fact that
the literature contains a number of different methods that can be used.

While many cancer models have been identified and validated, parameter estimation
remains a significant challenge. To make sure the proposed model is the best possible
model for expressing cancer, its parameters are estimated using real data and kept within
reasonable ranges. Most importantly, parameter estimation enables the acquisition of
parameter values that are unique to the developed model rather than using parameter
values obtained for other types of cancer models found in the associated literature. Using
the data of a patient with lung cancer (a tumor in the lungs) treated at the Kayseri Erciyes
University Hospital, the appropriate parameters have been attempted to be fitted using
the least-squares curve fitting technique. The data collected from the patient’s lung tumor
cells over the course of 14 days (15 September–28 September 2022), as referred to in [40],
were used to perform a least-squares curve fit for the model’s two parameters. The best-fit
parameter values were determined by attempting to reduce the average absolute relative
error between the real lung cancer patient tumor cell data and the solution of models for
the tumor class. Table 2 lists the model’s biological parameters and their best-fitted values
amongst the optimized fractional-order parameter α for the Caputo operator, which is
computed to be ≈0.75156. The actual tumor values are depicted as solid blue circles in
Figure 1, while the best-fitting model curve is shown as a solid red line. It is simple to see
that the fitted curve for the Caputo operator agrees with real medical data more efficiently
than the classical one. It demonstrates the superiority and utility of the fractional-order
model over the integer model. Furthermore, the important statistical case summary shown
in Figure 2 shows no outlier in any of the boxes.

Table 2. The description of the parameters with both fixed and best-fitted values.

Parameter Explanation (Caputo) (Classical) Source

T(0) Initial T cells 50,000 50,000 fixed
M1(0) Initial M1 cells 2,060,000 2,060,000 fixed
M2(0) Initial M2 cells 80,000 80,000 fixed

α Fractional order 7.156 × 10−1 1 fitted
a Growth rate of T cells 0.565 0.565 fixed
b Environmental carrying capacity 1.15497 × 10−8 3.53497 × 10−6 fitted
d1 Mortality rate of M1 cells 0.2 0.2 fixed
d2 Mortality rate of M2 0.2 0.2 fixed
f cells 3.20516 × 10−9 2.80857 × 10−7 fitted

e1 Enabling rate of M1 by T 1 × 10−6 1 × 10−6 fixed
e2 Enabling rate of M2 by T cells 9 × 10−7 9 × 10−7 fixed
r1 M1 to M2 conversion rate 0.05 0.05 fixed
r2 M1 to M2 conversion rate 0.04 0.04 fixed
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The method of least-squares uses the idea of minimizing residuals between available
infections for real data ȳj = 0, 1, . . . , n and the discrete points obtained with the suggested
set of equations’ simulation f (tj, yj) as given below:

Residual =
1
N

N

∑
j=0

∣∣∣∣∣ ȳj − yj

ȳj

∣∣∣∣∣. (8)

The aforementioned goal was reached by leveraging Wolfram Mathematica 12.1’s
built-in NonlinearModelFit and ParametricNDSolve algorithms. Table 2 displays these
adjusted values, while Table 3 gives important statistical measurements for the estimated
parameters, including standard error, t-statistic, p-value, and confidence interval.

Table 3. The fitted biological parameters with statistical measures.

Parameter Estimate Standard Error t-Statistic p-Value Confidence Interval

α 7.156 × 10−1 2.14317 × 10−6 3.2147 2.21216 × 10−3 {1.2372 × 10−5, 7.1729 × 10−5}
b 3.53497 × 10−6 7.08326 × 10−7 4.99061 3.14217 × 10−4 {1.99166 × 10−6, 5.07828 × 10−6}
f 2.80857 × 10−7 7.10913 × 10−8 3.95066 1.92551 × 10−3 {1.25963 × 10−7, 4.35752 × 10−7}

Figure 1. Comparison of real medical data of tumor cells with the best-fitted curves of (a) classical
model given in (1) and (b) Caputo model given in (2).
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Figure 2. The Box and Whisker plot for the statistical comparison among real medical data and
simulations obtained with classical and Caputo versions of the model for the number of tumor cells.
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In the existing literature [41–43], experimental data includes cell lines and animal
data. Cell lines can forecast unconstrained growth, high-throughput screening, therapy
response, and resistance. They are cheaper, simpler, and more reproducible. Cancer cell
lines have restrictions. In vitro-grown tumors, subgroups become cell lines. However,
the cancer subtype and level of tissue resemblance are typically unknown. This creates
cancer cell lines that do not reflect human tumor diversity. Monolayer-grown cell lines
lack the heterogeneity of tumor cells. Patient-derived xenograft cancer models improve
on cancer cell line models, yet they have limitations. Mouse vaccination and medication
validation require a long period of time, limiting their use in patient therapy. These models
also have limitations in terms of pharmacological combinations and genetic manipulation,
such as transgene or knockout studies. Primary cell cultures use cells directly from the
tumor location and extensive pathology information to compare the culture’s features to
those of the tumor. Primary cell culture predicts chemotherapeutic responses better.

7. Dynamical Analysis of Caputo System
7.1. Equilibria of the Caputo System

The equilibrium points of our proposed model (2) will be the same as the equilibrium
points obtained from the model given in [5]. However, the stability and dynamical analysis
of our proposed model will be distinct because, in this section, we analyzed the system of
fractional-order derivatives by using Theorem 1 given in Section 4. The equilibrium points
of system (2) are given by

i E1 = E1(x1, y1, z1) = E1(0, 0, 0), the trivial equilibrium point;

ii E2 = E2(x2, y2, z2) = E2

(
1
β
′ , 0, 0

)
, the tumor-dominant equilibrium point;

iii E3 = E3(x3, y3, z3) = E3

(
x3,

$
′
(1− β

′
x3)γ

′
2

δ
′
γ
′
2 + η

′(x3 − µ
′
1 − γ

′
1)

,
$
′
(1− β

′
x3)(µ

′
1 + γ

′
1 − x3)

δ
′
γ
′
2 + η

′(x3 − µ
′
1 − γ

′
1)

)
,

the positive interior equilibrium point.

The equilibrium point E3(x3, y3, z3) is the positive interior equilibrium point of system (2),
if the positivity conditions defined by Equation (5) in [5] are satisfied by E3(x3, y3, z3). For
the stability analysis of system (2), first, we linearize it at the general fixed point, which
will help us in easing the analysis of model (2).

7.2. Linearization of Caputo System

Let us consider E(x̄, ȳ, z̄) as a general study state of system (2). Then, by using the
linearization process on the system of fractional-order differential equations given by (2),
we obtain:

Dαx(t) = [$
′ − 2$

′
β
′
x̄− δ

′
ȳ + η

′
z̄](x− x̄) + δ

′
x̄(y− ȳ) + η

′
x̄(z− z̄),

Dαy(t) = ȳ(x− x̄) + [x̄− µ
′
1 − γ

′
1](y− ȳ) + γ

′
2(z− z̄),

Dαz(t) = ζ
′
z̄(x− x̄) + γ

′
1(y− ȳ) + [ζ

′
x̄− µ

′
2 − γ

′
2](z− z̄).

(9)

Therefore, the linearized system (9) in matrix form is given by the following:Dαx(t)
Dαy(t)
Dαz(t)

 =

$
′ − 2$

′
β
′
x̄− δ

′
ȳ + η

′
z̄ δ

′
x̄ η

′
x̄

ȳ x̄− µ
′
1 − γ

′
1 γ

′
2

ζ
′
z̄ γ

′
1 ζ

′
x̄− µ

′
2 − γ

′
2


x− x̄

y− ȳ
z− z̄

.

7.3. Stability Analysis of Caputo System

Theorem 3. The tumor-free equilibrium point E1(x1, y1, z1) = E1(0, 0, 0) is always unstable.
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Proof. The Jacobian matrix of linearized system (9) at the equilibrium point E1(0, 0, 0) is
given by the following:

JE1(0,0,0) =

$
′

0 0
0 −µ

′
1 − γ

′
1 γ

′
2

0 γ
′
1 −µ

′
2 − γ

′
2

.

The eigenvalues of JE1(0,0,0) are given by the roots of the characteristic equation:

($
′ − λ)[(−µ

′
1 − γ

′
1 − λ)(−µ

′
2 − γ

′
2 − λ)− γ

′
1γ
′
2].

Here, λ = $
′
> 0. =⇒ |arg(λ)| < απ

2
.

Therefore, the equilibrium points E1(0, 0, 0) of system (2) are always unstable.

Theorem 4. The tumor-dominant equilibrium point E2

(
1
β
′ , 0, 0

)
of Caputo system (2) is locally

asymptotically stable if ζ
′
1 < ζ

′
< ζ

′
0, where ζ

′
1 =

(
µ
′
1 + γ

′
1 + µ

′
2 + γ

′
2

)
β
′

and ζ
′
0 =

(
γ
′
1γ
′
2β
′

1− (µ
′
1 + γ

′
1)β

′ + µ
′
2 + γ

′
2

)
.

Proof. The Jacobian matrix of linearized system (9) at the equilibrium point E2

(
1
β
′ , 0, 0

)
is given by the following:

J
E2

(
1
β
′ ,0,0

) =


−$

′ δ
′

β
′

η
′

β
′

0
1
β
′ − µ

′
1 − γ

′
1 γ

′
2

0 γ
′
1

ζ
′

β
′ − µ

′
2 − γ

′
2


.

The eigenvalues of JE2 are given by the following: λ = −$ =⇒ |argλ| > απ

2
and(

1
β
′ − µ

′
1 − γ

′
1 − λ

) (
ζ
′

β
′ − µ

′
2 − γ

′
2 − λ

)
− γ

′
1γ
′
2 = 0.

We simplify the above equation and obtain:

λ2 − λ

[(
1
β
′ − µ

′
1 − γ

′
1

)
+

(
ζ
′

β
′ − µ

′
2 − γ

′
2

)]
+

(
1
β
′ − µ

′
1 − γ

′
1

)(
ζ
′

β
′ − µ

′
2 − γ

′
2

)
− γ

′
1γ
′
2 = 0. (10)

From the analysis given in reference [5], the equilibrium point E2

(
1
β
′ , 0, 0

)
is locally

asymptotically stable when the inequalities
(

1
β
′ − µ

′
1 − γ

′
1

)
+

(
ζ
′

β
′ − µ

′
2 − γ

′
2

)
< 0 and(

1
β
′ − µ

′
1 − γ

′
1

)(
ζ
′

β
′ − µ

′
2 − γ

′
2

)
− γ

′
1γ
′
2 > 0 hold.

Let us choose ζ
′
o=

(
γ
′
1γ
′
2β
′

1− (µ
′
1 + γ

′
1)β

′ + µ
′
2 + γ

′
2

)
and ζ

′
1 = (µ

′
1 + γ

′
1 + µ

′
2 + γ

′
2)β

′
.

Therefore, we conclude that the equilibrium point E2

(
1
β
′ , 0, 0

)
is locally asymptoti-

cally stable if ζ
′
1 < ζ

′
< ζ

′
0.
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Theorem 5. The positive interior equilibrium point E3(x3, y3, z3) of system (2) is conditionally locally

asymptotically stable. Where y3 =
$
′
(1− β

′
x3)γ

′
2

δ
′
γ
′
2 + η

′(x3 − µ
′
1 − γ

′
1)

and z3 =
$
′
(1− β

′
x3)(µ

′
1 + γ

′
1 − x3)

δ
′
γ
′
2 + η

′(x3 − µ
′
1 − γ

′
1)

.

Proof. The Jacobian matrix of linearized system (9) at the positive interior equilibrium
point E3(x3, y3, z3) is given by the following:

JE3(x3,y3,z3)
=

$
′ − 2$

′
β
′
x̄− δ

′
ȳ + η

′
z̄ δ

′
x̄ η

′
x̄

ȳ x̄− µ
′
1 − γ

′
1 γ

′
2

ζ
′
z̄ γ

′
1 ζ

′
x̄− µ

′
2 − γ

′
2

.

where, x̄ = x3, ȳ =
$
′
(1− β

′
x3)γ

′
2

δ
′
γ
′
2 + η

′(x3 − µ
′
1 − γ

′
1)

, and z̄ =
$
′
(1− β

′
x3)(µ

′
1 + γ

′
1 − x3)

δ
′
γ
′
2 + η

′(x3 − µ
′
1 − γ

′
1)

.

The characteristic equation of the Jacobian matrix JE3 is given by the following:

λ3 + Aλ2 + Bλ + C = 0, (11)

where, A = −
(

$
′
(1− 2β

′
x̄)− δ

′
ȳ + η

′
z̄ + x̄− µ

′
1 − γ

′
1 + ζ

′
x̄− µ

′
2 − γ

′
2

)
,

B =
(

x̄− µ
′
1 − γ

′
1

)(
ζ
′
x̄− µ

′
2 − γ

′
2

)
+ $

′
(

1− 2β
′
x̄− δ

′
ȳ + η

′
z̄
)(

x̄− µ
′
1 − γ

′
1

)
+$

′
(

1− 2β
′
x̄− δ

′
ȳ + η

′
z̄
)(

ζ
′
x̄− µ

′
2 − γ

′
2

)
− γ

′
1γ
′
2 − δ

′
x̄ȳ− η

′
ζ
′
x̄z̄,

C = −
[(

$
′
(1− 2β

′
x̄)− δ

′
ȳ + η

′
z̄
)(

x̄− µ
′
1 − γ

′
1

)(
ζ
′
x̄− µ

′
2 − γ

′
2

)]
+γ

′
1γ
′
2

(
$
′
(1− 2β

′
x̄)− δ

′
ȳ + η

′
z̄
)
+ δ

′
x̄ȳ
(

ζ
′
x̄− µ

′
2 − γ

′
2

)
− η

′
γ
′
1 x̄ȳ

−δ
′
γ
′
2ζ
′
x̄z̄ + η

′
ζ
′
x̄z̄
(

x̄− µ
′
1 − γ

′
1

)
.

Now, in order to find out the stability conditions for the cubic Equation (11),
we will use the Routh–Hurwitz Stability conditions for the system of fractional
differential Equations [44,45].

Let D = 18ABC+(AB)2− 4A3C− 4B3− 27C2 be the discriminant of cubic Equation (11).
Therefore, the positive interior equilibrium point E3(x3, y3, z3) is locally asymptotically
stable if and only if one of the following conditions is satisfied:

1. D > 0 and α > 0, C > 0, AB > C;
2. D < 0 and A ≥ 0, B ≥ 0, C > 0, α < 2/3;
3. D < 0, α > 0, B > 0, AB = C and α ∈ (0, 1).

8. Numerical Simulation and Discussion

In order to carry out the numerical simulation of system (2), we will use the predictor–
corrector method given by Adams–Bashforth–Moulton. To obtain the approximate solution
of system (2) by using this method, we consider the following system of nonlinear fractional
differential Equation [46]:

Dα
t ψ(t) = F(t, ψ(t)), 0 ≤ t ≤ T, ψm(0) = ψm

0 , m = 0, 1, 2, . . . , k− 1, (12)

where α > 0 and k = dαe is the integer greater than or equal to α. The αth order fractional
derivative of ψ(t) in Caputo sense denoted by Dα

t ψ(t) is defined by the following:

Dα
t f (t) =

1
Γ(n− α)

∫ t

0
(t− r)n−α−1 f (n)(r)dr, n− 1 < α < n, n ∈ Z+,

where f (n)(r) denotes the nth integer order derivative of f (r).
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The fractional differential Equation (12) is also equivalent to Volterra integral equation
given by the following:

ψ(t) =
n−1

∑
m=0

ψm
0

tm

m!
+

1
Γ(α)

∫ t

0
(t− r)α−1F(r, ψ(r))dr. (13)

The predictor–corrector method of Adams–Bashforth–Moulton is already used in [47–49]
for integrating Equation (13). The same scheme is applied to our proposed fractional-order

model (2) by setting the following: j =
T
N

, ti = ij, i = 0, 1, 2, . . . , N ∈ Z+.
Therefore, fractional-order model (2) can be discretized as follows:

xn+1 = x0 +
jα

Γ(α + 2)
[[$
′
xq

n+1(1− β
′
xq

n+1)− δ
′
xq

n+1yq
n+1 + η

′
xq

n+1zq
n+1]

+
n

∑
i=0

a
′
i,n+1[$

′
xi(1− β

′
xi)− δ

′
xiyi + η

′
xizi]],

yn+1 = y0 +
jα

Γ(α + 2)
[[xq

n+1yq
n+1 − µ

′
1yq

n+1 − γ
′
1yq

n+1 + γ
′
2zq

n+1]

+
n

∑
i=0

a
′
i,n+1[xiyi − µ

′
1yi − γ

′
1yi + γ

′
2zi]],

zn+1 = z0 +
jα

Γ(α + 2)
[[ζ
′
xq

n+1zq
n+1 − µ

′
2zq

n+1 + γ
′
1yq

n+1 − γ
′
2zq

n+1]

+
n

∑
i=0

a
′
i,n+1[ζ

′
xiyi − µ

′
2zi + γ

′
1yi − γ

′
2zi]],

(14)

where,

xq
n+1 = x0 +

1
Γ(α)

n

∑
p=0

b
′
p,n+1[$

′
xp(1− β

′
xp)− δ

′
xpyp + η

′
xpzp],

yq
n+1 = y0 +

1
Γ(α)

n

∑
p=0

b
′
p,n+1[xpyp − µ

′
1yp − γ

′
1yp + γ

′
2zp],

zq
n+1 = z0 +

1
Γ(α)

n

∑
p=0

b
′
p,n+1[ζ

′
xpyp − µ

′
2zp + γ

′
1yp − γ

′
2zp].

(15)

For different ranges of values of i, we will obtain the following four different results
for a

′
i,n+1:

a
′
i,n+1 =

jα

α(α + 1)


(
nα+1 − (n− α)(n + 1)α

)
, i f i = 0(

(n− i + 2)α+1 + (n− i)α+1 − 2(n− i + 1)α+1), i f 1 ≤ i ≤ n
1, i f i = n + 1

. (16)

Similarly, b
′
p,n+1 can be obtained by using the following result:

b
′
p,n+1 =

jα

α
[(n + 1− i)α − (n− i)α]. (17)

For numerical simulation and graphical analysis of the generalized model (2), we
choose the numerical values of the parameters and variables from Table 1. Most of the
numerical simulations are performed with the help of MATLAB software.

After using the above-discussed numerical scheme, the proposed model is simulated
while using the biological parameters considered in the present research paper. We have
presented not only time series plots but also included the three-dimensional behavior
of the system for a clear understanding of the disease transmission. Some important
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biological parameters are chosen to observe their effects on the state variables of the system.
The system is simulated while considering the Caputo version, as discussed in earlier
sections. Several values of the fractional order α are taken to check the performance of the
proposed model.

As a matter of necessity, fractional operators are included in several types of diffusion
issues. There is just a rough association between relaxation kernels and the fractional orders
they entail (for example, the correlation function). The Caputo fractional-order operator
can be used to provide a mathematical description of the dynamics of systems exhibiting
memory effects or long-term persistence. Within the context of an epidemiological model,
it can be used to describe the dispersal of a disease within a community. Attractors
can be thought of as the steady state or equilibrium towards which a model epidemic
system tends to converge over time. The dynamics of the system can be described by
the Caputo fractional-order operator, and the attractor can be thought of as the long-term
consequence of those dynamics in an epidemiological model. The cycles that exist as
solutions (asymptotically fixed points) of the system here vanish when the patient either
fully recovers following treatment or vaccination or passes away, and this is quite often
seen in real medical cases.

First, we plotted each equation of model (1) separately to have a look at the population
growth of tumor cells, M1 cells, and M2 cells, as shown in Figure 3. Then, we plotted
each equation of the fractional-order model (2) separately for different values of fractional-
order parameter α, as shown in Figure 4. This shows that there are some unexpected
fluctuations in the growth curves of the cell populations as the value of α increases. Similarly,
Figure 5 represents the comparison between the growth curves of the cell populations in
models (1) and (2) with respect to time t. Here, we choose α = 0.92. Furthermore, Figure 6
shows the fluctuations in the growth curves of three cell populations in both models while
choosing the values of parameter α as 0.95, 0.88, and 0.83.

As observed in Figure 7 with the fractional order α = 0.93, the oscillatory phe-
nomenon is encountered for each state variable of the model. Nonetheless, the oscil-
latory behavior decreases its amplitude once the value of β increases. Similarly, the
population of tumor cells x(t) increases with an increasing value of δ while the rest of
the two populations decrease with increasing δ when the fractional order is taken to be
0.93, as shown in Figure 8.

As can be seen in Figures 9 and 10, the three-dimensional plots depict clearly what is
happening before taking into consideration the classical time derivative (α = 1). Looking at
the spirals in said figures, the periodic behavior is confirmed, as shown by the time series
plots in two dimensions. With increasing values of α, the memory of the disease is evident,
as we can clearly see how the periodic pattern is formed. For Figure 10, we not only varied
α but also taken into consideration the ζ to know its effects on the surfaces obtained for the
three state variables of the proposed model. The entire memory of the disease is captured
during the simulations since we can see how the spiral behavior is formed with increasing
values of the fractional order α.

Figure 3. The dynamical behavior of three state variables in the classical model (1) over the time
interval [0, 100], while biological parameters are taken from Table 1 with time unit in days.
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Figure 4. The dynamical behavior of three state variables in the Caputo fractional-order
model 2 under different values of the fractional order α over the time interval [0, 100], while bi-
ological parameters are taken from Table 1 with time unit in days.

Figure 5. The dynamical behavior of three state variables in both classical and the Caputo fractional
mode while taking α = 0.92 for the latter over the time interval [0, 100], while biological parameters
are taken from Table 1 with time unit in days.

Figure 6. The dynamical behavior of three state variables in both classical and the Caputo fractional
mode over the time interval [0, 100], while biological parameters are taken from Table 1 with time
unit in days.

Figure 7. The dynamical behavior of three state variables in the Caputo model with α = 0.93 over the
time interval [0, 100], while biological parameters are taken from Table 1 with time unit in days.
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Figure 8. The dynamical behavior of three state variables in the Caputo model with α = 0.93 over the
time interval [0, 100], while biological parameters are taken from Table 1 with time unit in days.

Figure 9. The dynamical behavior of three state variables with different values of α.

Figure 10. The dynamical behavior of three state variables with different values of α while
ζ = 9 × 10−7.
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9. Concluding Remarks with Future Prospects

The focus of this study is on applying the Caputo fractional-order differential op-
erator to the construction of a nonlinear system of ordinary differential equations in
three dimensions. The suggested system illustrates the dynamics of the spread of a disease
manifested in the interactions between tumors and macrophages. It demonstrates how the
lineage of memory may be tracked back through time. Existence, uniqueness, and stability
analysis have all been well examined; therefore, the model’s qualitative analysis is solid.
One of the main contributions of this work is the optimization of the fractional order α
to be 7.156 × 10−1 using real-world incidence cases of the tumor cells from 15 September
to 28 September 2022. Several graphs illustrating the impact of various biological param-
eters on the disease transmission dynamics were included in the numerical simulations
to provide further confirmation of the theoretical study. Since most infectious diseases
have memories due to reemergence in the community, it is concluded that the Caputo
operator is among the best choices to be utilized for simulating infectious diseases since
its hereditary properties fit with the behavior of the disease. Future research will focus on
fractional-order operators, such as the Atangana–Baleanu operator, the Caputo–Fabrizio
operator, and the proportional one. For example, these operators will be used to estimate
biological parameters, which will be based on real medical data.
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