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Abstract: This study uses fractal analysis to measure the detailed intensity of well-known Classical
and Renaissance façades. The study develops a method to understand their interrelated design
principles more comprehensively. With this evaluation tool, one can observe intrinsic connections
that support the historical continuity and point out balancing composition protocols, such as the
‘compensation rule’, that regulated design for centuries. The calculations offer mathematical constants
to identify Classical and Renaissance details by plasticity rates. Finally, we base this method on
spatial evaluation. Our calculations involve depth, which connects planar front views with the haptic
reality of the façades’ tectonic layers. The article also discusses the cultural and urban implications of
our results.
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1. Introduction

This article examines historical façades with the extended analytical tool of the ‘relief
method’ [1]. With this method, we seek to achieve the following goals: (1) scrutinizing the
plasticity of Classical form; (2) extending knowledge on the Classical concept of tectonic bal-
ance; (3) confirming the historical integrity of Classical and Renaissance architectures; and
(4) contributing mathematical constants to the understanding of Classical and Renaissance
façade composition. Based on these aims, we would also like to promote the recognition of
fractal analysis in architecture and cultural heritage protection.

Fractal analysis became more popular in architecture after its inception, which suggests
that design methodology is today more open to applied sciences. Creating functional plans
was once inalienable from the exclusive domain of architects, and the appropriateness of
their products was based on isolated professional decisions. Architects nowadays use more
information-based analyses and should rely on users’ feedback on existing buildings [2].

There are parallel developments in the fields of such things as space syntax, pattern
languages, and visual data processing that are capable of providing a more comprehensive
evaluation on design ideals and their outcomes. These evaluations are aimed primarily
at supporting the three terrains of architecture: the functional, the aesthetical, and the
socioeconomical. Among these, fractal analyses focus primarily on the aesthetic quality of
our built environment.

Architecture has been a subject for a multitude of fractal experiments. Michael Batty
and Paul Longley [3] were the first to introduce Benoit Mandelbrot’s ‘box-counting method’
to urban sciences, after which Carl Bovill [4] extended the field of its possible applications
to architecture. As Wolfgang Lorenz [5], Nikos Salingaros [6], and Michael Ostwald [7,8]
added newer aspects to this subject, ‘fractal aesthetics’ was soon born to gauge the complex-
ity of human living space. These efforts were all based on the need for increasing the level
of visual connectivity between urban and natural landscapes, which implicitly subsidizes
the desire to develop environmental awareness.
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In a more recent article on architecture, Lorenz [9] reconciled metallic proportions
with Hausdorff dimensions in order to decide if the code of beauty exists in the logarithmic
formulas, as previously suggested by other scholars of fractal aesthetics [10–12]. In their cal-
culations, though, they analyzed planar images (i.e., projections) of the buildings’ frontages,
or intentionally pixelated architectural drawings. Consequently, the resulting dimensions
(DH) were expected to fall below 2. Not even Salingaros [13] argues about the validity of
this kind of planar evaluation; however, he has been consistently replacing geometrical
proportion with scaling proportion, claiming that the latter does enhance complexity, while
the effect of the former has no supporting evidence.

Because these computations did not involve depth, we introduced the ‘relief method’ [1],
which we considered as a possible way to capture the haptic nature of architecture beyond
the apparent two-dimensionality of elevations. By recognizing the self-similar patterns in
the façades’ tectonic layers [14,15], we could identify the epoch and the place where a certain
edifice was constructed. In other words, we attempted to reveal the arithmetical essence
of the façades of well-known historical buildings. We believed that these patterns were
reflections of genius loci [16,17]. A similar method can be used for a more specific survey on
Classical details.

When studying these details, we must distinguish between the architecture of Classical
antiquity and the Renaissance. Relative to Classical antiquity, the character of Renaissance
edifices changed from freestanding compositions to dense urban collages, which were less
three-dimensional but visually more individual; this was possible compensation for the
loss of space around the joint elevations looking down onto populated main streets [17]
(pp. 138–165).

This also implies that the sculpturesque architectural components, such as the columns,
disappeared or were compressed into relief layers [15] as part of the urban ‘scenes’. These
were dominated by walls, not by pillars and beams as in the time of the ancient fora, but
similar details were added to them as reliefs. Entablatures were replaced by cornicioni
that no longer rested on columns. However, the old construction logic prevailed in the
trabeated systems of porticoes, wall cornices, window jambs, and lintels.

2. Definitions and Principles

We focus on analysis of architectural elevations, and continuing our latest investiga-
tions [1], we point out the novelties and implications of our approach, which we apply this
time specifically to Classical architecture. For this purpose, we need to define our principles
and work methods.

First, by Classical architecture, we mean the Vitruvian way of building [18], specifically
the architecture of the ancient Greco-Roman world together with its codification and formal
interpretations by Renaissance theory and praxis. The drawings were therefore collected
from multiple Renaissance sources for graphic analysis, the purpose of which was to extract
numerical data for plasticity evaluations.

The term ‘plasticity’ is another keyword that describes the focus of our investigation.
Though fractal computations usually consider façades as two-dimensional images—for
example, for box-counting the ‘black voids’ inside the building’s contour—we integrate
depth as a crucial parameter in our calculations [1]. This means that we consider façades as
tectonic reliefs [14]. These reliefs are almost but not quite planar, since their function is to
‘compress’ and partly reveal information about the hidden structure of the building [19–22].

Yet another important feature of Classical architecture is that its design tools were
planar, which created certain tensions between the two-dimensional plans and the realized
buildings. Our plasticity measurement is partly designed to resolve this tension (see the
description of the calculation method), for which we need to find out how to construe the
elevation’s structural layers.

The vertical base plane always has to be perpendicular to the shortest Euclidean line
between the façade and the observer. This does not need any clarification in the case
of Renaissance urban palazzos, where windows plausibly define the base planes of the
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elevations. However, when examining a Doric temple from the seventh century BCE, the
whereabouts of this plane is less obvious. If we measure its colonnade, the plane cuts
through the columns in the middle; that is, the plane contains the central axes of all the
shafts. The same applies to the pillars and porticoes of other edifices.

However, given the fact that frontage compositions often integrate freestanding details,
we need to consider visibility. When freestanding details, such as a set of smaller columns,
cover a certain region of the background wall—a very common phenomenon in Palladian
motifs [23]—the base plane jumps to the fore to cut the elements in half. Meanwhile, the
plane does not break if the same columns are attached to the wall in such a way that only a
part of them remains (Figure 1).
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Figure 1. A segment of the façade of Palazzo Farnese, Rome (Antonio da Sangallo Jr., 1534), showing
the true horizontal section of its pillars (left) and a virtual case when columns are freestanding (right).
According to our methodological considerations, the tangible front contour of the former is longer
than that of the latter.

The latter implies that some columns’ surface area may be hidden from sight due to its
round shape, but it will nonetheless appear in our calculations. This means that some highly
sculpturesque parts of the tectonic relief may increase the elevation’s overall plasticity more
intensely than freestanding components. It is also very easy to foresee that pilasters, being
the flattened transformations of the columns, will lose their three-dimensional and tactile
value compared with their round relatives [24].

Another important principle of our fractal evaluation is based on the observation
that Classical architecture is composed of perpendicular pieces, the surfaces of which
are essentially ‘extruded contours’. In other words, both posts and lintels of any scale
have two definitive sections: one that reveals the plastic contour and another one that is
theoretically rectangular. Thus, to measure the areal plasticity of a tectonic object relative to
its two-dimensional ‘flat projection’, it is possible to compare its undulating contour with a
straight line (Figure 2).

This comparison, though, is more complex than a mathematical proportion [25],
assuming that Classical buildings, like any kind of material structure or living organism,
are composed of quasi-self-similar patterns [26]: the closer we look, the more vibrant
details we discover. Not only do ornaments make us feel Classical architecture’s closeness
to nature, but their details also hide or reveal themselves due to the observed scale [27]. In
praxis, plans are traditionally abstracted or enhanced due to scale, which is also a rather
simple skill to learn in design education.
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(left) with the length of the same contour’s visible span (right).

Quasi-self-similarity, on the other hand, dictates that we can only work with a limited
number of scaling layers on the façade, and, most importantly, that we cannot magnify
buildings further than the ornamental level without stepping into the realm of material
science. However, we cannot exclude the fact that material textures could also result in
similar constant values as built structures and substructures. The constants hereby used
and investigated are derived from the Hausdorff–Besicovitch formula, which describes
fractal dimensions with a single number, DH.

We expect that by calculating the Hausdorff dimensions in a multitude of Classical
details, we can extract crucial information about the visual complexity as well as the covert
proportional integrity of these historical buildings.

3. Methodological Considerations on Scale
3.1. The Vitruvian Module

Scale-Sensitive Fractal Analysis (SSFA) is used in surface morphology as an ap-
plication of Mandelbrot’s topographical theorem [26] in different fields of design and
engineering. This has relevance here, as depth and the relative surface ratio seem to be the
common ground for SSFA’s area-scale method [28,29] and our own relief method [1]. The
former’s implication that the reference scale affects the fractal dimension foreshadows a
similar scale problem in our plasticity measurement. The dilemma is of profound mathe-
matical nature, which we can illustrate with an example of the Sierpiński carpet and its
architectural equivalent.

It is well understood that the Hausdorff dimension of the carpet is log8/log3 ≈ 1.893.
This value results from the logarithmic comparison of the square’s side length (a) with
the remnant area (A) encompassed by the square’s perimeter, provided that this base
pattern self-similarly repeats itself on every scale. However axiomatic it looks, though, the
calculation that places the pattern into a 3-by-3 grid is more of a convention (Figure 3).

We are free to draw a different grid without changing the geometry (e.g., 30-by-30), in
which case DH = log800/log30 ≈ 1.965. The latter is closer to 2 than the former calculated
value, because whatever area and length we choose, with n as a grid multiplier we arrive
at the following limit:

lim
n→∞

log An2

log an
= 2 (1)
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This means that the thicker the grid we define, the closer we reach two-dimensionality
with the possible grid variations of the Sierpiński pattern. The same would apply to an
imaginable elevation inspired by the fractal carpet. The result for the Hausdorff dimension
would differ depending on our decision to measure it in feet or in inches. Moreover, when
analyzing drawings or images, the digital resolution [9] and even the size of our computer
screen may influence the conclusion. At this point, we need to reconsider our concept of
scale regarding either a plan or a physical building. The logic of Classical architecture is
about to help.

When describing his trifold doctrine (firmitas, utilitas, venustas) on architecture,
Vitruvius [18] also phrased his views on order and symmetry [30]. His attention, as perhaps
that of any architect in the Mediterranean in his day, was not primarily focused on the
buildings’ actual sizes but rather on their compound geometrical proportions, which were
widely believed to be responsible for beauty [31]. The latter’s integrity was deeply instilled
in that no external unit of measure was allowed to rule over the planning.

The Roman modulus—otherwise known as the Vitruvian module—was, though, a
common denominator that established a self-referential unit for the edifice. This module
corresponded to the radius of one of the building’s columns at its base [18] (Book IV,
Chapter III.3). Regarding the scale, it meant that the building itself had to contain the unit
with which its own size could be measured.

This way of thinking has not theoretically changed ever since that time. Even Peter
Eisenman acknowledged the validity of self-referential planning [32], based on Le Corbus-
ier’s Dom-Ino House, despite claiming that deconstructivism has surmounted the so-called
Classical paradigm. Modularity is an innate feature of Classical design—and perhaps of
every design—so making the Vitruvian module our scaling unit for logarithmic dimensions
seems less arbitrary than using any other possible method.

3.2. The Significance of π

After setting the Vitruvian module as the referential unit, we are able to find some
rather intriguing results regarding the Classical orders’ system of proportions. It is not
difficult to calculate the visible perimeter of circle-based columns, which equals π if the
diameter of the column is exactly 2. If we write these values into the linear Haussmann
equation, as if we wanted to measure the plasticity of the column’s curvature relative to a
line, then we obtain the following result:

log π

log 2
≈ 1.651 (2)
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This value is rather close to φ (i.e., the golden ratio), which is one of the principal
numbers of the proportional systems used to create the buildings and designs of Classical
antiquity, the others being derived from

√
2 or
√

3 [33]. For curiosity’s sake, let us add
that a logarithmic comparison between the diameter and the full perimeter of the column
would result in a value significantly close to both another recurrent Classical proportion,
1 +
√

3 [34], and e (Euler’s number):

log 2π

log 2
≈ 2.651 (3)

Moreover, if we compare the Greek and Roman variants of the Classical orders [35]
(pp. 37–38), we find that the average ratio of the heights of an ideal entablature and its
frieze is nearly π (Table 1).

Table 1. Height ratios of entablatures and friezes listed by typical variants of the Classical orders.

Category Type Height of Entablature
[mod] 2

Height of Frieze
[mod] Ratio Average Ratio

Greek

Doric 4.000 1.500 2.667

3.254

Ionic (Attica) 1 4.500 1.667 2.700
Ionic (Asia Minor) 5.500 1.000 5.500
Corinthian (Andronicus) 3.667 0.833 4.400
Corinthian (Lysicrates) 5.000 1.500 3.333

Roman

Tuscan 3.500 1.167 3.000
Doric (with dentils) 4.000 1.500 2.667
Doric (with consoles) 4.000 1.500 2.667
Doric (Albano) 3.667 1.500 2.444
Ionic 4.500 1.500 3.000
Corinthian 5.000 1.500 3.333
Composite 5.000 1.500 3.333

1 Subvariants indicated in parentheses are distributed from György Kardos [35] (pp. 37–38). 2 The unit of measure
is the Vitruvian module (ibid.).

Occupying the middle, a frieze is a distinguished part of the entablature. It is often a
plain ribbon that hosts figural reliefs, which is in contrast with the rest of the horizontal
entity, namely the architrave and the cornice. These two are of plastic character, and
whatever ornaments they host, those are more organic part of them than the added motifs
that usually populate the frieze (Figure 4).
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From this also follows that the entablature’s section implies an abstract segment—a
line—that is offered as an alternative referential unit for calculating the fractal dimension
of the cornice’s complete profile. These considerations suggest that we should put the
entablature’s height as π times the referential unit so that all the other parts could be
measured relative to it before the logarithmic plasticity evaluation takes place.

Finally, we apply the same mathematical notation to the entablature as we applied to
the columns, but in this case we divide its height, not the perimeter, by π when defining its
referential unit. As a pragmatic argument, this notation results in normalized Hausdorff
dimensions by which we avoid extraordinary results from the f (x) logarithmic functions
when x ≈ 1 or x < 1. Another benefit of this method is that it simplifies our calculations
both in general and with special regard to the Feret diameter.

3.3. Involving the Feret Diameter

As a part of our methodological overview, the methodological problem of logarithmic
scale and its solution leads quickly to another question: How do we measure the size
of a Classical detail? In Paestum, Italy, for instance, the archaic columns of Poseidon’s
Doric temple are robust; the fluted shafts are only about four times as high as their
base diameters [35] (pp. 37–38). The chunky proportions are partly due to the entasis,
which make columns curve slightly because their diameters are decreased from the
bottom upward.

Consequently, when the shaft arrives at the capital, its diameter reduces by a third.
It would be most difficult to describe the size of such a column with only one mathemat-
ical variant. For simplification, we may choose between the horizontal and the vertical
dimensions and put either of them as the ‘size’ of the column.

This seems obvious for the orthogonal character of the Classical façade, but if we
fathom the column’s scale like that, we overlook its curvature. Less symmetrical parts
would also be hard to handle in this way. We could, of course, measure an object similarly
along any specified direction, yet none of the results would be complete. Instead, we take
one component’s Feret diameter (F) averaged over all directions. It follows from Cauchy’s
theorem [36] that for a two-dimensional convex body, this averaged value equals the ratio
of the object’s perimeter (P) and π, that is, F = P/π.

Although Feret diameter is used mostly for measuring the size of microscopic particles,
it proves useful in the current analysis as well. Tables 2–8 show information on the averaged
Feret diameter on a modular basis and sort objects by scale regardless of their actual size.
The comparisons between the types of architectural elements shed light on some general
proportions that characterize the buildup of a Classical edifice.

Table 2. The calculated geometric parameters of Classical shafts leading to the average values of
Feret diameter and Hausdorff dimensions.

Type Location/Source Rel. *
Contour (c)

Rel. *
Length (l)

Feret
Diameter (F)

Linear Fract.
Dim. (DH1)

Areal Fract.
Dim. (DH2)

Greek Doric Parthenon, Athens 3.380 10.732 8.106 1.757 2.342
Greek Ionic (Attica) Erechtheion, Athens 4.548 17.041 12.122 2.185 2.466
Greek Ionic (Asia Minor) Temple of Athena Polias, Priene 4.469 17.778 12.591 2.160 2.450
Greek Corinthian Choragic Monument of Lysicrates, Athens 4.732 16.423 11.728 2.243 2.493
Greek Corinthian Horologion of Andronicus, Athens 4.615 15.154 10.920 2.206 2.490
Tuscan After S. Serlio 3.147 12.147 9.006 1.654 2.284
Roman Doric Theatre of Marcellus, Rome 3.147 16.206 11.590 1.654 2.261
Roman Ionic After V. Scamozzi 3.147 16.559 11.815 1.654 2.259
Roman Corinthian Temple of Antonius and Faustina, Rome 3.147 16.706 11.909 1.654 2.258
Composite Baths of Diocletian, Rome 3.147 16.853 12.002 1.654 2.258

Average: 11.179 1.882 2.356

* Measures of section contours and sample lengths are relative to the reference unit s0/2.
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Table 3. The calculated geometric parameters of Classical entablatures leading to the average values
of Feret diameter and Hausdorff dimensions.

Type Location/Source Rel. *
Contour (c)

Rel. *
Length (l)

Feret
Diameter (F)

Linear Fract.
Dim. (DH1)

Areal Fract.
Dim. (DH2)

Greek Doric Parthenon, Athens 4.324 29.174 20.573 1.279 2.141
Greek Ionic (Attica) Erechtheion, Athens 4.333 19.825 14.621 1.281 2.156
Greek Ionic (Asia Minor) Temple of Athena Polias, Priene 4.789 23.179 16.756 1.368 2.197
Greek Corinthian Horologion of Andronicus, Athens 5.434 11.038 9.027 1.479 2.309
Tuscan After G. B. da Vignola 4.528 9.887 8.294 1.319 2.213
Roman Doric Theatre of Marcellus, Rome 5.934 340.468 218.749 1.556 2.182
Roman Ionic Fortuna Virilis, Rome 4.460 14.513 11.239 1.306 2.183
Roman Corinthian Pantheon, Rome 4.466 34.080 23.696 1.307 2.151
Composite Arch of Titus, Rome 4.747 25.216 18.053 1.361 2.189
Composite Arch of Septimus Severus, Rome 4.667 36.536 25.260 1.346 2.167

Average: 36.627 1.360 2.189

* Measures of section contours and sample lengths are relative to the reference unit s0/π.

Table 4. The calculated geometric parameters of Classical capitals leading to the average values of
Feret diameter and Hausdorff dimensions.

Type Location/Source Rel. *
Contour (c)

Rel. *
Length (l)

Feret
Diameter (F)

Linear Fract.
Dim. (DH1)

Areal Fract.
Dim. (DH2)

Greek Doric Temple of Poseidon, Paestum 4.552 3.847 4.449 1.324 2.298
Greek Ionic (Attica) Propylaea, Eleusis 5.701 4.305 4.741 1.521 2.458
Greek Ionic (Asia Minor) Temple of Athena Polias, Priene 6.761 5.259 5.348 1.670 2.547
Greek Corinthian Choragic Monument of Lysicrates, Athens 6.359 1.925 3.226 1.616 2.784
Greek Corinthian Temple of Olympian Zeus, Athens 5.462 2.236 3.423 1.483 2.568
Tuscan After S. Serlio 3.867 4.108 4.615 1.181 2.162
Roman Doric Afer A. Palladio 4.833 4.773 5.038 1.376 2.318
Roman Ionic Baths of Diocletian, Rome 5.576 7.069 6.500 1.501 2.370
Roman Corinthian Temple of Castor and Pollux, Rome 7.038 2.326 3.481 1.705 2.811
Composite Temple of Vesta, Tivoli 7.906 2.727 3.736 1.806 2.859

Average: 4.456 1.518 2.517

* Measures of section contours and sample lengths are relative to the reference unit s0/π.

Table 5. The calculated geometric parameters of Renaissance jambs leading to the average values of
Feret diameter and Hausdorff dimensions.

Year of Construction Location and Architect Rel. *
Contour (c)

Rel. *
Length (l)

Feret
Diameter (F)

Linear Fract.
Dim. (DH1)

Areal Fract.
Dim. (DH2)

1460 Pal. Piccolomini, Pienza (B. Rosselino) 3.961 11.337 9.217 1.202 2.130
1465 Pal. Ducale, Urbino (L. da Laurana) 4.326 16.171 12.295 1.279 2.163
1470 S. Giobbe, Venice (P. Lombardo) 4.398 11.355 9.229 1.294 2.188
1483 Pal. Fava, Bologna (G. Montanari) 4.435 9.583 8.101 1.301 2.203
1486 Pal. Cancellaria, Rome (D. Bramante) 4.575 19.897 14.667 1.328 2.182
1489 Pal. Strozzi, Florence (B. da Maiano) 5.041 17.461 13.116 1.413 2.236
1560 Loggia dei Branchi, Bologna (G. da Vignola) 4.374 19.327 14.304 1.289 2.161
1564 Pal. Negroni, Rome (B. Ammanati) 4.099 22.560 16.362 1.232 2.125
1586 Pal. Laterano, Rome (D. Fontana) 4.264 10.238 8.518 1.267 2.176
1739 Pal. della Consulta, Rome (F. Fuga) 4.528 13.583 10.647 1.319 2.195

Average: 11.646 1.293 2.176

* Measures of section contours and sample lengths are relative to the reference unit s0/π.

Table 6. The calculated geometric parameters of Renaissance lintels leading to the average values of
Feret diameter and Hausdorff dimensions.

Year of
Construction Location and Architect Rel. *

Contour (c)
Rel. *
Length (l)

Feret
Diameter (F)

Linear Fract.
Dim. (DH1)

Areal Fract.
Dim. (DH2)

1447 S. Spirito Sagrestia, Florence(A. di Lazzaro Cavalcanti) 4.635 6.283 6.000 1.340 2.261
1450 Casa Sanmicheli, Verona (M. Sanmicheli) 4.752 3.888 4.475 1.361 2.331
1460 Pienza Cathedral (B. Rosselino) 4.315 5.223 5.325 1.277 2.227
1475 Pal. Ducale, Gubbio (L. da Laurana) 4.131 5.853 5.726 1.239 2.188
1489 S. Spirito Sagrestia, Florence (G. da Sangallo) 4.476 7.058 6.493 1.309 2.228
1501 Pal. Cenami, Lucca (F. Marti) 4.107 5.879 5.743 1.234 2.184
1534 Pal. Farnese, Rome (A. da Sangallo Jr.) 6.126 4.608 4.933 1.583 2.500
1541 Pal. Venezia, Rome (J. da Piertasanta) 4.098 7.103 6.522 1.232 2.171
1545 Turini Chapel, Pescia Cathedral (G. di Baccio d’Agnolo) 4.697 4.518 4.876 1.351 2.303
1586 Pal. Laterano, Rome (D. Fontana) 3.927 10.001 8.367 1.195 2.129

Average: 5.846 1.312 2.252

* Measures of section contours and sample lengths are relative to the reference unit s0/π.
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Table 7. The calculated geometric parameters of Renaissance porticoes leading to the average values
of Feret diameter and Hausdorff dimensions.

Year of
Construction Location and Architect Rel. *

Contour (c)
Rel. *
Length (l)

Feret
Diameter (F)

Linear Fract.
Dim. (DH1)

Areal Fract.
Dim. (DH2)

1510 Pal. Apostolico, Loreto (D. Bramante) 4.006 4.555 4.900 1.212 2.183
1524 Pal. Giustiniani, Padua (G. M. Falconetto) 5.122 4.029 4.565 1.427 2.385
1534 Pal. Farnese, Rome (A. da Sangallo Jr.) 6.113 7.896 7.027 1.582 2.415
1536 Libreria, Venice (J. Sansovino) 5.850 5.525 5.517 1.543 2.436
1541 Pal. Venezia, Rome (J. da Piertasanta) 5.672 6.109 5.889 1.516 2.400
1549 Basilica, Vicenza (A. Palladio) 5.341 4.712 5.000 1.464 2.394
1564 Pal. Negroni, Rome (B. Ammanati) 3.566 9.000 7.730 1.111 2.076
1589 Cancellaria, Rome (D. Fontana) 4.638 2.917 3.857 1.340 2.352
1616 Pal. Sciarra, Rome (A. Labacco) 4.353 3.860 4.457 1.285 2.261
1696 Pal. Montecitorio, Rome (C. Fontana) 5.818 2.327 3.481 1.538 2.619

Average: 5.242 1.402 2.352

* Measures of section contours and sample lengths are relative to the reference unit s0/π.

Table 8. The calculated geometric parameters of Renaissance wall cornices leading to the average
values of Feret diameter and Hausdorff dimensions.

Year of
Construction Location and Architect Rel. *

Contour (c)
Rel. *
Length (l)

Feret
Diameter (F)

Linear Fract.
Dim. (DH1)

Areal Fract.
Dim. (DH2)

1446 Pal. Rucellai, Florence (L. B. Alberti) 6.178 65.136 43.467 1.591 2.254
1451 Loggia del Consiglio, Padua (M. di Bassano) 5.079 18.692 13.900 1.420 2.236
1460 Pal. Piccolomini, Pienza (B. Rosselino) 5.393 73.985 49.100 1.472 2.198
1547 Pal. Farnese, Rome (Michelangelo) 5.969 63.281 42.286 1.561 2.243
1549 Basilica, Vicenza (A. Palladio) 4.978 16.336 12.400 1.402 2.234
1558 Loggia del Commune, Brescia (J. Sansovino) 4.805 33.929 23.600 1.371 2.182
1564 Pal. Doria-Tursi, Genoa (R. Lurago) 5.210 48.886 33.122 1.442 2.201
1586 Pal. Laterano, Rome (D. Fontana) 4.960 76.225 50.526 1.399 2.167
1662 Pal. Salviati, Rome (C. Rainaldi) 5.249 110.990 72.658 1.448 2.175
1666 Pal. Bonaparte, Rome (G. A. da Rossi) 5.174 33.338 23.224 1.436 2.215

Average: 36.428 1.454 2.210

* Measures of section contours and sample lengths are relative to the reference unit s0/π.

4. The Calculation Method

We use fractal analysis in order to quantify the haptic quality of tectonic reliefs. For
the plasticity evaluation, we extract numerical data from the drawings (i.e., sections),
ground plans, frontage views, and miscellaneous details published in multiple Renaissance
treatises [23,37–40]. From this collection of plans, we choose examples from a wide range
of well-known Classical buildings.

Our calculations are aimed at providing single constants that describe the plasticity
of the most characteristic parts of an elevation from either the Renaissance or Classical
antiquity. The categories follow a logic that classifies elements into the vertical group of
posts and the horizontal group of lintels [41]. Posts are columns, pilasters, porticoes, and
jambs, while lintels are entablatures, wall cornices (cornicioni), and lintels of doors and
windows. Capitals that create a formal and structural transition between the two have a
special category, but we use the same method nonetheless to measure their visual plasticity.

To display an example of how our calculations are made, we first need to introduce
simple variants. When analyzing, for instance, a segment of the Parthenon’s entablature,
we need to measure the section’s tangible contour (c0), its visible span (s0), and the sample’s
length (l0) on the drawing (Figure 5).

The latter is always perpendicular to the former two. Then, in order to make the
measured values comparable with other samples, we need to scale them all down by
dividing them with a specific reference unit (u), which equals to s0/π. (In case of columns’
shafts, though, u would be calculated differently—s0/2—for the reasons described above
in connection with the Vitruvian module.) This notion results in the relative lengths of the
section contour (c), the section span (s) and the sample length (l). We can finally use these
relative values to calculate the Feret diameters and the Hausdorff dimensions for plasticity
evaluation by category. For the Feret diameter, we use the following formula:
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F =
2
π
(s + l) (4)
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Due to some simplifications, the same values could be gained directly from architec-
tural drawings regardless of scale except for the column’s case:

F = 2
(

1 +
l0
s0

)
(5)

Finally, we apply our variables to the Hausdorff–Besicovitch formula to get the fractal
dimensions of the elements. According to the linear model, the section’s contour gives us
the following value for the fractal dimension:

DH1 =
log c
log s

(6)

Now, for the areal model relevant in plasticity measurement, we need to consider the
logarithmic proportion of the plain visible area (Av) and the extended haptic area (Ah) that
involves depth. In other words:

DH2 =
log Ah

log
√

Av
(7)

Using our variables, this expression alters to a somewhat simpler form:

DH2 = 2
log cl
log sl

(8)

It is necessary to note here that neither the linear nor the areal fractal dimension is
specified according to the area-scale method of SSFA [28,29], since we fixed the scale by a
reference unit and made all the measurements relative to it. For a thorough explanation, it
is also mandatory to underline that our relief method focuses on the difference between the
visible and the tactile, not the approximation of the tactile; hence, the comparison is always
between the visible span (s) and the tangible contour (c).

Herein, we analyze Classical details and not the elevation in general. We expect that
the values of DH1 will mostly occur between 1 and 2, while those of DH2 will virtuously
occupy the dimension gap between 2 and 3. All these calculations are intended to inform
us about the plasticity of the details by the selected categories. We attempt to reveal their
intrinsic connections and understand the computed values as one of the mathematical
cornerstones of the Classical sense of proportion.
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5. Values of Scale and Plasticity (Results)
5.1. The Fractal Dimensions of Classical Orders

As before, we follow the tectonic logic of posts and lintels when categorizing Classical
details. These groups of elements do not require any novel approach and could easily
be derived from the historical interpretations of the Vitruvian system [18]. Let us begin
our calculations with the Classical column (Table 2) and entablature (Table 3) with the
established principles.

For this, we take examples from both Hellenic and Roman antiquity, with the most
characteristic types depicted by Renaissance and later scholars. The table for the shafts
lists fluted and plain columns, the former being associated with the Greek variants and the
latter with the Roman variants. Fluted shafts are the Doric, two alternatives of the Ionic
(from Attica and from Asia Minor), and two alternatives of the Corinthian columns. Plain
shafts are the Tuscan, the Roman Doric, the Ionic and Corinthian, and finally the Composite
type. Fluted and plain types are represented by five examples each so that the balance
between Hellenic and Roman architecture could be obtained. Each type is coupled with
the source location of the analyzed sample.

The drawings’ digitally measured data (relative section contour and sample length)
determines the element’s Feret diameter, the linear dimension, and the areal fractal dimen-
sion, given that the relative section span (s) is exactly two modules wide. All the other
values are relative to the chosen module nonetheless. We consider average values of Feret
diameters and Hausdorff dimensions as the constants of Classical plasticity. For clarity, we
present the results below and endeavor to interpret them afterwards.

The general increase in plasticity from the modest Doric or Tuscan to the most decora-
tive Corinthian or Composite is not surprising; however, it is worth noting that columns
have different values than entablatures. The latter’s plasticity seems to be reduced relative
to that of the shafts, especially if they are fluted. The verticality of the columns are naturally
more stressed, yet this is only true for the abstract building, since these calculations are
based on the relief sections that exclude any painted ornaments.

If we look at the reconstructions of Classical entablatures’ figurative imagery [42,43], we
cannot ignore the richness of painted details that are concentrated on the entablatures—re-
spectively on the friezes—to compensate for this slight loss of plasticity. This implies that
the builders of these Classical temples must have chosen to balance the façades’ level of
ornamentation, that is, the visual attractiveness with both plastic and planar means. In other
words, they attempted to keep the fractal dimension of the buildings’ ‘membranes’ [19]
as homogenous as possible. This rule seems to apply when comparing the same types of
elements of different magnitudes.

There is yet another intriguing tendency to interpret, which is more difficult to notice
for the first time. Up to this point, it was less of a tiring quest to determine the length of a
Classical public building’s entablature. Whenever possible, we chose samples that were
best offered by the well-known front elevations or their representative entrances.

The Feret diameters inform us about the proportions of these details, which do not
seem to vary too much due to the Vitruvian logic of proportions [30]. However, at the
sunset of the ancient Roman Republic, the appearance of centralized power manifested
itself through new architectural means [44], as in the case of the Theatre of Marcellus
(see Table 3), the remains and reconstruction [45,46] of which were also subject to our
investigations.

The theatre, formally inaugurated in 12 BCE by Caesar Augustus, was a prestigious
public edifice in Rome that was designed to represent imperial peace and unity (Figure 6).

The structure’s entablatures resting on vaulted porticoes were therefore obviously
undivided and encompassed the round shaped building like horizontal belts. No wonder,
as their relative lengths together with their Feret diameters are exceedingly high. This ex-
ample is very useful, though, because it shows how the plasticity indicator of the Hausdorff
dimension remains relatively stable despite the increased length. This is unambiguously
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due to the growth of the section contour’s length, which triggers a sort of overcompensation
in the linear fractal dimension.
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To keep the areal dimension of a long entablature on a certain level, one must certainly
increase the complexity of its pattern. The logarithmic formula suggests the appropriate
proportion for this notion in either Classical antiquity or Renaissance architecture. Before
examining the latter, let us test the haptic features of the Classical capitals (Table 4).

For better understanding, it needs to be emphasized that the capitals’ plasticity is
calculated from the contours of their vertical sections; therefore, the logarithmic reference
unit is derived not from the Vitruvian module but instead from the capital’s height divided
by π, as in the case of the entablatures.

This approach was inspired mostly by the Ionic capital that often captures the viewer
with the planar composition of its volutes, which differs from the shaft’s circular symmetry
and modular order. Because of this inherent two-dimensionality, the capital is more
similar to the entablature in nature, although it has a role of connecting the vertical and
horizontal parts.

The increase in the areal Hausdorff dimension signifies the capital’s high plasticity, as
one could have envisaged, for this is usually the most densely detailed part of the column.
Its linear dimension, though, is between that of the shaft and the entablature. This is a
coherent result, since the capital has to bridge the intensity gap between the shaft and the
sculpturesque trifold structure of the architrave, frieze, and cornice. On the other hand, the
contour of its vertical section should not differ too much from the contour of the entablature,
since together they create a continuous curve.

5.2. The Fractal Dimensions of Renaissance Façades

As mentioned before, one of the goals of this article is to find mathematical evidence
for the continuity of Classical aesthetics in Renaissance architecture, for which we analyze
the tectonic patterns of mostly Italian urban palaces. Nonetheless, beyond these outstand-
ing historical masterpieces of the Quattrocento and Cinquecento, we will examine some
younger examples and extend our investigation to as far as the 18th century.

One could aptly ask how much of Classical plasticity was left intact after the Renais-
sance transformation and how strong the bonds of the intrinsic aesthetic unity were that
held Renaissance composition together. It would also be interesting to see if the math-
ematical constants of Classical antiquity reappear in any of the relatively novel details.
Finally, will Renaissance architecture reflect the same logic that convinced ancient builders
to homogenize the façade’s fractal dimension? We should be able to answer these questions
by deciphering the specific and average values in Tables 5–8.

First, the values of linear and areal Hausdorff dimensions in Tables 5–8 meet our basic
expectations, since the former are always between 1 and 2, while the latter are between 2
and 3, which suggests that our calculations are right. It can also be noticed in these tables
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that the average linear dimensions grow in accordance with the relative size of the detail;
that is, window jambs and lintels are more or less of the same scale, while porticoes and
wall cornices are usually greater. Linear DH1 values are increasing exactly in this order.
This reaffirms our suspicion about the Classical logic of compensation, which we first noted
at the Roman Theatre of Marcellus when the enormous size of the entablature triggered a
relative overdose of linear plasticity.

It is also important to add that the average DH1 measured at the Classical entabla-
tures (Table 3) draws very near to that of the Renaissance wall cornices (Table 8). With a
difference of less than 7%, the Renaissance interpretation of the Classical entablature as a
cornicione is mathematically sound, regardless of the fact that the stylistically mixed and
often proportionally exaggerated Quattrocento palaces may substantially differ from the
clear-cut unity of an ancient temple [23] (Book IV). Based on these observations, one could
also claim that Classical plasticity is felt in Renaissance architecture even without the true
continuity of Vitruvian geometry [30,33].

Following the ‘compensation rule’, we would also foretell the tendencies of areal
plasticity regarding scale, but the computed values here do not seem to follow the same
guidelines. However, once again we need to remember the case for the Classical frieze,
where ornaments enrich otherwise empty fields with virtuosic details. This may be taken
into account as a hidden factor that would hypothetically harmonize size with plasticity
and set the same order as the values of DH1 do. One could recognize the same idea by
looking at the Loggia del Commune of Brescia (Figure 7).
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Figure 7. The frontage of the Loggia del Commune in Brescia (Jacopo Sansovino, 1558), illustrating
the ‘compensation rule’: the lower frieze is cut into three modestly decorated parts, while the upper
frieze is undivided but lavishly ornamented.

The tripartite elevation of the city hall designed by Venetian architect Jacopo Sanso-
vino—however, there are speculations suggesting that there are connections between
Bramante and the Loggia [47]—comprises two main cornices, the lower of which is divided
into three parts. These parts are shorter and less ornamental than the rampant frieze
of the upper cornice. It is significant that the latter cornice is also taller and undivided.
This indicates that size growth will attract more ornaments, and the designer feels more
comfortable if the areal plasticity (DH2) is balanced throughout the building’s frontage,
hence the compensation with more details for the loss of plasticity due to size.
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DH2 values prove useful in the recognition of other intrinsic connections too. Most
importantly, horizontal objects show greater coherence as the average areal dimensions of
Renaissance lintels (Table 6), wall cornices (Table 8), and Classical entablatures (Table 3)
have approximately the same values. The latter two are extremely close to each other,
within 1%, while the average lintel differs from them by less than 3%.

The tightest liaison, however, appears between the Renaissance porticoes (Table 7)
and the shafts of Classical columns (Table 2). Both being dominant and emphatic parts of
the façades, they prove to play the same role in the buildup of traditional edifices. This is
unambiguously shown by their areal plasticities that are equal within a 0.2% error margin
and slightly above 2.35.

The coherences one can observe by the Feret diameters are also meaningful. On one
hand, it is not a real surprise that the values of Classical shafts (Table 2) and that of the
Renaissance jambs (Table 5) are close, since these diameters are consequences of Classical
proportions, which Renaissance jambs, as miniature columns, tend to keep. This applies to
the case of entablatures (Table 3) and wall cornices (Table 8) as well, where the difference is
less than 1%.

The connection of these two horizontal elements is now proven, since all their Feret
diameters and linear and areal Hausdorff dimensions are connected together. On the other
hand, it is the least obvious why the ratio of the average Feret diameters of the horizontal
(Fh) and the vertical parts (Fv) appear to be close to a familiar constant:

Fh
Fv
≈ π (9)

This applies to the ratio of the average Feret diameters of Renaissance wall cornices
and jambs and that of the Classical entablatures and shafts. Rather strangely, cornices
are coupled with jambs and not with porticoes, but in the case of the Feret diameters
cornices are measured in relative units; scale does not have any role, only the geometrical
proportions do.

We could interpret this outcome not as an arbitrary coincidence but instead as a
result that might be implied by the premises of our logarithmic calculations (Equations
(2) and (3)), although a more satisfying explanation is yet unfound. Temporarily, we can
hypothesize that horizontal entities were more associated with round geometries; hence, π
appears as an irrational ratio, while vertical ones were considered rational for their roles as
load-bearing posts.

6. Limitations and Implications (Discussion)

In our previous article [1], we did not introduce any reference unit. As a result, the
values of DH in that article are slightly dependent on the randomly chosen modules, despite
these modules being suggested by the tectonic layers of the evaluated façades. The current
article managed to fulfil this postponed task. However, there are two further limitations
and implications that need to be considered.

First, the abstract tools that this article described are not capable of measuring the
additional plasticity of the frieze ornaments. To achieve this, it would be necessary to use 3D
scanners and, by applying the formula in Equation (7), compare the total surface area with
the area of the visible plane. If the goal were to involve planar decorations and implement
complex measurements, we would need to combine various planar methods [48] with the
relief method [1].

Second, when we made our last comparison between the Renaissance porticoes
(Table 7) and the shafts of Classical columns (Table 2), we used the most characteristic pillar
segment of a portico—or an individually composed set of shafts in a colonnade—and a
single Classical column. This result has a certain poetic aspect through which we may visu-
alize this single shaft as a ‘concentrate’ of a more complex or multilayered vertical structure.
This relationship becomes even more engaging considering that we applied the Vitruvian
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module as a reference unit only in case of the column. If we had not, the logarithmic result
would not be much different; however, the similarity would be less conspicuous.

Our survey also allows us to understand the differences between Classical and mod-
ern architectures. Modern architecture is viewed by many scholars [13,20,22] as handling
façades rather arbitrarily; since there are few ornaments or balancing tectonic layers, the
fractal dimension of details may differ due to scale and architectural emphasis. This is in
parallel with the differences between the static system of social values of antiquity and the
ecstatic dynamism of modern industrial progress [49]. This cultural schism was recognized
and duly symbolized by Robert Venturi and Denise Scott-Brown [50] (p. 106), the postmod-
ernist designers of the National Gallery Sainsbury Wing extension in London (1991).

The future applications of the method that this article elaborated may spread from indi-
vidual architectural design to complex urban analyses. Despite the general misconception
about buildings’ aesthetics being an arbitrary matter, we promote traditional and emerging
methods [13,25,51,52] to decide if users would prefer a certain architectural design before
funds were sunk into its costly construction. Rational economies should consider visual aes-
thetics and monitor their contribution to visual attention [53], well-being [10], and cultural
complexity [49,54], which then may affect both real estate prices and human resources.

Our method may provide an interdisciplinary answer to the high street crisis of many
of the historical cities in the world. Fractal analysis with improved measuring devices,
such as 3D scanners, could be used for measuring the plasticity of wider tectonic structures.
Further investigations could help collect data to increase the desirability of abandoned
public streets [55,56]. The results presented in this article may also support urban policy
makers with a mathematical tool for the conscious use of local ‘pattern grammar’, that is,
the genius loci [16,17], for restoring and developing environments that people recognize as
their own.

7. Conclusions

This article aimed to draw readers’ attention to methodological problems regarding
fractal analysis in architecture. Although our observations may be more generally applied,
we focused on the tradition and historical continuity of Classical architecture, which was
analyzed by this relatively novel means. More specifically, our main interest was the
buildup of elevations, which we attempted to measure and categorize in order to turn
visual patterns into controlled mathematical information.

The purpose of refining this information was to find implied but not obviously visible
connections between the logic of Classical and Renaissance architecture. We believed
that fractal analysis could point out and identify repeating patterns in a more complex
manner than the common practice that evaluated planar and visual proportions only.
Architecture is indeed not just visual but is also haptic; hence, we managed to introduce
an evaluation method based on surface depth. This approach was published before as the
‘relief method’ [1], which this study extended in order to provide a more detailed survey
on historical façades.

For the measurements, we used simple graphic tools and applied logarithmic
Hausdorff–Besicovitch formulas to process the gained numeric data. Fractal dimensions
were derived from section contours and spans, which resulted in certain linear and areal
plasticity values. As a third informative component, the Feret diameter was introduced
as an evaluation tool. The analyzed samples were chosen from among the best-known
historical examples of the Classical antiquity and Renaissance periods, taking into account
the stylistic differences in the former and the multiple functions in the latter.

Our observations were based on the average values of Feret diameters and fractal
dimensions, which we interpret as the characteristic constants of the tectonic elements. With
this practice, we could attribute three constants to each, which we categorized according to
their scale and role in the trabeated system. These numbers and categories played major
roles when comparing the haptic features of the architectural details.
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Results have proved that Classical and Renaissance architectures are tied not only by
formal and proportional aspects but also through similar plasticity features, even when their
stylistic and geometrical premises do not match. We managed to observe a ‘compensation
rule’ that portrayed the façade designs during both of the examined epochs. This regularity
suggests that the ‘membrane’ of the edifice should be equally plastic; that is, the fractal
dimensions of the most essential details of the building should not preferably differ. In
addition, we found mathematical evidence for the palimpsest of Classical details in certain
Renaissance elements based on their scale and plasticity.

Though the pure sequence of Greek and Roman columns disappears, porticoes and
multilayered pillar compositions take their place in the fractal scale. In the same way,
tripartite entablatures give way to cornicioni, while jambs and lintels reflect the rearrange-
ment of ancient tectonic details more loosely. They reaffirm the ‘compensation rule’, which
also implies that size growth attracts either split composition or elaborate details such as
ornaments. Elevations neglecting this criterion were seen as likely inharmonious.
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