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Abstract: The study proposes a novel chaotic system with a cubic non-linear term. Different system
characteristics are investigated including equilibria, stability, invariance, dissipation, Lyapunov
dimension, and Lyapunov exponents. Also, the electronic circuit and Signal flow graph of the system
are carried out to show the applicability of the chaotic system. Lyapunov stability theorem converts
the system’s chaotic behavior to unstable trivial fixed point. The study also focuses on demonstrating
complete synchronization between two similar novel chaotic systems. According to Lyapunov
stability theorem, simple application in secure communication was developed by employing the
chaos synchronization results. Numerical simulations for the systems are performed for establishing
the synchronization strategy effectiveness and proposed control.
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1. Introduction

Researchers in numerous branches of natural sciences are becoming more interested in
nonlinear chaotic systems since these systems are dynamic and very sensitive to beginning
circumstances. Recently Qi et al. in [1] created a new three dimensional chaotic system with
sophisticated chaotic behaviour and fascinating characteristics. Many researchers in various
fields have been drawn to the construction and study of new chaotic models over the last
ten years because the phenomenon of chaos is located in most of the modern applications
such as nonlinear networks, communication algorithms, chemical and biological structures,
and signal processing. Furthermore, as various genuine applications of chaotic control
methods [2,3] and chaos system synchronization arise, many new and intriguing research
points emerge [4,5].

The chaotic system is satisfied based on the properties as follows [6,7]: (i) increased
sensitivity to initial conditions; (ii) possess positive Lyapunov exponent. The chaotic system
is widely used in secure communications, neural networks, non-linear circuits, lasers, and
biological systems considering its high capacity, efficiency, and security. Therefore, in
the present time, it is important to study chaotic nonlinear models [8,9]. It is useful to
represent complicated models via a signal flow graph because it helps to understand the
model’s complexity and structure using graph theory tools [10]. The presence of directed
cycles in a graph is called common source of complexity in directed graph theory [11].
These cycles hold significant importance in various engineering structures. In nonlinear
dynamics, chaos controlling is considered a challenging topic. Chaos controlling adds
an input control for stabilizing an unstable equilibrium point. The setting of this input
control is based on active control, adaptive control, and both nonlinear and linear feedback
control [12–18]. In real life process control, it is important to control systems for operating
within a stabilized operating condition. The examples of real processes that need to be
operated in predetermined situations, controlling missile track in military applications, in
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industries involved in controlling temperature, pressure, etc. With specific operational val-
ues, in adjusting satellite orbits, and in space applications. Therefore, significant attention
is given to track control methods of chaotic models.

However, since the last three decades chaos synchronization is carefully developed
and investigated considering its applications in nano-oscillators, secure communications, bi-
ological systems, etc. [19,20]. A method for synchronization of two similar systems with dif-
ferent baseline conditions and various approaches was proposed by Pecora and Carrol [21].
The system was focused on synchronization of chaotic systems that include complete
synchronization [21], phase synchronization [22], generalized synchronization [23], lag
synchronization [24], intermittent lag synchronization [25], time scale synchronization [26],
intermittent generalized synchronization [27], projective synchronization [28], modified
projective synchronization [29,30] and function projective synchronization (FPS) [30–33],
and modified function projective synchronization (MFPS) [32,33]. In all of the above syn-
chronization systems, the synchronization of response and drive systems is done to fulfill
the required scaling function matrix, which further attracts the attention of scholars, engi-
neers, and scientists because it is likely to render secured communication in the application.
This study’s contribution is the development of a novel chaotic nonlinear mathematical
model, which can be applied in communications and engineering fields. The model will be
demonstrated by designing an electronic circuit and identifying a controller to convert the
system’s chaotic behavior to unsteady trivial fixed point. A complete controller for chaos
synchronization of identical chaotic systems will also be built and the effectiveness of the
synchronization will be demonstrated using secure communication as an example.

In this paper we introduce a new three-dimensional chaotic system with two quadratic
and one cubic term and study its fundamental dynamics, characteristics, electronic circuit,
and signal flow graph. Also, chaos control was studied for the proposed system. Moreover
using the Lyapunov stability theory, the synchronization problem for this new chaotic
system is also studied. Based on the synchronization results a simple secure communication
plan is achieved.

The reminder of this paper is divided into six Sections. Section 2 highlights the de-
scription of the model and its basic properties. Then Section 3 studies Lyapunov exponent,
an electric circuit that implements the system, and signal flow graph of the system. Fol-
lowing this, Section 4 investigates controlling the system. Section 5 presents the method of
complete synchronization applied to synchronize the proposed system. Finally, a summary
and some concluding are given in Section 6.

2. New Chaotic System-Analysis

The new chaotic nonlinear system dynamics is explained as:
x′1 = a(x2 − x1) + x2x2

3,
x′2 = bx2 − kx1x3,
x′3 = hx2

1 − cx3,

(1)

where x1,x2 and x3 are state variables and the parameters and the initial values are given
by a = 10, b = 5, c = 2.5, h = 3, k = 3, x1(0) = 2, x2(0) = 3 and x3(0) = 2. Figures 1 and 2
show the chaotic behaviour of the system (1). In the following subsections, we examine the
qualitative properties of system (1).

2.1. Dissipativity

The divergence of chaotic system is given by:

∇V =
∂x′1
∂x1

+
∂x′2
∂x2

+
∂x′3
∂x3

= −a + b− c,

then the system (1) is dissipative when b < a + c.
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Figure 1. x1–x3 Phase portrait of new chaotic system.
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Figure 2. x2–x3 Phase portrait of new chaotic system.

2.2. Symmetry

The relation of (x1, x2, x3) → (−x1, x2,−x3) is transformed, the system (1) remains
unchanged. The system trajectory in the x1 − x3 plane symmetry of x2 axis.

2.3. Equilibrium Points and Stability

The equilibrium points are established by resolving the below stated algebraic equations:
0 = a(x2 − x1) + x2x2

3,
0 = bx2 − kx1x3,
0 = hx2

1 − cx3.

(2)
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Obviously, E0 = (0, 0, 0) is a trivial fixed point. There are numbers of equilibrium
with complicated formulas along with E0. The system’s Jacobian matrix at E0 for studying
stability of E0 is: −a a 0

0 b 0
0 0 −c

,

where the characteristic polynomial is:

(−a− λ)(b− λ)(−c− λ) = 0,

with the eigenvalues: λ1 = −a, λ2 = b and λ3 = −c. So the fixed point is stable if: a, c > 0
and b < 0. Otherwise it is unsteady fixed point.

2.4. Lyapunov Exponents and Kaplan–York Dimension

Numerically, the chaotic system’s Lyapunov exponents for specific parameter values
are obtained as:

LE1 = 1.0767, LE2 = −0.0022 and LE3 = −8.5677

Thus, the positive Lyaponuv exponent within the system shows that the system is chaotic.
Chaotic system’s Kaplan–York dimension is obtained as:

DKY = j +
1
|λj+1|

j

∑
i=1

λi = 2 +
λ1 + λ2

|λ3|
= 2 +

1.0767− 0.0022
| − 8.5677| = 2.1254

Thus, the Lyapunov dimension is fractal dimension, depicting a chaotic system. Figure 3
illustrates Lyapunov exponent’s dynamics, which ensures the system’s chaos behavior.
Moreover we have studied the spectrum of Lyapunov exponents for a and b as we can see
in Figures 4–5 respectively one exponent is bigger than zero, another is close to zero, and
the third is smaller than zero.

Figure 3. Lyapunov exponents of model (1).
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Figure 4. Spectrum of Lyapunov exponents for variable a.
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Figure 5. Spectrum of Lyapunov exponents for variable b.

3. Electronic Circuit and Signal Flow Graph
3.1. Electronic Circuit Implementation for System Realization

Chaotic systems are very important and used in several real applications in physics,
nature, and secure communications. Consequently realizable chaotic models are very
useful in this direction. It is very good result to build up an electronic circuit to realize a
chaotic model and convert it from pure mathematics point of view to real object which
mean its applicability. In this section, the proposed 3D chaotic model (1) is considered.
The electronic circuit shown in Figure 6 was designed using the NI Multisim 14.0 package,
where A1, A2, A3 are three summers, each with three inputs and a single output; P1, P2,
P3, P4 are AD633 voltage multipliers, each with two inputs and a single output. All of
the inputs and outputs are adjusted with identity gain. The three voltage integrators with
outputs equivalent to the system states x1 to x3 are replicated with the help of three LM741
operational amplifiers. Moreover, two LM741 operational amplifiers help in generating
two voltage inverters. Figure 6 presents the designed values of capacitors and resistors.

Table 1 shows the input/output gain’s used in the voltage summers. Figure 7 shows
the x1–x3 phase plane from the real electronic circuit. Figure 8 shows the x2–x3 phase plane
in the real electronic circuit.
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The electronic circuit of our system show that our new system is applicable. The solu-
tions of our system can use as signals in some application such as secure communication.

Table 1. The voltage summing devices used.

Summer Symbol A B C O

A1 −10 −1 10 0.05
A2 −3 3 −5 0.05
A3 3 0 2.5 0.05

Figure 6. Electronic circuit realization of the system (1).

3.2. System’s Signal Flow Graph

A graphical tool for examining the relationships between system states is the signal
flow graph. Signal flow graphs are highly useful for exploring the relationships between
nonlinear dynamical systems, allowing for the nationalist and discovery of novel aspects
of the nonlinear dynamical system under investigation. As they may be used to map the
signals between the variables of the system, signal flow graphs are also helpful in the
design and building of electrical circuits for dynamical nonlinear systems.

The interactions between the system states are displayed using some concepts of graph
theory. Firstly, we construct a signal flow graph for the studied system and compute its
energy from graph point of view. From the system (1), the model has three pure states x1,
x2 and x3 along with four hybrid states x2

1, x2x2
3, x2

3 and x1x3. Figure 9 shows the system
signal flow graph D.
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Figure 7. The x1–x3 phase plane from the real electronic circuit.

Figure 8. The x2–x3 phase plane from the real electronic circuit.

The Hermitian matrix of a digraph D may be defined as:

Huv(D) =


1, if (u, v) and (v, u) are edges in D;
i, if (u,v) is an edge in D but (v,u) is not;
−i, if (v,u) is an edge in D but (u,v) is not;
0, otherwise.

Then graph D has the following Hermitian matrix

H(D) =

x1
x2
x3
x2

1
x2

3
x1x3
x2x2

3

×



1 −i 0 i 0 i −i
i 1 0 0 0 −i i
0 0 1 −i i i 0
−i 0 i 0 0 0 0
0 0 −i 0 0 i 0
−i i −i 0 −i 0 0
i −i 0 0 0 0 0


.
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The eigenvalues of H(D) are: −2.0852, −1.4156, −0.3598, 0.3996, 0.9446, 2.4041, 3.1124.
The definition of Hermitian energy is given as EH(D) = ∑7

i=1 = |µi| = 10.7213, where 7 is
the order of D and µ are Hermitian matrix’s eigenvalues. This energy value is new and can
be used for comparison purposes.

Figure 9. System signal flow directed graph D.

4. Chaotic Behavior of System-Control
4.1. Analytical Solution

The term “chaos control for chaotic solutions” refers to the development of a controller
capable of alleviating or reducing the chaotic behaviour of a nonlinear system. In this
section, the Lyapunov stability theorem is utilized for suppressing the chaotic response to
unstable trivial fixed point E0.

Controlled new system’s equations are provided by:
x′1 = a(x2 − x1) + x2x2

3 + u1,
x′2 = bx2 − kx1x3 + u2,
x′3 = hx2

1 − cx3 + u3,

(3)

where u1, u2 and u3 are controller functions to design. These controllers will be constructed
appropriately for pushing the system’s trajectory towards unsteady trivial point E0 of the
uncontrolled system. The following Lyapunov function is chosen such that:

V(t) =
1
2

3

∑
i=1

x2
i

time derivative of V(t) is:

V′(t) =
3

∑
i=1

xix′i = x1x′1 + x2x′2 + x3x′3

= x1[a(x2 − x1) + x2x2
3 + u1] + x2[bx2 − kx1x3 + u2] + x3[hx2

1 − cx3 + u3]

considring the controllers ui, i = 1, 2, 3 as below:
u1 = −x1 − a(x2 − x1) + x2x2

3,
u2 = −x2 − bx2 + kx1x3,
u3 = −x3 − hx2

1 + cx3,

(4)

the Lyapunov function’s time derivative yields:

V′(t) = −x2
1 − x2

2 − x2
3 < 0.
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Therefore, controlled system and unstable equilibrium point E0 may converge asymp-
totically, such that ui = 0, i = 1, 2, 3 as t→ ∞.

4.2. Numerical Simulation

The computer simulation is performed to evaluate the recommended controller’s
performance. The system (3) without the controller was solved for the cases a = 10,
b = 5, c = 2.5, h = 3 and k = 3, where system’s chaotic attractors occur, as illustrated in
Figure 10a–c. Figure 10a depicts the state variable x1 of the system (1) (before control), and
additional state variables. Whereas, Figure 10b,c shows the chaotic attractors of (1) plotted
in (x1, x2) plane and (x1, x2, x3) space, respectively. System (3) with the controllers (4) are
numerically solved (after control), with the with similar parameters (Figure 10a–c). Chaotic
solutions are translated to trivial fixed point, as predicted from the preceding analytical
arguments. Figure 10d–f illustrates that control is attained within a short time period,
which demonstrates effective outcomes. All numerical simulation results are done by using
MATLAB Program with (ode45) code.
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Figure 10. Numerical solution of system (3): (a–c) before control, and (d–f) after control.

5. Complete Synchronization of Identical Chaotic System
5.1. Analytical Solution

In this section, a complete controller is constructed for the identical chaotic system
synchronization. The complete controller design is conducted with the help of Lyapunov
stability theory. The chaotic system is considered as a master system such that:

x′1 = a(x2 − x1) + x2x2
3,

x′2 = bx2 − kx1x3,
x′3 = hx2

1 − cx3,

(5)
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where x1, x2 and x3 are state variable and a, b, c, h and k are parameters as mentioned in
Section 2. As the slave system, chaotic system is considered:

y′1 = a(y2 − y1) + y2y2
3 + u1,

y′2 = by2 − ky1y3 + u2,
y′3 = hy2

1 − cy3 + u3,

(6)

where y1, y2 and y3 are state variable and u1, u2 and u3 are controller functions.
The complete synchronization error between the slave and master system is ex-

plained as: 
e1 = y1 − x1,
e2 = y2 − x2,
e3 = y3 − x3.

(7)

The error dynamics is easily calculated as:
e′1 = a(y2 − y1) + y2y2

3 − a(x2 − x1)− x2x2
3 + u1,

e′2 = by2 − ky1y3 − bx2 + kx1x3 + u2,
e′3 = hy2

1 − cy3 − hx2
1 + cx3 + u3.

(8)

The complete controller is defined by:
u1 = −ay2 − y2y2

3 + ax2 + x2x2
3,

u2 = −2by2 + ky1y3 + 2bx2 − kx1x3,
u3 = −hy2

1 + hx2
1.

(9)

Consider Lyapunov function explained by:

V =
1
2
(e2

1 + e2
2 + e2

3),

which is definite and positive on R3. The differentiation helps to attain V:

V′ = e1e′1 + e2e′2 + e3e′3 = −ae2
1 − be2

2 − ce2
3.

Since V′ is negative definite on R3, this demonstrates that the slave system synchronises
with the master system in the sense of complete synchronization by the controller (9).

5.2. Numerical Simulation

The numerical results are made by using MATLAB program with (ode45) code. The
simulation results of the chaotic systems (5) and (6) were expected to validate the effi-
cacy of the proposed results. The systems (5) and (6) with the controller (9), for which
system’s existing chaotic attractors were solved numerically. The master (5) and slave (6)
system’s initial conditions are selected such that (x1(0), x2(0), x3(0)) = (3, 2.5, 2) and
(y1(0), y2(0), y3(0)) = (−3,−2.5,−2). Figures 11–13 illustrate the variable’s states via
synchronizing manner between slave and master systems based on the study’s model. The
solutions of (5) and (6) are displayed for various beginning circumstances to demonstrate
chaotic synchronization after a short time period t. The state variable’s curves xi, for
i = 1, 2, 3 are denoted using black dashed lines, and state variable’s curves yi, for i = 1, 2, 3
are denoted by blue stars lines. The synchronization error are plotted in Figures 14–16, and
it’s clear from these figures the synchronization is achieved after small time. This means
our proposed controllers are very effect.
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Figure 11. Synchronization of system (5) and (6) for x1–y1.
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Figure 12. Synchronization of system (5) and (6) for x2–y2.
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Figure 13. Synchronization of system (5) and (6) for x3–y3.
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Figure 14. Synchronization error of system (5) and (6) for x1–y1.
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Figure 15. Synchronization error of system (5) and (6) for x2–y2.
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Figure 16. Synchronization error of system (5) and (6) for x3–y3.

5.3. An Application in Secure Communications

The goal of chaotic communications, an implementation of the chaos hypothesis, is
to ensure the safety of data transmissions made possible by technological advances in
media communications. To understand what we mean by “secure communications”, one
must realize that the information contained in the transmitted message is inaccessible
to any third parties that could try to snoop on the conversation. Chaotic frameworks’
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complicated dynamic characteristics are crucial to the security of chaotic communication.
Several features of chaotic dynamics are exploited as encoding mechanisms, including
complicated behavior, clamor like aspects, and dispersed range.

Chaotic communications based on past qualities require two chaotic oscillators, one
to serve as a transmitter and one as a receiver. A message is hidden in the noise of a
chaotic signal and transmitted from the transmitter. The chaotic signal is also known as
the chaotic bearer because of its role in transmitting information. For purposes of neural
cryptography, synchronizing these oscillators is analogous to synchronizing asynchronous
neural cryptography [34–36].

The outcomes of the new system’s chaotic synchronization use a simple approach to
produce application in a secure communications. The master system (5) was considered as
the transmitter system, the reception system denoted the slave system (5). The transmitter
system’s encryption of message signal h(t) and chaotic signals are expressed by an invert-
ible nonlinear function, with addition of signal h(t) to one (or more) of the three variables
x1m, x2m, x3m ( where x1m, x2m, x3m are the state variable of the master system ) in the later
step. For example, the combined signal is Ω = h(t) + x1m by adding it into the variable x1m.
Then, the combination of chaotic signals of the transmitter system are transmitted towards
receiver side. So, the chaos synchronization between two similar chaotic complexes (5), (6)
systems is likely to be attainted after some time ts. The states of xm will approach to xs. At
a certain time tc i.e., time greater than xs ( xs is the beginning time of the synchronization
process), the receiver starts to recover Ω(t) via a simple transformation h∗ = Ω(t)− x1s.

In the following numerical simulations, the system characteristics and transmitter
and reception systems’ initial circumstances are assumed to similar as stated in Section 2.
Figure 17 depicts a numerical simulation of using chaotic synchronization in secure commu-
nication. The message h(t) and the transmitted signal Ω(t) are illustrated in Figure 17a,b
respectively. Figure 17c shows the recovered message h∗(t) . The error between the original
and recovered message is illustrated in Figure 17d.
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Figure 17. Secure communication’s simulation results: (a) Original message h(t), (b) Transmitted
signal Ω(t), (c) Recovered message h∗, and (d) Error signal h− h∗.
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6. Conclusions

The present study has proposed new chaotic system that includes its dynamics, elec-
tronic circuit, signal flow graph, chaos control, and chaos synchronization. Lyapunov
stability theorem is used for designing the control laws that is likely to help in achieve
equilibrium of the chaotic system. The complete synchronization of the proposed chaotic
system is also studied and based on the Lyapunov stability theory (see Figures 11–13).
The synchronization errors are shown in Figures 14–16. From these figures it’s clear the
synchronization is achieved. The chaos synchronization develops a simple application
within the secure communications. The numarical results of secure communication are
illustrated in Figure 17.

The numerical simulations verify all the theoretical results for further demonstrating
effectiveness of proposed schemes. The verification of all the theoretical results is done by
numerical simulations that further explains the proposed scheme’s effectiveness.
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