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Abstract: Nonlinear fractional partial differential equations (NLFPDEs) are widely used in simulating
a variety of phenomena arisen in several disciplines such as applied mathematics, engineering,
physics, and a wide range of other applications. Solitary wave solutions of NLFPDEs have become
a significant tool in understanding the long-term dynamics of these events. This article primarily
focuses on using the improved modified extended tanh-function algorithm to determine certain trav-
eling wave solutions to the space-time fractional symmetric regularized long wave (SRLW) equation,
which is used to discuss space-charge waves, shallow water waves, etc. The Jumarie’s modified
Riemann-Liouville derivative is successfully used to deal with the fractional derivatives, which
appear in the SRLW problem. We find many traveling wave solutions on the form of trigonometric,
hyperbolic, complex, and rational functions. Furthermore, the performance of the employed tech-
nique is investigated in comparison to other techniques such as the Oncoming exp(−Θ(q))-expansion
method and the extended Jacobi elliptic function expansion strategy. Some obtained results are graph-
ically displayed to show their physical features. The findings of this article demonstrate that the used
approach enables us to handle more NLFPDEs that emerge in mathematical physics.

Keywords: SRLW equation; solitary solutions; fractional derivative; improved modified extended
tanh-function method; traveling waves

1. Introduction

Nonlinear fractional partial differential equations (NLFPDEs) were discovered in 1695
to describe several scientific applications that arise in a variety of disciplines, including
biology, fluid dynamics, optical physics, atomic physics, circuit analysis, geochemistry, and
several others [1]. The traveling wave feature is seen in many models and is essential for
comprehending how these models will behave in the future. In other words, such solutions
widely contribute to a great comprehension for the physical properties of the relevant
model. Consequently, NLFPDEs have been successfully used to analyze traveling wave
solutions of several real-world phenomena. Numerous valuable strategies such as quali-
tative strategies, algebraic approaches, general analytic processes, geometric-qualitative
processes, approximate analytic strategies, and numerical techniques have been efficiently
and successfully developed to extract some traveling wave solutions for NLFPDEs. Some
of these techniques are the expansion method [2,3], homotopy perturbation technique [4],
lumped Galerkin approach [5], Hirota bilinear strategy [6], F′/F-expansion technique [7],
modified F-expansion approach [8], and others [9–14].

When L’Hopital wrote to Leibniz in 1695 to ask about the 1/2-derivative, the theory
of fractional calculus was first taken into consideration [15]. Later, researchers began to
take into account derivatives of particular types, including complex, fractional, and irra-
tional derivatives. In fact, in earlier decades, certain informative definitions for fractional
derivatives were developed. Some of these definitions, however, might provide varying
consequences. To put it another way, they do not generate the same result for the derivative
of a specific function. For instance, in 1812, Lapalce developed a useful definition for a
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fractional derivative of functions by utilizing integrals. Furthermore, Lacroix presented the
n-th derivative for a given power function in 1819 [15]. However, there was no sold clue for
the validity of these approaches on an arbitrary order. In 1832, the first Liouville definition,
which depends on a formula for differentiating an exponential function, was derived by
Liouville [16]. Riemann developed his convenient definition for fractional derivatives in
his valuable paper given in [17]. In the late 19th century, the Riemann–Liouville definition
for a fractional derivative of a given function was perfectly developed. For more definitions
about fractional calculus, one can see refs. [15,18]. It is significant to point out that fractional
calculus has become a prosperous discipline for the majority of mathematicians, engineers,
and physicians after 1900.

In 1984, Seyler and Fenstermacher [19] presented the space-time fractional symmetric
regularized long wave (SRLW) equation. This equation is employed to describe weakly
nonlinear ion acoustic, space-charge waves as well as additional physical phenomena such
shallow water waves, solitary waves, and ion-acoustic waves in plasma. The importance of
this equation can be easily seen in its applications in nonlinear science. Consequently, a
variety of practical techniques have been utilized to derive the analytical and approximative
solutions to this equation. For instance, Xu [20] successfully obtained some generalized
soliton solutions and periodic solutions for the SRLW problem by using the Exp-function
approach. The fractional sub-equation method was nicely applied in [21] to develop
five exact solutions for the SRLW problem. Shakeel and Mohyud-Din [22] employed a
complex transformation to gain the corresponding ordinary differential equation of the
SRLW problem, then they obtained some hyperbolic, trigonometric, and rational solutions
for this equation using the fractional novel G′/G-expansion process. Furthermore, the
modified F-expansion strategy and the new auxiliary approach were perfectly applied
in [23,24], respectively, to find some exact solutions for the SRLW problem. In addition,
several traveling wave solutions for the proposed problem were obtained in [25] using the
direct method, which employs the Jacobi elliptic functions. Finally, Zhu and Qi [26] used
two essential strategies called the extended complex and the G′/G2-expansion techniques
to extract some exact solutions for the SRLW equation.

The results of the literature review, which show that this equation has not received
a necessary level of investigation, serve as the motivation for this article. Even though
these investigations were significant, they were executed using extremely rudimentary
methodologies, which limit the knowledge they provide on the traveling wave solutions to
the problem under consideration. Despite the fact that scientists have developed numerous
solutions for the SRLW equation using various methods, there is no comparison between
the performance of the used techniques. However, the leading purpose of this article is to
find some exact solutions for the proposed equation by employing the improved modified
extended tanh-function technique. The nonlinear SRLW equation [19] reads as

D2β
t w + D2β

x w + wDβ
t (Dβ

x w) + Dβ
x wDβ

t w + D2β
t (D2β

x w) = 0, 0 < β ≤ 1, t > 0, (1)

where w(x, t) is a function that denotes the wave profile and β is a fractional order. Accord-
ing to [27], the improved modified extended tanh-function technique gives twenty-two
different solutions (such as bell-shaped solitary wave solutions, kink-shaped solitary wave
solutions, triangular type solutions, rational solutions, periodic solutions, exponential type
solutions, and hyperbolic type solutions) under some constraints. Interestingly, under a
successful choice of parameters, the employed approach produces traveling wave solutions
with uniform structures. These kinds of solutions are therefore applicable to some events
that occur in the real world. The performance of the proposed strategy is successfully
compared with the performance of other methods. The surfaces of some solutions are
illustrated in 3D figures, and some contours are also shown to exhibit the long behavior
of the solutions. The traveling wave solutions attained from the suggested strategy imply
that the method is uncomplicated to to use and is computationally feasible.
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This article is designed as follows. In Section 2, we explain a convenient definition
for the Jumarie’s modified Riemann–Liouville derivative. In Section 3, we outline the
description of the approach adopted. Section 4 presents some exact solutions for the
considered equation. In Section 5, we provide a comprehensive explanation of the most
significant developments found in this research paper, while Section 6 is devoted to the
conclusions of this paper.

2. The Jumarie’s Modified Riemann–Liouville Derivative

Definition 1 ([28]). Let h be a function. Then, the γ-th order conformable fractional derivative of
h is defined by

Dγ(h)(τ) = lim
ε→0

h(τ+ ετ1−γ)− h(τ)
ε

, ∀ τ > 0, γ ∈ (0, 1).

If h is γ-differentiable in some interval (0,γ), γ > 0 and limτ→0+ h(γ)(τ) exists, then
define h(γ)(0) = limτ→0+ h(γ)(τ).

The Jumarie’s modified Riemann–Liouville derivative of order γ [29] is defined by the
following equations.

Dγ
τ h(τ) =



1
Γ (1−γ)

∫ τ
0 (τ− ζ)−γ−1(h(ζ)− h(0))dζ, γ < 0,

1
Γ (1−γ)

d
dτ

∫ τ
0 (τ− ζ)−γ(h(ζ)− h(0))dζ, 0 < γ < 1,

[
h(γ−m)(τ)

](m)
, m ≤ γ < m + 1, m ≥ 1.

Let γ ∈ (0, 1], and assume that u and w are γ-differentiable for τ > 0. Then, the following
are satisfied:

Dγ
τ τ

β =
Γ (β+ 1)

Γ (β+ 1− γ)
τβ−γ, β > 0,

Dγ
τ c = 0, c is a constant,

Dγ
τ (c1u(τ) + c2w(τ)) = c1Dγ

τ u(τ) + c2Dγ
τ w(τ), c1 and c2 are constants,

Dγ
τ (u(τ)w(τ)) = w(τ)Dγ

τ u(τ) + u(τ)Dγ
τ w(τ),

Dγ
τ u[w(τ)] = u′w[w(τ)]Dγ

τ w(τ) = Dγ
wu[w(τ)]

(
w′(τ)

)γ,

Dγ
τ

(
u(τ)
w(τ)

)
=

w(τ)Dγ
τ (u(τ))− u(τ)Dγ

τ (w(τ))

w2(τ)
, w(τ) 6= 0.

3. Improved Modified Extended Tanh-Function Technique

We will summarize the steps of the improved modified extended tanh-function tech-
nique as shown in [27]. First, consider a NLFPDE on the form

F1(w, Dβ
t w, Dβ

x w, Dβ
t Dβ

x w, D2β
tt w, D2β

xx w, . . .) = 0, (2)

where F1 is a polynomial in w(x, t) and β is a fractional order. We then use the fractional
complex transformation

w = w(x, t) = W(ξ), ξ =
xβ

Γ (1 + β)
+

µtβ

Γ (1 + β)
, (3)

to convert Equation (2) into the following equation

F2(W, W ′, W ′′, W ′′′, . . .) = 0, (4)
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where W ′ = dW/dξ. The improved modified extended tanh-function technique presents
the traveling wave solution of Equation (4) on the form

W(ξ) = ΣM
j=0γjGj(ξ) + ΣM

j=1δjG−j(ξ), (5)

where γj, δj, and µ are evaluated later. The value of M can be easily obtained by taking the
balance of the nonlinear term with the highest derivative. The function G(ξ) is the solution
of the following Riccati differential equation

G′(ξ) = α
√

a0 + a1G + a2G2 + a3G3 + a4G4, (6)

where the constants ak ∀ k are given under some restrictions and α = ±1. Yang and
Hon [27] proposed seven cases, each of which involve various traveling wave solutions.
In Appendix A, we present the first three cases of the solutions of Equation (6) with
their classifications as shown in [27]. We then find the value of M to be substituted into
Equation (5). Next, we insert Equation (5) along with Equation (6) into Equation (4) to
obtain an algebraic equation. Taking the coefficients of G(ξ) leads to a system of equations
whose solutions determine the values of γj, δj, and µ.

4. Traveling Wave Solutions of SRLW Equation

Inserting Equation (3) into Equation (1) gives the following ODE:

(µ2 + 1)W ′′ + µ(WW ′′ + (W ′)2) + µ2W ′′′′ = 0. (7)

Integrate both sides of Equation (7) twice to have

(µ2 + 1)W +
µ

2
W2 + µ2W ′′ = 0, (8)

where the integration constants are taken by zero. Taking the balance of the nonlinear term
with the second derivative gives M = 2. Hence, the traveling wave solution is given by

W(ξ) = γ0 + γ1G(ξ) + γ2G2(ξ) +
δ1

G(ξ)
+

δ2

G2(ξ)
. (9)

First case: if a0 = a1 = a3 = 0, then

γ0 = ± 8a2α
2√

4a2α2 − 1
, γ1 = δ1 = δ2 = 0, γ2 = ± 12a4α

2√
4a2α2 − 1

, µ = ∓ 1√
4a2α2 − 1

.

The traveling wave solutions are obtained from Equation (9) as follows:

W1,2(ξ) = ±
8a2α

2√
4a2α2 − 1

∓ 12a2α
2√

4a2α2 − 1
sech2(

√
a2ξ), a2 > 0, a4 < 0, (10)

W3,4(ξ) = ±
8a2α

2√
4a2α2 − 1

∓ 12a2α
2√

4a2α2 − 1
sec2(√−a2ξ

)
, a2 < 0, a4 > 0, (11)

W5,6(ξ) = ±
12α4√

4a2α2 − 1
ξ, a2 = 0, a4 > 0, (12)

where

ξ =
xβ

Γ (1 + β)
∓ tβ

Γ (1 + β)
√

4a2α2 − 1
.

Second case: if a1 = a3 = 0, then

• First family of solutions
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γ0 = ±4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4
,

γ1 = δ1 = δ2 = 0, γ2 = ±12a4α
2

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
,

µ = ∓

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
.

Therefore, the traveling wave solutions are obtained by substituting the above values into
Equation (9) as follows:

W7,8(ξ) =± 4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 6α4a2

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
tanh2

(√
− a2

2
ξ

)
, a2 < 0, a4 > 0, a0 =

a2
2

4a4
,

W9,10(ξ) = ±4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

± 6a2α
4

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
tan2

(√
a2

2
ξ

)
, a2 > 0, a4 > 0, a0 =

a2
2

4a4
, (13)

W11,12(ξ) =± 4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12a4α
2a2m2

a4(2m2 − 1)

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
cn2
(√

a2

2m2 − 1
ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2m2(1−m2)

a4(2m2 − 1)2 ,

W13,14(ξ) =± 4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12a4α
2m2

a4(2−m2)

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
dn2
(√

a2

2−m2 ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2(1−m2)

a4(2−m2)2 ,
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W15,16(ξ) =± 4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12a4a2α
2m2

a4(1 + m2)

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
sn2

(√
−a2

1 + m2 ξ

)
,

a2 < 0, a4 > 0, a0 =
a2

2m2

a4(1 + m2)2 ,

where

ξ =
xβ

Γ (1 + β)
∓

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
tβ

Γ (1 + β)
.

• Second family of solutions

γ0 = ±4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4
,

γ1 = γ2 = δ1 = 0, δ2 = ±12a0α
2

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
,

µ = ∓

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
.

Now, the traveling wave solutions are obtained by substituting the above values into
Equation (9) as follows:

W17,18(ξ) = ±4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓
(

24a0a4

a2

)√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
tanh−2

(√
− a2

2
ξ

)
, a2 < 0, a4 > 0, a0 =

a2
2

4a4
,

W19,20(ξ) = ±4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

±
(

24a0a4

a2

)√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
tan−2

(√
a2

2
ξ

)
, a2 > 0, a4 > 0, a0 =

a2
2

4a4
,

W21,22(ξ) = ±4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12a0α
2a4(2m2 − 1)
a2m2

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
cn−2

(√
a2

2m2 − 1
ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2m2(1−m2)

a4(2m2 − 1)2 ,
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W23,24(ξ) = ±4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12a0α
2a4(2−m2)

m2

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
dn−2

(√
a2

2−m2 ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2(1−m2)

a4(2−m2)2 ,

W25,26(ξ) = ±4
(

a2α
2 +

√(
a2

2 − 3a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12a0α
2a4(1 + m2)

a2m2

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
sn−2

(√
−a2

1 + m2 ξ

)
,

a2 < 0, a4 > 0, a0 =
a2

2m2

a4(1 + m2)2 ,

where

ξ =
xβ

Γ (1 + β)
∓

√√√√ 1 + 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
tβ

Γ (1 + β)
.

• Third family of solutions

γ0 = ∓4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4
,

γ1 = δ1 = δ2 = 0, γ2 = ±12a4α
2

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 − 48a0a4α4
,

µ = ∓

√√√√ 1− 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
.

Hence, the traveling wave solutions are obtained by substituting the above values into
Equation (9) as follows:

W27,28(ξ) =∓ 4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 6α4a2

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 − 48a0a4α4
tanh2

(√
− a2

2
ξ

)
, a2 < 0, a4 > 0, a0 =

a2
2

4a4
,

W29,30(ξ) =∓ 4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

± 6α4a2

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 − 48a0a4α4
tan2

(√
a2

2
ξ

)
, a2 > 0, a4 > 0, a0 =

a2
2

4a4
,
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W31,32(ξ) =∓ 4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12α2a2m2

(2m2 − 1)

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 − 48a0a4α4
cn2
(√

a2

2m2 − 1
ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2m2(1−m2)

a4(2m2 − 1)2 ,

W33,34(ξ) =∓ 4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12α2m2

(2−m2)

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 − 48a0a4α4
dn2
(√

a2

2−m2 ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2(1−m2)

a4(2−m2)2 ,

W35,36(ξ) =∓ 4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12α4a2m2

(1 + m2)

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 − 48a0a4α4
sn2

(√
−a2

1 + m2 ξ

)
,

a2 < 0, a4 > 0, a0 =
a2

2m2

a4(1 + m2)2 ,

where

ξ =
xβ

Γ (1 + β)
∓

√√√√ 1− 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
tβ

Γ (1 + β)
.

• Fourth family of solutions

γ0 = ∓4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4
,

γ1 = γ2 = δ1 = 0, δ2 = ±12a0α
2

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 + 48a0a4α4
,

µ = ∓

√√√√ 1− 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
.
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Using Equation (9), we can find several traveling wave solutions for the considered equation
as follows:

W37,38(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 24a0a4

a2

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 + 48a0a4α4
tanh−2

(√
− a2

2
ξ

)
, a2 < 0, a4 > 0, a0 =

a2
2

4a4
,

W39,40(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

± 24a0a4

a2

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 + 48a0a4α4
tan−2

(√
a2

2
ξ

)
, a2 > 0, a4 > 0, a0 =

a2
2

4a4
,

W41,42(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12a0a4α
2(2m2 − 1)

a2m2

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 + 48a0a4α4
cn−2

(√
a2

2m2 − 1
ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2m2(1−m2)

a4(2m2 − 1)2 ,

W43,44(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12a0α
2a4(2−m2)

m2

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 + 48a0a4α4
dn−2

(√
a2

2−m2 ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2(1−m2)

a4(2−m2)2 ,

W45,46(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 − 3a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 − 3a0a4
)
α4

−1 + 16a2
2α

4 − 48a0a4α4

∓ 12a0a4(m2 + 1)
a2m2

√√√√−1 + 4
√(

a2
2 − 3a0a4

)
α4

1− 16a2
2α

4 + 48a0a4α4
sn−2

(√
− a2

m2 + 1
ξ

)
,

a2 < 0, a4 > 0, a0 =
a2

2m2

a4(1 + m2)2 ,

where

ξ =
xβ

Γ (1 + β)
∓

√√√√ 1− 4
√(

a2
2 − 3a0a4

)
α4

−1 + 16a2
2α

4 − 48a0a4α4
tβ

Γ (1 + β)
.
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• Fifth family of solutions

γ0 = ∓4
(
−a2α

2 +
√(

a2
2 + 12a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4
,

γ1 = δ1 = 0, γ2 = ±12a4α
2

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
,

δ2 = ±12a0α
2

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
,

µ = ∓

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
.

Hence, the traveling wave solutions are obtained by substituting the above values into
Equation (9) as follows:

W47,48(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 + 12a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

∓ 6a2α
4

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
tanh2

(√
− a2

2
ξ

)

∓ 24a0a4

a2

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
tanh−2

(√
− a2

2
ξ

)
,

a2 < 0, a4 > 0, a0 =
a2

2
4a4

,

W49,50(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 + 12a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

± 6α4a2

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
tan2

(√
a2

2
ξ

)

± 24a0a4

a2

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
tan−2

(√
a2

2
ξ

)
,

a2 > 0, a4 > 0, a0 =
a2

2
4a4

,
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W51,52(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 + 12a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

∓ 12α2a2m2

(2m2 − 1)

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
cn2
(√

a2

2m2 − 1
ξ

)

∓ 12a0α
2a4(2m2 − 1)
a2m2

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
cn−2

(√
a2

2m2 − 1
ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2m2(1−m2)

a4(2m2 − 1)2 ,

W53,54(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 + 12a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

∓ 12α2m2

(2−m2)

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
dn2
(√

a2

2−m2 ξ

)

∓ 12a0α
2a4(2−m2)

m2

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
dn−2

(√
a2

2−m2 ξ

)
,

a2 > 0, a4 < 0, a0 =
a2

2(1−m2)

a4(2−m2)2 ,

W55,56(ξ) = ∓4
(
−a2α

2 +
√(

a2
2 + 12a0a4

)
α4
)√√√√ 1− 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

∓ 12α4a2m2

(1 + m2)

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
sn2
(√
− a2

1 + m2 ξ

)

∓ 12a0a4(1 + m2)

a2m2

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
sn−2

(√
− a2

1 + m2 ξ

)
,

a2 < 0, a4 > 0, a0 =
a2

2m2

a4(1 + m2)2 ,

where

ξ =
xβ

Γ (1 + β)
∓

√√√√ 1− 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
tβ

Γ (1 + β)
.

• Sixth family of solutions



Fractal Fract. 2023, 7, 252 12 of 18

γ0 = ±4
(

a2α
2 +

√(
a2

2 + 12a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4
,

γ1 = δ1 = 0, γ2 = ±12a4α
2

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
,

δ2 = ±12a0α
2

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
,

µ = ∓

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
.

Utilizing Equation (9), the traveling wave solutions can be expressed as follows:

W57,58(ξ) = ±4
(

a2α
2 +

√(
a2

2 + 12a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

∓ 6a2α
4

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
tanh2

(√
− a2

2
ξ

))

∓ 24a0a4

a2

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
tanh−2

(√
− a2

2
ξ

))
,

a2 < 0, a4 > 0, a0 =
a2

2
4a4

,

W59,60(ξ) = ±4
(

a2α
2 +

√(
a2

2 + 12a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

± 6a2α
4

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
tan2

(√
a2

2
ξ

))

± 24a0a4

a2

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
tan−2

(√
a2

2
ξ

))
,

a2 > 0, a4 > 0, a0 =
a2

2
4a4

,

W61,62(ξ) = ±4
(

a2α
2 +

√(
a2

2 + 12a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

∓ 12α2a2m2

2m2 − 1

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
cn2
(√

a2

2m2 − 1
ξ

))

∓ 12a0α
2a4(2m2 − 1)
a2m2

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
cn−2

(√
a2

2m2 − 1
ξ

))
,

a2 > 0, a4 < 0, a0 =
a2

2m2(1−m2)

a4(2m2 − 1)2 ,
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W63,64(ξ) = ±4
(

a2α
2 +

√(
a2

2 + 12a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

∓ 12α2m2

2−m2

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
dn2
(√

a2

2−m2 ξ

))

∓ 12a0α
2a4(2−m2)

m2

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
dn−2

(√
a2

2−m2 ξ

))
,

a2 > 0, a4 < 0, a0 =
a2

2(1−m2)

a4(2−m2)2 ,

W63,64(ξ) = ±4
(

a2α
2 +

√(
a2

2 + 12a0a4
)
α4
)√√√√ 1 + 4

√(
a2

2 + 12a0a4
)
α4

−1 + 16a2
2α

4 + 192a0a4α4

∓ 12α4a2m2

1 + m2

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
sn2
(√
− a2

1 + m2 ξ

))

∓ 12a0a4(1 + m2)

a2m2

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4

(
sn−2

(√
− a2

1 + m2 ξ

))
,

a2 < 0, a4 > 0, a0 =
a2

2m2

a4(1 + m2)2 ,

where

ξ =
xβ

Γ (1 + β)
∓

√√√√ 1 + 4
√(

a2
2 + 12a0a4

)
α4

−1 + 16a2
2α

4 + 192a0a4α4
tβ

Γ (1 + β)
.

Third case: if a0 = a1 = a4 = 0, then

γ0 = ± 2a2α
2√

a2α2 − 1
, γ1 = ± 3a3α

2√
a2α2 − 1

, γ2 = δ1 = δ2 = 0, µ = ∓ 1√
a2α2 − 1

.

From Equation (9), we can extract some traveling wave solutions as follows:

W65,66(ξ) = ±
2a2α

2√
a2α2 − 1

∓ 3a2α
2√

a2α2 − 1
sech2

(√
a2

2
ξ

)
, a2 > 0, (14)

W67,68(ξ) = ±
2a2α

2√
a2α2 − 1

∓ 3a2α
2√

a2α2 − 1
sec2

(√
−a2

2
ξ

)
, a2 < 0,

W69,70(ξ) = ±
12α2

i
ξ−2, a2 = 0,

where

ξ =
xβ

Γ (1 + β)
∓ 1√

a2α2 − 1

tβ

Γ (1 + β)
.

5. Result and Discussion

This section is fundamentally dedicated to emphasizing the significant findings of
the present research. The space-time fractional symmetric regularized long wave (SRLW)
equation has numerous traveling wave solutions, which are mainly derived using the
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improved modified extended tanh-function approach. The Jumarie’s modified Riemann–
Liouville derivative is employed to deal with the fractional derivatives present in the
SRLW problem. Trigonometric, hyperbolic, complex, and rational functions are utilized to
demonstrate the wave propagation of this problem.

The proposed approach is used in this study for a variety of reasons. To begin with, this
method provides a wide range of solutions presented in various forms such as bell-shaped
solitary wave solutions, kink-shaped solitary wave solutions, triangular type solutions,
rational solutions, periodic solutions, exponential type solutions, and hyperbolic type solu-
tions. In particular, the proposed technique produces twenty-two different solutions [27].
The number of the traveling wave solutions increases in accordance with the obtained
solutions of the algebraic system, which arises from Equation (5) along with Equation (6)
into Equation (4). Implementing this strategy is often simple. Furthermore, the proposed
technique is more convenient than other techniques. For example, Li et al. [30] invoked
the Oncoming exp(−Θ(q))-expansion process to only derive nine traveling wave solutions
for the SRLW problem. In [31], three solutions on the form of rational and exponential
functions were successfully obtained using the improved Bernoulli sub-equation function
methodology. Moreover, by employing the extended Jacobi elliptic function expansion
strategy, eight traveling wave solutions that are hyperbolic, trigonometric, and Jacobi
elliptic functions were shown in [32]. Consequently, one can efficiently and successfully
extract more traveling wave solutions for NLFPDEs using the improved modified extended
tanh-function approach.

In order to present the graphical behaviors of the above-determined traveling wave
solutions, we consider the time-fractional order β as 0 < β ≤ 1. Notably, the time-fractional
order is taken by β = 0.99 and 1. Actually, the structure of traveling waves is significantly
influenced by the values of the fractional order. In Figure 1 (left), we show a single
solitary traveling wave (called pulses) for solution (10) (W1(ξ)) under the parameters
a0 = a1 = a3 = 0, a2 = 1, a4 = −20. Figure 1 (right) illustrates the contour of this
solution under the same parameters. The improved modified extended tanh-function
algorithm produces internal solitary waves as shown in Figure 2 (left), which is the profile
of solution (10) (W2(ξ)) under the parameters a0 = a1 = a3 = 0, a2 = 1, a4 = −20. It is
worth noting that internal solitary waves are hump-shaped, which are physically similar
to surface waves except that they travel horizontally within the fluid. This phenomenon
takes place in lakes, seas, and oceans. In Figure 2 (right), we present the contour of
this internal traveling wave when a0 = a1 = a3 = 0, a2 = 1, a4 = −20. Some periodic
traveling wave solutions are plotted for the proposed problem. For instance, Figure 3
(left) demonstrates a periodic propagation for solution (13) (W9(ξ)) under the parameters
a0 = 0.25, a2 = a4 = 1. Figure 3 (right) shows the contour of solution (13) (W9(ξ)) when
a0 = 0.25, a2 = a4 = 1. Moreover, Figure 4 (left) presents a 3D plot for a periodic solution
of W59(ξ) when a1 = a3 = 0, a2 = 1.1, a4 = 1 = α = β inside the domain −2π ≤ x, t ≤ 2π.
Figure 4 (right) displays a three-dimensional plot for the periodic solution W59(ξ) when
a1 = a3 = 0, a2 = 1.1, a4 = 1 = α = β. Finally, the solution W61(ξ) describes an internal
solitary wave when we consider a1 = a3 = 0, a2 = 2, a4 = −1, α = β = m = 1 inside the
domain −π ≤ x, t ≤ π (see Figure 5 (left)). The contour of solution W61(ξ) is depicted in
Figure 5 (right).
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Figure 1. The behavior of solution (10) (W1(ξ)) under the parameters a0 = a1 = a3 = 0, a2 = 1,
a4 = −20. The contour of this solution is shown in the right figure under the same parameters.
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Figure 2. A traveling wave solution and a contour of solution (10) (W2(ξ)) under the parameters
a0 = a1 = a3 = 0, a2 = 1, a4 = −20.
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Figure 3. A traveling wave solution and a contour of solution (13) (W9(ξ)) under the parameters
a0 = 0.25, a2 = a4 = 1.



Fractal Fract. 2023, 7, 252 16 of 18

Figure 4. A 3D plot for a periodic solution of W59(ξ) under the values a1 = a3 = 0, a2 = 1.1,
a4 = 1 = α = β inside the domain −2π ≤ x, t ≤ 2π.
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Figure 5. A traveling wave solution and its contour for the solution W61(ξ) under the values
a1 = a3 = 0, a2 = 2, a4 = −1, α = β = m = 1 inside the domain −π ≤ x, t ≤ π.

6. Conclusions

The algorithm of the improved modified extended tanh-function method has been
successfully applied on the SRLW equation to extract its traveling wave solutions. The
Jumarie’s modified Riemann–Liouville derivative has also been invoked in this paper to
deal with the fractional derivatives. We have derived 70 traveling wave solutions for the
SRLW equation using the proposed approach. These solutions have been presented in the
form of trigonometric, hyperbolic, and rational functions. The Jacobi elliptic functions have
been used in determining these solutions. We found that the structure of the traveling
waves become unknown when a very small value for the fractional order is used. For
instance, the behavior of the periodic solution presented in Figure 4 becomes unknown
when β < 1. From the comparison given in the previous section, we can state that the
improved modified extended tanh-function technique produces more solutions than other
techniques such as the Oncoming exp(−Θ(q))-expansion method. The improved modified
extended tanh-function method is effective, dependable, and versatile for developing new
periodic, dark, bright, and bell-kink-type traveling wave solutions for a huge class of
nonlinear PDEs.
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Appendix A

In this part, we present certain types of solutions for Equation (6) as shown in [27].

• First case: If a0 = a1 = a3 = 0, then a bell-shaped solitary wave solution, a triangular
type solution, and a rational solution for Equation (6) are shown as follows:

G(ξ) =

√
− a2

a4
sech(

√
a2ξ), a2 > 0, a4 < 0,

G(ξ) =

√
− a2

a4
sec(
√
−a2ξ), a2 < 0, a4 > 0,

G(ξ) = − α√
a4ξ

, a2 = 0, a4 > 0.

• Second case: If a1 = a3 = 0, then a kink-shaped solitary wave solution, a triangular
type solution, and three Jacobi elliptic doubly periodic type solutions for Equation (6)
are given as follows:

G(ξ) = α

√
− a2

2a4
tanh

(√
− a2

2
ξ

)
, a2 < 0, a4 > 0, a0 =

a2
2

4a4
,

G(ξ) = α

√
a2

2a4
tan
(√

a2

2
ξ

)
, a2 > 0, a4 > 0, a0 =

a2
2

4a4
,

G(ξ) =

√
−a2m2

a4(2m2 − 1)
cn
(√

a2

2m2 − 1
ξ

)
, a2 > 0, a4 < 0, a0 =

a2
2m2(1−m2)

a4(2m2 − 1)2 ,

G(ξ) =

√
−m2

a4(2−m2)
dn
(√

a2

2−m2 ξ

)
, a2 > 0, a4 < 0, a0 =

a2
2(1−m2)

a4(2−m2)2 ,

G(ξ) = α

√
−a2m2

a4(m2 + 1)
sn
(√
− a2

m2 + 1
ξ

)
, a2 < 0, a4 > 0, a0 =

a2
2m2

a4(m2 + 1)2 ,

where m denotes a modulus.
• Third case: If a0 = a1 = a4 = 0, then a bell-shaped solitary wave solution, a triangular

type solution, and a rational solution for Equation (6) are given by

G(ξ) = − a2

a3
sech2

(√
a2

2
ξ

)
, a2 > 0,

G(ξ) = − a2

a3
sec2

(√
−a2

2
ξ

)
, a2 < 0,

G(ξ) =
4

a3ξ2 , a2 = 0.
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