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Abstract: The design of advanced robust control is crucial for serial robotic manipulators under
various uncertainties and disturbances in case of the forceful performance needs of industrial robotic
applications. Therefore, this work has proposed the design and implementation of a fractional
order proportional tilt integral derivative (FOPTID) controller in joint space for a 3-DOF serial
robotic manipulator. The proposed controller has been designed based on the fractional calculus
concept to fulfill trajectory tracking with high accuracy and also reduce effects from disturbances and
uncertainties. The parameters of the controller have been optimized with a GWO–PSO algorithm,
which is a hybrid tuning method, by considering the time integral performance criterion. The superior
and contribution of the GWO–PSO-based FOPTID controller has been demonstrated by comparing
the results with those offered by PID, FOPID and PTID control strategies tuned by the GWO–PSO.
The examination of the results showed that the proposed controller, which is based on the GWO–PSO
algorithm, demonstrates better trajectory tracking performance and increased robustness against
various trajectories, external disturbances, and joint frictions as compared to other controllers under
the same operating conditions. In terms of the trajectory tracking performance for robustness, the
superiority of the proposed controllers tuned by GWO–PSO has been confirmed by 20.2% to 44.5%
reductions in the joint tracking errors. Moreover, for assessing the energy consumption of the tuned
controllers, the total energy consumption of the proposed controller for all joints has been remarkably
reduced by 2.45% as compared to others. Consequently, the results illustrated that the proposed
controller is robust and stable and sustains against the continuous disturbance.

Keywords: robotic manipulator; fractional order controllers; FOPTID; PTID; FOPID; PID; GWO–PSO

1. Introduction

Robotic manipulators are dynamically coupled and highly non-linear systems. Fur-
thermore, in the case of various uncertainties and external or internal disturbances during
their operations, effective control is needed to provide highly precise trajectory tracking
and execute accurate positioning in various fields such as process industries, space ap-
plications and medical areas [1]. Due to the highly non-linear and uncertain dynamics
of the robotic manipulators, accurate and robust trajectory tracking becomes even more
challenging. For this reason, traditional proportional-integral-derivative (PID) controllers
are generally not suitable for providing the high-performance trajectory tracking control in
such operations that require high precision. In order to design a robust control strategy
which is able to improve stability and performance tracking, fractional order (FO) controller
design is considered using the incorporation of fractional calculus and traditional PID
control approaches.

In the design of the FO controller, the orders of integral and derivative operators are
indicated by non-integer values as compared to integers. Thus, in controller design, extra
flexibility is provided by adding integral and derivative fractional powers to the full-order
controller. The first use of FO operators in control was suggested by Oustaloup [2], who
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proposed a robust FO control approach called CRONE (Commande Robuste d’Ordre Non-
Entier) [3,4]. The most well-known FO controller among control engineers is the fractional
order PID (FOPID) controller presented by Podlubny [5]. For the controller design of the
robotic manipulators in trajectory tracking control, methods based on the fractional order
calculus have been widely used and cited by several authors. Bingul and Karahan [6] de-
signed a FOPID controller optimized with Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) for the trajectory tracking problem of a 2-DOF planar robotic manipulator.
By employing the Matlab FMINCON function, which searches the optimal parameters of
the controller, Angel and Viola [7] evaluated the FOPID controller with computer torque
control strategy under external disturbances for the trajectory tracking control of a robotic
manipulator type delta. The FOPID controller tuned by the Bat optimization algorithm was
proposed by Al-Mayyahi et al. [8] for circular path tracking of a 3-RRR planar parallel robot
platform without and with disturbance. Zhang et al. [9] studied fast spatial positioning
and trajectory tracking of a 5-DOF drilling anchor manipulator by using FOPID control
based on the four intelligent optimization algorithms such as Whale Algorithm (WOA),
GA, PSO, and Search Algorithm (GPS) in that paper. Sharma et al. [10] presented two
degree of freedom fractional order PID (2-DOF FOPID) controller tuned by Cuckoo Search
(CS) algorithm for trajectory tracking task of a 2-DOF robotic manipulator with payload
under model uncertainties, external disturbances, random noise and payload variations
with time. Considering a 3-DOF parallel manipulator known as the Maryland manipulator,
Dumlu and Erenturk [11] designed the FOPID control approach using a pattern search
algorithm for improving the tracking performance of the manipulator in the case of high
speed, high accuracy and high acceleration needed.

Different control strategies based on FO controllers have been designed and used in
different applications in order to make an efficient control. One of them is the tilt-integral-
derivative (TID) controller, which has been firstly presented by Lurie [12]. In the TID
controller, which is closely related to the FOPID controller, the proportional parameter of
the PID is replaced with a tilted one having a transfer function s−1/n. By means of the
resulting transfer function of the entire controller, the TID controller can achieve better
disturbance rejection and reduce the effects of the system parameter changes for the closed-
loop system as compared to the PID controller. Various applications of TID controller have
been made in the literature, depending on a suitable choice of optimization algorithms for
fine-tuning the controller parameters, for validating its superiority over PID controller in
terms of improving the stability of the system and enhancing the speed of the controller
response [13–19]. On the other hand, in order to improve the control performance and en-
hance the transient response of the TID controller, a concept of a fractional order-based TID
controller has been recently indicated in the literature review. Sharma et al. [20] proposed a
fractional order-based TID controller tuned by Salp Swarm Algorithm (SSA) for frequency
regulation in a hybrid power system. Moreover, the results from the designed controllers
based on SSA and Gray Wolf Optimization (GWO) algorithms were compared with existing
controllers in terms of transient response characteristics and error indices. As a result, in
that paper, the simulations prove the advisability of the fractional order TID controller
in the presence of system parameter uncertainties, random load changes and different
types of the system. In another study by the same authors [21], a dual-stage controller
composed of fractional order-based TID and integer order proportional derivative (PD)
controllers was presented for exhibiting fast and robust disturbance rejection performance
of the proposed control scheme in load frequency control applications. On the other hand,
a systematic tuning approach of the fractional-based robust TID controller was proposed
by Lu et al. [22] for first-order plus time delay and high-order processes. In that paper,
the design process of the robust TID controller and the corresponding steps were given in
detail. Finally, the simulation results clearly indicated that the proposed controller achieved
superior robustness and improved transient performance compared to the PID, FOPI and
FOPID controllers.
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For the purpose of enhancing the TID controller with more degree of freedom as
compared to its integer derivative and integral terms, the fractional order integral and
derivative terms are added. Thus, a hybrid controller is obtained for utilizing the features
of FOPID and TID controllers. Mohamed et al. [23] designed a hybrid controller composed
of TID and FOPID controllers for the load frequency control. Furthermore, the six different
tunable parameters in the designed controller were optimized with a Manta Ray Foraging
(MRF) algorithm by using the integral squared error criterion. In that paper, the robustness
of the designed controller was examined under the variation of the system parameters and
the load disturbances. By using the same control strategy, Ahmet et al. [24] proposed a
modified hybrid fractional order controller, including FOPID and TID controllers for load
frequency and the control of electric vehicles. Moreover, for determining the optimal param-
eters of the hybrid controller, the Artificial Ecosystem Optimization (AEO) algorithm was
employed in that paper. It was noteworthy from the simulation results that the proposed
hybrid controller demonstrates substantially superior, robust and stable performance over
a wide range of fast responses during transients and parameters uncertainty. Based on this
hybrid control scheme, Choudhary et al. [25] suggested a hybrid controller comprising a
fractional order PI (FOPI) controller and fractional order proportional tilted integral deriva-
tive (FOPTID) controller for stabilizing the frequency and tie-line power variations in a
power system. The parameters of the FOPI-FOPTID controller were adjusted by employing
Global Neighborhood Algorithm (GNA) and Ant Colony Optimization (ACO) algorithms.
The results revealed that the proposed FOPI-FOPTID controller provides better dynamic
response and error criteria than PID, FOPID and FOPI-FOPID controllers optimized with
the same optimization algorithms. Another hybrid controller based on FOPTID was pro-
posed by Yanmaz et al. [26] for the effective control of a static compensation system. In that
study, a FOPID-based model predictive controller (FOPID-MPC), TID-based MPC controller
and the proposed FOPTID-based MPC (FOPTID-MPC) controller were optimized with
Pathfinder Optimization Algorithm (POA) and also their transient responses and error in-
dices were compared for showing their control performance. Consequently, the simulation
results have demonstrated the effectiveness of the proposed FOPTID-MPC controller.

It is clear from the available literature that various control designs based on the
TID controller using different optimization algorithms have been addressed for various
applications. Furthermore, the compatibility of FOPID and TID controllers and the effect of
the combination of them have not been evaluated and tackled in the literature for trajectory
tracking control of the robotic manipulator. In this context, an efficient FOPTID controller
tuned via GWO–PSO is demonstrated in realizing the trajectory tracking of a serial robotic
manipulator in this work. The main contributions of this research article can be summarized
as follows:

• To the best knowledge of the author, a FOPTID controller based on the combination of
TID and FOPID controllers is firstly designed with a GWO–PSO algorithm to provide
the trajectory tracking of a 3-DOF serial robotic manipulator under friction, external
disturbance and different trajectories. This hybrid controller has major advantages in
improving trajectory tracking control performance and enhancing robustness.

• In order to demonstrate the effectiveness of the proposed controller, PID, FOPID and
PTID controllers are designed with the same optimization algorithm for carrying out
trajectory-tracking tasks under the same conditions.

• By eliminating the effects of internal and external disturbances as total disturbance,
the proposed FOPTID controller is more capable of dealing with the total disturbance
during the reference trajectory tracking than existing controllers. Accordingly, better
tracking accuracy is provided by the FOPTID controller.

The organization of the paper is as follows: In Section 2, the mathematical model
of the first three links of the Staubli RX-60 manipulator is presented. The structures
of the fractional order controllers are described in Section 3. The hybrid optimization
algorithm GWO–PSO is given in Section 4. Furthermore, the objective function chosen
for optimization studies and the proposed overall control system are also described in
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the same section. Simulation results are presented and discussed in Section 5, and finally,
concluding remarks are presented in Section 6.

2. Dynamic Model of the Manipulator

In this study, a robust control for trajectory tracking is designed by considering the
first three links of the Staubli RX-60 manipulator having the frame configuration presented
in Figure 1. A brief overview of the mathematical model of the system is presented in
this section.
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The dynamics of the rigid body for robotic manipulators can be given as the following
formulation:

τ = D(θ)
..
θ + C

(
θ,

.
θ
)
+ G(θ) + τf (1)

where θ,
.
θ, and

..
θ are joint angles, velocities and accelerations, respectively. D(θ), C

(
θ,

.
θ
)

,
and G(θ) are the inertia matrix, the coriolis/centripetal matrix and the gravity vector,
respectively. τf is the robotic uncertainties and disturbances comprising viscous and static
friction torque, and finally, τ is the control input torque.

The dynamics of the first three links of the robot can be modelled as:

τ1
τ2
τ3

 =

d11 d12 d13
d21 d22 d23
d31 d23 d33




..
θ1..
θ2..
θ3

+


c1

(
θ,

.
θ
)

c2

(
θ,

.
θ
)

c3

(
θ,

.
θ
)
+

g1(θ)
g2(θ)
g3(θ)

+

τf1

τf2

τf3

 (2)

The Denavit-Hartenberg (D-H) parameters of the robot and the other details about the
elements of matrices D(θ), C

(
θ,

.
θ
)

, and G(θ) are available in [27]. The friction torque for
each joint i is defined as:

τfi
= Fci sign

( .
θi

)
+ Fvi

.
θi (3)

where Fci and Fvi are the Coulomb friction and viscous friction constants, respectively. By
substituting the system parameters into Equation (2), the control input torque equation for
each joint is obtained as follows [27]:
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τ1 =
[
c2θ2

(
a2

2m3+ m2a2
2c
+ Byy2

)
+ Axx2 s2θ2 + Byy3 c2(θ2 + θ3)− cθ2(−2m3a2s(θ2 + θ3)d4c + 2F2sθ2)

−2F3c(θ2 + θ3)s(θ2 + θ3)+s2(θ2 + θ3)
(

m3d2
4c
+ Axx3

)
+ m3d2

3 + Czz1

] ..
θ1 + [cθ2D2 +sθ2(E2 + a2d3m3)

+c(θ2 + θ3)(D3 − d3m3d4c )+E3s(θ2 + θ3)]
..
θ2 + [c(θ2 + θ3)(D3 − d3m3d4c ) + E3s(θ2 + θ3)]

..
θ3
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−s(2θ2)

(
a2
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+ Byy2

)
+ s(2θ2)Axx2 − s(2(θ2 + θ3))Byy3 + 2m3a2d4c c(θ2 + (θ2 + θ3))
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(

m3d2
4c
+Axx3

)] .
θ2

.
θ1
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.
θ

2
2
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.
θ2

.
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θ

2
3
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)
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.
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(4)
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2
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)
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2
2 + g0m3d4c s(θ2 + θ3) + Fc3 sign
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(6)

3. Design of Controllers

In this work, the design of a fractional order proportional tilt integral derivative
(FOPTID) controller for the presented 3-DOF serial robotic manipulator has been proposed
and investigated. Furthermore, several controllers are applied to the same system under
the same conditions in order to examine the performance of the proposed controller. The
purposed FOPID, PTID and FOPTID controllers contain non-integer order integral and
derivative. Therefore, fractional calculus is needed for implementation of them.

3.1. Fractional Calculus

Fractional calculus includes operations where the degree of derivative and integral is
not an integer but with real or even complex values [28]. The fractional order operator aDα

t
is defined as follows:

aDα
t =


dα/dtα, R(z) > 0

1, R(z) = 0∫ t
a dτα R(z) < 0

(7)

where a and t are the limits of the operation, and α is the non-integer degree of the derivative
and integral. Several approaches have been developed for designing the fractional order
derivative and integral operators. One of the approaches is Riemann–Liouville (R–L) [17].
The definition of Riemann and Loiuville is as follows:

aDα
t f (t) =

1
Γ(n− α)

dn

dtn

∫ t

a

f (τ)

(t− τ)α−n+1 dτ (8)

where Γ(·) is the Euler’s Gamma Function:

Γ(z) =
∫ ∞

0
e−ttz−1dt, for R(z) > 0 (9)

In general, the Laplace transform is used to describe derivative and integral for
simplicity. The Laplace transform can be defined as:

L{aDα
t f (t)} = sαF(s)−

n−1

∑
k=0

sk
aDα−k−1

t f (t)
∣∣∣
t=0

(10)
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where L{ f (t)} is the Laplace Transform of the function f (t). Under zero initial conditions,
with the non-integer value of α, the Laplace transform of aDα

t f (t) is:

L{aDα
t f (t)} = sαF(s) (11)

The Oustaloup Recursive Approximation Method is one of the several approximation
methods proposed in the literature for the implementation of the fractional order function
sα. The Oustaloup Recursive Approximation Method uses an Nth order analog filter to
approximate the fractional order function in a certain frequency range {ωb, ωh}. ωb and ωh
are the lower and upper-frequency bounds, respectively. The approximate transfer function
for sα is expressed by integer order equivalent transfer function:

sα = K
N

∏
k=−N

s + ωzk

s + ωpk

(12)

where K is gain, ωzk are zeros and ωpk are poles of the filter [29]. This approximate transfer
function has 2N + 1 poles and zeros. The poles, zeros and gain are calculated below,
respectively [29]:

ωpk = ωb

(
ωh
ωb

) k+N+ 1
2 +

a
2

2N+1
(13)

ωzk = ωb

(
ωh
ωb

) k+N+ 1
2−

a
2

2N+1
(14)

K =

(
ωh
ωb

)−α
2 N

∏
k=−N

ωpk

ωzk

(15)

As mentioned above, in this study, the FOPTID, FOPID, and PTID controllers are
applied to the robotic manipulator. These fractional order controllers are implemented by
using Oustaloup Recursive Approximation [30]. In this study, the value of N is chosen as 5,
and the frequency range is chosen as: {ωb, ωh} =

{
10−2, 10+2} rad/s.

3.2. Fractional Order Controllers

Due to the simple design and construction of integer order PID controllers, they are
still widely used in many industrial applications. The PID controller comprises three
coefficients: proportional coefficient (Kp), integral coefficient (Ki) and derivative coefficient
(Kd) to produce the control action. The transfer function of PID can be stated as:

CPID(s) = Kp + Ki
1
s
+ Kds (16)

On the other hand, due to the highly non-linear and uncertain dynamics of the
robotic manipulator, the trajectory tracking control problem is quite difficult. Therefore,
in general, conventional integer order PID controllers are not suitable for providing high-
performance trajectory tracking control in precision operations. In order to design a robust
control strategy which can improve stability and tracking performance, fractional order-
based controller is considered by applying fractional calculus to the conventional PID
control approaches.

A FOPID controller is depicted by five parameters. In comparison to the conventional
PID controllers, FOPID controllers have two more parameters in which the orders of the
integral part λ and derivative part µ are non-integer. These additional parameters bring
more flexibility to the design of the controller and also may lead to obtaining an enhanced
dynamic performance. The structure of the FOPID is shown in Figure 2 which E(s) and
U(s) represent the error and the control signals, respectively.



Fractal Fract. 2023, 7, 250 7 of 22

Fractal Fract. 2023, 7, 250 7 of 23 
 

 

𝐶 (𝑠) = 𝐾 + 𝐾 1𝑠 + 𝐾 𝑠 (16)

On the other hand, due to the highly non-linear and uncertain dynamics of the 
robotic manipulator, the trajectory tracking control problem is quite difficult. Therefore, 
in general, conventional integer order PID controllers are not suitable for providing high-
performance trajectory tracking control in precision operations. In order to design a robust 
control strategy which can improve stability and tracking performance, fractional order-
based controller is considered by applying fractional calculus to the conventional PID 
control approaches. 

A FOPID controller is depicted by five parameters. In comparison to the conventional 
PID controllers, FOPID controllers have two more parameters in which the orders of the 
integral part λ and derivative part μ are non-integer. These additional parameters bring 
more flexibility to the design of the controller and also may lead to obtaining an enhanced 
dynamic performance. The structure of the FOPID is shown in Figure 2 which 𝐸(𝑠) and 𝑈(𝑠) represent the error and the control signals, respectively. 

The transfer function of the FOPID controller is given below: 𝐶 (𝑠) = 𝐾 + 𝐾 1𝑠 + 𝐾 𝑠  (17)

 
Figure 2. FOPID controller structure. 

One of the different control strategies based on Fractional Order Calculus is the PTID 
control method. The design of the PTID controller has been proposed quite recently in 
[25], and, in fact, it is a modified version of the TID controller. On the other hand, the only 
difference between the TID controller from conventional PID is that its proportional 
parameter is replaced with a tilted one having a transfer function 𝑠 /  [12]. Thanks to 
these modifications, the PTID controller can achieve better disturbance rejection and 
reduce the effects of the system parameter changes for the closed-loop system as 
compared to the PID controller. 

The structure of the PTID controller is presented in Figure 3. As shown in the figure, 
the proportional term, 𝐾 , is added to the TID controller. Therefore, the transfer function 
of the PTID controller is: 𝐶 (𝑠) = 𝐾 + 𝐾 1𝑠 / + 𝐾 1𝑠 + 𝐾 𝑠 (18)

Figure 2. FOPID controller structure.

The transfer function of the FOPID controller is given below:

CFOPID(s) = Kp + Ki
1
sλ

+ Kdsµ (17)

One of the different control strategies based on Fractional Order Calculus is the PTID
control method. The design of the PTID controller has been proposed quite recently
in [25], and, in fact, it is a modified version of the TID controller. On the other hand, the
only difference between the TID controller from conventional PID is that its proportional
parameter is replaced with a tilted one having a transfer function s−1/n [12]. Thanks to
these modifications, the PTID controller can achieve better disturbance rejection and reduce
the effects of the system parameter changes for the closed-loop system as compared to the
PID controller.

The structure of the PTID controller is presented in Figure 3. As shown in the figure,
the proportional term, Kp, is added to the TID controller. Therefore, the transfer function of
the PTID controller is:

CPTID(s) = Kp + Kt
1

s1/n + Ki
1
s
+ Kds (18)
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As examined in the works [25,26,31,32] in the literature, FO controllers are more stable
and useful in various control applications. Also, the TID controllers are able to reject
disturbances, respond quickly and be consistent with uncertainties in linear and nonlinear
control implementations. Moreover, they have several tuning parameters. Thus, superior
performance for both of them can be obtained in control implementations. Considering their
great qualities, a FOPTID controller is proposed as a hybrid controller of FOPID and PTID
in [25]. The structure of the FOPTID controller is shown in Figure 4. FOPTID controller
has the non-integer order of integral and derivative coefficients of the PTID controller. By
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defining λ and µ as the integral and derivative non-integer orders, respectively, the transfer
function of the FOPTID controller is:

CFOPTID(s) = Kp + Kt
1

s1/n + Ki
1
sλ

+ Kdsµ (19)
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In this study, the effect of the FOPTID controller on the trajectory-tracking control of
the robotic manipulator will be evaluated. In this regard, an efficient FOPTID controller
can be obtained by tuning with the hybrid optimization algorithm GWO–PSO, which will
be presented in the next section.

4. Optimization Tasks

The parameters of the proposed controller have been optimized with a hybrid GWO–
PSO algorithm by considering a specific objective criterion. The superior and contribution
of the GWO–PSO-based FOPTID controller has been demonstrated by comparing the results
with those offered by PID, FOPID and PTID control strategies tuned by the same algorithm.

4.1. Optimization Algorithm
4.1.1. Particle Swarm Optimization (PSO) Algorithm

Particle swarm optimization is a population-based stochastic optimization method
that was first proposed in 1995 to obtain the best results on nonlinear numerical problems
by modeling the movements of living swarms [33]. The PSO algorithm finds out an optimal
solution among the randomly distributed particles in a swarm. Essentially, each particle
within the swarm indicates a potential solution with its particular velocity and position.
In this context, for each iteration of the PSO algorithm, the velocity and position of the
particles are updated according to the following expressions, respectively:

vk+1
i = ξvk

i + ϕ1rand1

(
pbesti − pk

i

)
+ ϕ2rand2

(
gbest− pk

i

)
(20)

pk+1
i = pk

i + vk+1
i (21)

In these equations, vk
i is the velocity of the ith particle for the k iteration, pk

i is the
position of the ith particle for the k iteration, ξ represents the inertial weight function, ϕ1,2
represents the learning factors, and rand1,2 represents the random number values assigned
in the range of [0, 1]. In addition, pbesti is the coordinates that provide the best solution
that particle i has achieved so far. gbest is also the coordinates that provide the best solution
obtained over all particles. Figure 5 shows the two-dimensional motion of one of the
particles depending on the terms defined above.
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4.1.2. Gray Wolf Optimization (GWO) Algorithm

As a swarm-based optimization method, inspiration for Gray Wolf Optimization
comes from the behavior and the hunting strategy of the grey wolves in nature. Based on
the social hierarchy as depicted in Figure 6, gray wolves are classified into four groups as
alpha (α), beta (β), delta (δ) and omega (ω). As seen from the figure, the social hierarchy
goes down from top to bottom, and the leading group consists of alpha wolves. Beta wolves
help alpha wolves in making decisions. As the third level, the delta wolves’ mission is to
submit to alpha and beta wolves but control the omega wolves. The least priority wolves
are the omegas, which must follow the leading grey wolves [34].
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In the GWO algorithm, the encircling behaviour of the grey wolves is modeled with
the below equations:

→
D =

∣∣∣∣→C ×→Xp(k)−
→
X(k)

∣∣∣∣ (22)

→
X(k + 1) =

→
Xp(k)−

→
A×

→
D (23)
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In these equations, k is the number of iterations and the
→
X and

→
Xp are the position

vectors of the grey wolves and the prey, respectively.
→
A and

→
C are the coefficient vectors

and calculated as given below:

→
A =

→
a × (2×→r 1 − 1) (24)

→
C = 2×→r 2 (25)

where
→
a is linearly decreased from 2 to 0 through iteration steps and

→
r 1 and

→
r 2 are random

vectors within [0, 1].
In the GWO algorithm, hunting and encircling prey are modelled by the following

equations:
→
Dα =

∣∣∣∣→C1 ×
→
Xα −

→
X(k)

∣∣∣∣
→
Dβ =

∣∣∣∣→C2 ×
→
Xβ −

→
X(k)

∣∣∣∣
→
Dδ =

∣∣∣∣→C1 ×
→
Xδ −

→
X(k)

∣∣∣∣
(26)

→
X1 =

∣∣∣∣→Xα −
→
A1
→
Dα

∣∣∣∣
→
X2 =

∣∣∣∣→Xβ −
→
A2
→
Dβ

∣∣∣∣
→
X3 =

∣∣∣∣→Xδ −
→
A3
→
Dδ

∣∣∣∣
(27)

→
X(k + 1) =

→
X1 +

→
X2 +

→
X3

3
(28)

where
→
Dα,

→
Dβ, and

→
Dδ vectors represent the distances between theω wolves and α, β and

δwolves, respectively.
→
X1,

→
X2, and

→
X3 vectors represent the relative positions based on α,

β and δ wolves, respectively. The updating process of positions for each group of wolves is
also depicted in Figure 7.
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4.1.3. GWO–PSO Algorithm

In this work, GWO is hybridized with a PSO method to improve the progress of the
GWO. The hybrid GWO–PSO has been seen as an effective optimization technique when
searching for the best solution globally to an optimization problem [35]. The pseudo-code
of the GWO–PSO algorithm is presented in Figure 8.
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The best positions of the grey wolves obtained at the end of the GWO–PSO algorithm
represent the parameters of the controllers for each joint of the robot as follows:

PID :
{

Kp, Ki, Kd
}

FOPID :
{

Kp, Ki, Kd, λ, µ
}

PTID :
{

Kp, Ki, Kd, Kt, n
}

FOPTID :
{

Kp, Ki, Kd, Kt, λ, µ, n
}

4.2. Objective Function

In this study, the objective function used in optimization of the controller parameters
is chosen as ITAE (Integral of Time Absolute Error) for each joint of the 3-DOF robotic
manipulator. Thus, the objective function is given as the following:

JITAE =
3

∑
i=1

∫ t

0
t|ei(t)|dt (29)

Here, t is the time and ei(t) is the trajectory error for joint i.

4.3. Proposed Control System Framework

The schematic diagram of the proposed control system is presented in Figure 9. The
optimal parameters of PID, FOPID, PTID and FOPTID controllers are found by using the
GWO–PSO algorithm. The number of maximum iteration is set to 100 in the algorithm.
Moreover, the optimal controller parameters are obtained after 10 runs of the algorithm.

Based on the detailed literature review, during the optimization, the lower and upper
boundaries of the parameters are set to

{
Kp, Ki, Kd, Kt

}
∈ [0, 350], {µ, λ} ∈ [0, 2] and

{n} ∈ [0, 300].
In addition, the simulation time is adjusted differently in each simulation process

according to the type of reference trajectory signal, with a fixed interval time of 0.001 s.
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5. Simulation Results and Discussions

In this section, the robustness and effectiveness of the proposed control strategy have
been comparatively verified on the first three-link of a 6-DOF serial robotic manipulator.
The order of tasks for simulations is as follows: Firstly, tuning the parameters of the
presented controllers by GWO–PSO and demonstrating the results from trajectory tracking;
Secondly, testing the proposed control scheme by comparing with the PID, FOPID and
PTID controllers and showing the results obtained from the different trajectory, internal
and external disturbances. Design of the overall system model and the optimization
with the GWO–PSO are simulated using MATLAB/SIMULINK environment, and also all
simulations have been executed on a personal computer having an Intel CoreTM i5-7200U
CPU @ 2.50 GHz processor and 8.0 GB RAM. Furthermore, a Ninteger toolbox [36] is used
in the MATLAB environment as the approximator for simulating the fractional order terms
of FOPID, PTID and FOPTID controllers.

5.1. Trajectory Tracking Analysis

In order to achieve the trajectory tracking in joint space, firstly, four control strategies
(PID, FOPID, PTID and FOPTID) are optimized by GWO–PSO for each joint using the
trajectory tracking evaluation (JITAE) with respect to the given path for the end-effector of
the robot. During this tunning tasks, it is assumed that there is no friction. That means
the values of Fci and Fvi are taken as zero in Equation (3) of the mathematical model.
The presence of friction will be taken into account in one of the robustness tests. After
optimization, for comparing the tracking performance of the tuned controllers, the mean of
absolute error (MAE) for each joint over the trajectory is computed as follows:

MAEi =
1
N

N

∑
j=1
|ei(j)| (30)
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where ei(j) is the trajectory error of jth sample of ith joint and N is the number of samples.
At the end of conducting a total of 10 individual trials depending on the generated random
numbers, eventually, the obtained optimal controller parameters and MAE values for
the presented control strategies are given in Table 1. For analysis of the total tracking
performance of the proposed approach, the comparison of the JITAE values based on
four potential control approaches, namely PID, FOPID, PTID and FOPTID controllers, are
illustrated in Figure 10. In addition, the reference path of the end-effector, the corresponding
reference and system output trajectories in each joint are depicted in Figure 11 for a better
view of tracking the reference trajectories of each joint based on the tuned controllers.

Table 1. Comparison of the optimized parameters of the controllers and MAE values for each joint.

Joint Controller Kt Kp Ki Kd µ λ n MAE

1

PID - 203.8760 0.0127 132.5981 - - - 2.0832
FOPID - 271.4936 0.0124 132.2961 1.0381 0.0756 - 1.9153
PTID 236.3371 349.7559 0.0122 298.3974 - - 299.9889 1.8705

FOPTID 80.0347 349.7559 21.2705 273.0510 0.9257 0.3053 268.3995 1.9048

2

PID - 325.0161 0.0130 79.4103 - - - 3.0791
FOPID - 333.5564 298.1256 148.4613 1.0962 0.0308 - 3.0235
PTID 298.1256 20.5604 0.0131 93.6091 - - 233.8233 3.0426

FOPTID 90.5690 348.9735 221.4909 179.8575 1.0533 0.0104 220.1078 2.9837

3

PID - 251.7546 295.1566 25.5284 - - - 1.9342
FOPID - 296.9951 80.5790 311.0399 0.5549 0.6426 - 1.1130
PTID 340.8880 290.3104 0.0121 50.3965 - - 132.3825 1.2832

FOPTID 318.2374 29.3824 7.6325 145.1791 0.6516 1.0140 280.9249 1.1771
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Figure 10. Comparison of JITAE values for PID, FOPID, PTID and FOPTID control strategies.

From Figure 10, it is revealed that the proposed FOPTID approach tuned by GWO–PSO
has the smallest JITAE value. The improvement in JITAE is resulting from the introduction of
fractional operators in the FOPTID controller, which adds extra design variables. Therefore,
the proposed control approach is able to maintain relatively higher trajectory tracking
accuracy when compared to the PID, FOPID and PTID approaches.

As shown in Figure 11, all of the actual joint positions can track the desired joint
trajectories by using the tuned controllers. It is inferred that a remarkable tracking perfor-
mance for all joints is achieved by the PTID and FOPTID controllers. Furthermore, from
Figures 10 and 11 and Table 1, it can be seen that the proposed FOPTID method has better
control performance in comparison with the existing controllers under a more complex
joint trajectory tracking task.
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Figure 11. Trajectory tracking performance of PID, FOPID, PTID and FOPTID controllers for
each joint.

5.2. Robustness Testing: Different Trajectory

In actual situations, the effectiveness of the tuned controllers is investigated under
different joint trajectories or paths traced by the end-effector of the robot in task space.
The desired path and actual path in task space and the corresponding joint trajectories
are shown in Figure 12 for observing the improvements in tracking errors based on the
tuned controllers. Moreover, in order to demonstrate a quantitative comparison among the
results, the MAE values of the joint errors (ej) and the root mean square (RMS) values of
the control signals (τj) for each joint are calculated as shown in Figure 13.

As shown in Figure 12, the end-effector trajectory tracking based on the FOPTID
controller exhibits almost the same results as the end-effector tracking based on the PTID
controller. On the other hand, when using the proposed FOPTID controller tuned by
GWO–PSO, the trajectory tracking precision is relatively higher as compared to the other
tuned controllers. From joint space, it can be observed that all trajectory tracking con-
trollers can make the robot track the joint reference trajectory. However, the TID-based
trajectory tracking control approaches can accurately track the change in the joint angle
and maintain stability.

As can be observed from Figure 13, the designed controllers yield almost the same
RMS control action values for joint 1, while the TID-based controllers produce smaller MAE
error values as compared to others. In addition, compared to the controllers (PID and PTID
or FOPID and FOPTID), the TID-based controllers need lesser applied torque for tracking
the desired joint trajectories than the PID-based controllers.



Fractal Fract. 2023, 7, 250 15 of 22

Fractal Fract. 2023, 7, 250 15 of 23 
 

 

from Figures 10 and 11 and Table 1, it can be seen that the proposed FOPTID method has 
better control performance in comparison with the existing controllers under a more 
complex joint trajectory tracking task. 

5.2. Robustness Testing: Different Trajectory 
In actual situations, the effectiveness of the tuned controllers is investigated under 

different joint trajectories or paths traced by the end-effector of the robot in task space. 
The desired path and actual path in task space and the corresponding joint trajectories are 
shown in Figure 12 for observing the improvements in tracking errors based on the tuned 
controllers. Moreover, in order to demonstrate a quantitative comparison among the 
results, the MAE values of the joint errors (𝑒 ) and the root mean square (RMS) values of 
the control signals (𝜏 ) for each joint are calculated as shown in Figure 13. 

As shown in Figure 12, the end-effector trajectory tracking based on the FOPTID 
controller exhibits almost the same results as the end-effector tracking based on the PTID 
controller. On the other hand, when using the proposed FOPTID controller tuned by 
GWO–PSO, the trajectory tracking precision is relatively higher as compared to the other 
tuned controllers. From joint space, it can be observed that all trajectory tracking 
controllers can make the robot track the joint reference trajectory. However, the TID-based 
trajectory tracking control approaches can accurately track the change in the joint angle 
and maintain stability.  

As can be observed from Figure 13, the designed controllers yield almost the same 
RMS control action values for joint 1, while the TID-based controllers produce smaller 
MAE error values as compared to others. In addition, compared to the controllers (PID 
and PTID or FOPID and FOPTID), the TID-based controllers need lesser applied torque 
for tracking the desired joint trajectories than the PID-based controllers. 

  
Po

si
tio

n 
[d

eg
]

Fractal Fract. 2023, 7, 250 16 of 23 
 

 

  

Figure 12. Trajectory tracking performance in task and joint space for PID, FOPID, PTID and 
FOPTID controller schemes. 

  

Figure 13. Joint position MAE values and control signal RMS values. 

5.3. Robustness Testing: Disturbance Rejection 
To verify the disturbance rejection ability of the TID-based controllers, a sinusoidal 

torque signal is added to the control signal. This external disturbance, applied to each 
joint, is given as follows: 

𝜏 (𝑡) = ⎩⎨
⎧ 0 𝑁𝑚 , 𝑡 < 2250 sin(𝑡) + 250 𝑁𝑚350 sin(𝑡) + 350 𝑁𝑚 ,450 sin(𝑡) + 450 𝑁𝑚 𝑡 2 𝑓𝑜𝑟 𝑗𝑜𝑖𝑛𝑡 1, 2 𝑎𝑛𝑑 3, 𝑡𝑜𝑝˗𝑑𝑜𝑤𝑛. (31)

The desired path and actual path in joint space are shown in Figure 14 for each joint. 
Furthermore, the associated MAE values are illustrated in the same figure. 
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5.3. Robustness Testing: Disturbance Rejection

To verify the disturbance rejection ability of the TID-based controllers, a sinusoidal
torque signal is added to the control signal. This external disturbance, applied to each joint,
is given as follows:

τd(t) =


0 [Nm], t < 2

250sin(t) + 250 [Nm]
350sin(t) + 350 [Nm],
450sin(t) + 450 [Nm]

t ≥ 2 f or joint 1, 2 and 3, top-down.
(31)

The desired path and actual path in joint space are shown in Figure 14 for each joint.
Furthermore, the associated MAE values are illustrated in the same figure.

Fractal Fract. 2023, 7, 250 17 of 23 
 

 

  

 
 

Figure 14. Comparison of disturbance rejection abilities and MAE values of joint angle tracking 
based on the designed controllers. 

As can be seen from Figure 14, under sinusoid disturbance, better trajectory tracking 
is achieved with the TID-based controllers (PTID and FOPTID) as compared to the PID 
and FOPID controllers, which are quite obvious in trajectories and the amplitude of the 
heading angles. On the other hand, the difference between the trajectory tracking 
accomplished by means of the PTID and FOPTID controllers is almost small in each joint. 
Regarding MAE values demonstrated in Figure 14, the TID-based controllers produce a 
smaller tracking error in each joint than the other controllers. These simulation results 
reveal that although the applied perturbation directly affects the trajectory tracking error, 
the proposed robust FOPTID controller can exhibit better performance with a higher 
trajectory tracking accuracy against sinusoid disturbance than the other controllers and 
also maintain the error trajectories of each joint inside a compact set. 

5.4. Robustness Testing: Friction Compensation 
In order to demonstrate the robustness of the TID-based controllers and also compare 

them with other designed controllers in the presence of joint friction, the friction model, 
including Coulomb plus viscous friction, is adopted for each joint in the practical friction 
compensation of the 3-DOF robot manipulator. The friction parameters related to the 
Coulomb plus viscous friction model are given in Table 2 for each joint. The time profiles 
of joint positions and corresponding tracking errors based on PID, FOPID, PTID and 
FOPTID controllers are illustrated in Figure 15 for each joint under friction. 

Po
si

tio
n 

[d
eg

]

Po
si

tio
n 

[d
eg

]

Po
si

tio
n 

[d
eg

]

4 4.2
-42.5

-42
-41.5

-41
-40.5

Figure 14. Comparison of disturbance rejection abilities and MAE values of joint angle tracking based
on the designed controllers.

As can be seen from Figure 14, under sinusoid disturbance, better trajectory tracking
is achieved with the TID-based controllers (PTID and FOPTID) as compared to the PID and
FOPID controllers, which are quite obvious in trajectories and the amplitude of the heading
angles. On the other hand, the difference between the trajectory tracking accomplished
by means of the PTID and FOPTID controllers is almost small in each joint. Regarding
MAE values demonstrated in Figure 14, the TID-based controllers produce a smaller
tracking error in each joint than the other controllers. These simulation results reveal that
although the applied perturbation directly affects the trajectory tracking error, the proposed
robust FOPTID controller can exhibit better performance with a higher trajectory tracking
accuracy against sinusoid disturbance than the other controllers and also maintain the error
trajectories of each joint inside a compact set.
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5.4. Robustness Testing: Friction Compensation

In order to demonstrate the robustness of the TID-based controllers and also compare
them with other designed controllers in the presence of joint friction, the friction model,
including Coulomb plus viscous friction, is adopted for each joint in the practical friction
compensation of the 3-DOF robot manipulator. The friction parameters related to the
Coulomb plus viscous friction model are given in Table 2 for each joint. The time profiles of
joint positions and corresponding tracking errors based on PID, FOPID, PTID and FOPTID
controllers are illustrated in Figure 15 for each joint under friction.
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Figure 15. Joint tracking profiles and corresponding error profiles with respect to the presented
controllers under friction.
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Table 2. Coulomb plus viscous friction model parameters.

Friction Parameters Joint-1 Joint-2 Joint-3 Unit

Fc 0.5 1.5 2.5 Nm

Fv 5.5 1.5 3.5 Nm/(rad/s)

In accordance with Figure 15, the convergence of the tracking error when using the
PTID control scheme under friction for joints 1 and 3 is faster than the other three control
schemes. Moreover, the TID-based controllers, which ensure the stability of the whole
system, are robust against the defined frictions. The disturbance and joint tracking error
performance of the FOPTID controller outperforms that of the FOPID controller for joint 2.

Numerical results related to the JITAE and MAE values with respect to the tracking
errors of three joints are depicted in Figure 16 for the presented controllers under friction.
From the figure, it can be observed that a remarkable performance is achieved by the
TID-based controllers for a set point tracking task, in spite of added friction. Especially
according to Figure 16, the PTID control strategy has good evaluation indicators with
a smaller value of the JITAE. Moreover, compared with the PID, FOPID and FOPTID
controller, the MAE values are reduced by 20.2% and 44.5% for joints 1 and 3, respectively.
As for joint 2, the FOPID controller can decrease the MAE values by 12.1%. However, the
MAE value of the FOPID controller is almost close to the value of the FOPTID controller.
Therefore, the TID-based controllers can make the 3-DOF robotic arm achieve a good
tracking effect in the presence of friction.
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Figure 16. Comparison diagram of tracking error evaluation indicators based on JITAE and MAE
values for the presented controllers.

For assessing the control effort of the tuned controllers in all robustness tests, the
control efforts of each joint for the presented controllers are shown in Figure 17. In addition,
RMS values of the control signals generated by the controllers are illustrated in Table 3.

Table 3. RMS values of the control signals for robustness tests.

Robustness Test Joint PID FOPID PTID FOPTID

Different trajectory
Joint-1 272.2704 272.4219 269.7661 272.2918
Joint-2 194.0535 183.4217 191.3410 183.0013
Joint-3 61.4419 61.7051 57.8277 59.5320

Disturbance rejection
Joint-1 173.1580 154.1611 158.5644 157.0675
Joint-2 328.8085 267.0632 245.4667 241.7147
Joint-3 48.0855 39.8093 36.7112 35.8962

Friction compensation
Joint-1 110.4676 122.6951 124.7802 134.4499
Joint-2 184.6817 141.4255 143.2402 141.6841
Joint-3 68.1430 99.2728 74.6087 93.4725
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Figure 17. Simulation results of the tuned controllers for the torques of each joint based on the
different trajectory (a), disturbance rejection (b) and friction compensation (c) tests.

As can be observed from Figure 17 and Table 3, the minimum RMS values are achieved
by the FOPTID controller for all the two kinds of perturbations in the tests. On the other
hand, for the friction compensation test, the FOPTID and PTID controllers attain much
better tracking performance as compared to the others at the cost of a larger amplitude
control signal. As a result, the TID-based proposed control approaches have exhibited
considerably stable, robust, and superior tracking performance against different trajectories,
disturbance and friction.
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6. Conclusions

In this study, the 3-DOF robotic manipulator has been taken as the research object.
The dynamic model of the robot manipulator has been presented and also the friction
model has been added to the dynamics for robustness analysis. In order to enhance the
trajectory tracking accuracy of the robot joint, TID-based control strategies such as PTID and
FOPTID control techniques have been presented and also compared with PID based control
strategies such as FOPID control in the case of different robustness tasks. Moreover, the TID
and PID-based tracking controllers have been designed in joint space with the GWO–PSO
algorithm to obtain the best controller parameters. Finally, different simulations have been
performed to determine which controllers ensure directly that the actual joint trajectory
can converge to the reference joint angles regardless of any disturbances and frictions.

The main outcomes of this study are stated as follows:

• TID-based controllers, as well as PID-based controllers, have been tuned by GWO–PSO
with minimization of the objective function JITAE for the trajectory tracking control
of the robot joints. Compared to the results from the tuned controllers, the proposed
FOPTID control strategy achieved better performance than the other tuned controllers
at the robot joints.

• For the purpose of observing the stability of the designed controllers, a different
trajectory was applied to the robot joints. The simulation results showed that PTID
and FOPTID control schemes can track the change in the joint angle more accurately
and maintain stability as compared to PID and FOPID control schemes. As well,
TID-based controllers required lesser applied torque for tracking the desired joint
trajectories than the PID based controllers.

• As examined controller robustness in the presence of external disturbance applied
to each joint, the proposed FOPTID controller was more capable of dealing with the
disturbance in all joints during the reference trajectory tracking as compared to the
PID, FOPID and PTID controllers. Accordingly, the effectiveness of the proposed
controller was verified for disturbance rejection.

• As compared to the designed controllers in terms of reducing the effect of joint friction,
a remarkable performance was achieved by both PTID and FOPTID for a set point
tracking task. From the simulation results, it could be inferred that the TID-based
control schemes have significantly reduced the means of absolute joint errors.

TID-based control strategies, which have received a considerable amount of interest
and attracted the attention of many researchers because of their potential advantages and
applications in many fields, will be considered as future research on the control of a real
robotic manipulator.
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