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Abstract: In this paper, we analyze the well-posedness of the Cauchy–Dirichlet problem to an
integro-differential equation on a multidimensional domain Ω ⊂ Rn in the unknown u = u(x, t),
Dν0

t ($0u)−Dν1
t ($1u)−L1u−

∫ t
0 K(t− s)L2u(x, s)ds = f (x, t) + g(u), 0 < ν1 < ν0 < 1, where Dνi

t
are the Caputo fractional derivatives, $i = $i(x, t) with $0 ≥ µ0 > 0, and Li are uniform elliptic
operators with time-dependent smooth coefficients. The principal feature of this equation is related
to the integro-differential operator Dν0

t ($0u)−Dν1
t ($1u), which (under certain assumption on the

coefficients) can be rewritten in the form of a generalized fractional derivative with a non-positive
kernel. A particular case of this equation describes oxygen delivery through capillaries to tissue.
First, under proper requirements on the given data in the linear model and certain relations between
ν0 and ν1, we derive a priori estimates of a solution in Sobolev–Slobodeckii spaces that gives rise
to providing the Hölder regularity of the solution. Exploiting these estimates and constructing
appropriate approximate solutions, we prove the global strong solvability to the corresponding
linear initial-boundary value problem. Finally, obtaining a priori estimates in the fractional Hölder
classes and assuming additional conditions on the coefficients $0 and $1 and the nonlinearity g(u),
the global one-valued classical solvability to the nonlinear model is claimed with the continuation
argument method.

Keywords: a priori estimates; Caputo derivatives; nonlinear oxygen subdiffusion; global classical
solvability

MSC: Primary 35R11; 35B45; Secondary 35B655; 26A33; 35Q92

1. Introduction

Fractional calculus is an effective tool to model the complex nonlinear phenomena
(indicated as anomalous) arising in continuum mechanics, thermodynamics, medicine, bi-
ology and so on (see, for example, [1–8] and also references therein). Features of anomalous
diffusion contain history dependence (memory term), long-range (or nonlocal) correlation
in time and heavy-tail characteristics, while its signature is that the mean square displace-
ment of the diffusion species 〈∆x〉2 scales as a nonlinear power law in time, i.e., 〈∆x〉2 ≈ tν,
ν > 0, ν 6= 1. If the anomalous diffusion exponent ν belongs to the interval (0, 1), the under-
lying diffusion process is called subdiffusive. The constitutive relation of the viscoelastic
material and the anomalous diffusion are successfully described by single-, multi-term or
distributed order fractional ordinary or partial differential equations (FODE or FPDE) and
by general integro-differential equations with a generalized fractional derivative:

DNt u(x, t) =
∂

∂t

∫ t

0
N (t− τ)u(x, τ)dτ −N (t)u(x, 0), t > 0, (1)

where N (t) is a non-negative locally integrable kernel.
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Specifying the kernel N (t) in (1) gives rise to different types of fractional derivatives.
In particular, the Caputo fractional derivative Dν

t of order ν ∈ (0, 1) is recovered via (1) for
the power-law memory kernel N (t) = t−ν

Γ(1−ν)
, with Γ(·) being the Euler Gamma function.

The distributed order memory kernel

N =
∫ t

0

(t− τ)−ν

Γ(1− ν)
p(ν)dν, (2)

where p(·) is a non-negative weight function, reduces (1) to the fractional derivative of the
distributed order, and corresponding FPDEs or FODEs of a distributed order. An important
particular case of such equations is the diffusion equation with multi-term time-fractional
derivatives with respect to time

M

∑
i=0

qiD
νi
t , 1 > ν0 > ν1 > . . . > νM > 0, qi ≥ 0, (3)

which is the main focus of this paper. Indeed, to reduce (1) with (2) to the multi-term
fractional derivatives, the weight function in (2) is taken in the form of a finite linear
combination of the Dirac delta functions with non-negative weight coefficients.

It is worth noting that the order of the corresponding fractional differential equations
is defined with the anomalous diffusion exponent. In order to derive fractional differential
equations from physical laws, one can exploit two different ways. The first approach is
related to modeling continuous time random walk processes at the micro-level and taking
a continuous limit at the macro-level [9]. The second method is appealed to conservative
laws and specific constitutive relations with memory [1,4,10].

In this paper, motivated by the mathematical model for oxygen delivery through
capillaries described in [4,5], we focus on the study of the initial-boundary value problem
to semilinear diffusion equations with multi-term fractional derivatives, where some
coefficients qi may be non-negative.

Let Ω ⊂ Rn, n ≥ 2 be a bounded domain with a smooth boundary ∂Ω, and for any
fixed T > 0, denote

ΩT = Ω× (0, T), ∂ΩT = ∂Ω× [0, T].

For 0 < ν1 < ν0 < 1, we discuss the following non-autonomous multi-term subd-
iffusion equation with memory terms in the unknown function u = u(x, t) : ΩT → R,

Dν0
t ($0u)−Dν1

t ($1u)−L1u−K ∗ L2u = f (x, t) + g(u), (4)

supplemented with the initial condition

u(x, 0) = u0(x) in Ω̄, (5)

and subject to the Dirichlet boundary condition (DBC)

u(x, t) = ψ(x, t), (6)

where $0 > 0, $1, ψ, u0, f , g and the memory kernel K are prescribed in Section 3.
The symbol ∗ stands for the time-convolution product on (0, t), i.e.,

(h1 ∗ h2)(t) =
t∫

0

h1(t− s)h2(s)ds,

while Dθ
t denotes the Caputo fractional derivative of the order θ ∈ (0, 1] with respect to

time t, defined as
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Dθ
t u(x, t) =


1

Γ(1−θ)
∂
∂t

t∫
0

u(x,s)−u(x,0)
(t−s)θ ds, if θ ∈ (0, 1),

∂u
∂t (x, t), if θ = 1.

There is an equivalent definition

Dθ
t u(x, t) =

1
Γ(1− θ)

t∫
0

(t− s)−θ ∂u
∂s

(x, s)ds, θ ∈ (0, 1),

if u is an absolutely continuous function. As for operators Li, they are the linear elliptic
operators of the second order with time-dependent coefficients (written in divergence
form), that is

L1 = L0 +
n

∑
i=1

ai(x, t)
∂

∂xi
+ a0(x, t),

L2 = L0 +
n

∑
i=1

bi(x, t)
∂

∂xi
+ b0(x, t),

where we put

L0 =
n

∑
ij=1

∂

∂xi

(
aij(x, t)

∂

∂xj

)
.

For the mathematical treatment of single-term time-fractional diffusion equations
with and without memory terms (i.e., subdiffusion equations similar to (4) with $0 = 1,
$1 = 0 and either K 6= 0 or K = 0), which have been extensively studied (analytically and
numerically) for the last few decades, we refer the reader to [11–23]. The diffusion equation
with the general integro-differential operator (1) is analyzed in [7,8] (see also the references
therein). The Cauchy problem for this equation on an unbounded space domain is discussed
in [24]. Exploiting the Fourier method, well-posedness and a maximum principle for the
initial-boundary value problem to the subdiffusion equation with multi-term fractional
derivatives (3) with the positive constant coefficients qi are studied in [25]. In [26], a solution
to an initial-boundary value problem is formally represented by Fourier series and the
multivariate Mittag–Leffler function. However, the authors do not provide the proof of the
convergence of these series. This gap in the case of the multi-term time-fractional diffusion
equation with positive constant coefficients qi was filled in [27]. Initial-boundary value
problems to equations with operator (3) where coefficients qi = qi(x) (i.e., x- dependent)
are discussed in [28]. The semilinear equation with the general fractional derivative (1) is
analyzed in [29], where the uniqueness and the local/global existence are proved by means
of the Schauder fixed-point theorem. Finally, we quote [3–6,30,31], where some analytical
and numerical solutions were constructed to the corresponding initial-boundary value
problems to the evolution equation with the operator (3).

The main distinction of equation (4) from the equations in the aforementioned previous
works is related to the multi-term fractional derivatives: Dν0

t ($0u)−Dν1
t ($1u), which can

be rewritten in the form of (1) with the kernel N being either a negative function or a
function alternating in sign. Indeed, choosing

$1 = $1(x) ≥ $0 = $0(x) > 0,

and appealing to Lemma 4 in [14], we end up with the equality

Dν0
t ($0u)−Dν1

t ($1u) =
∂

∂t
[N ∗ (u− u(x, 0))],

where the kernel
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N = $0(x)
t−ν0

Γ(1− ν0)
− $1(x)

t−ν1

Γ(1− ν1)

is negative for t > e−γ (γ is the Euler–Mascheroni constant). It is worth noting that
the non-negativity of the kernel N plays a crucial role in the previous investigations of
FPDEs and related initial/initial-boundary value problems. This assumption is removed
in our research. Moreover, equation (4) contains fractional derivatives calculated from the
product of two functions: the desired solution u and the prescribed coefficients $i. The last
peculiarity provides additional difficulties to study since the typical Leibniz rule does not
work in the case of fractional derivatives, i.e.,

Dθ
t (uv) 6= uDθ

t v + vDθ
t u.

To the author’s best knowledge, there are only two papers [32,33] in the published
literature addressing the solvability of initial-boundary value problems to the equation
similar to (4). Indeed, the first result concerning to existence and uniqueness of global
classical solutions to the linear version (i.e., g(u) ≡ 0) of the non-autonomous equation (4)
with alternating in sign $1 = $1(x, t) and $0 = $0(x, t) subjected to various types of
boundary conditions was presented in [32]. However, solvability in the smooth classes
(fractional Hölder spaces) requires stronger assumptions on the right-hand sides in the
corresponding problems. Thus, our first goal of this art is to fill this gap, providing the well-
posedness to the linear version of (4)–(6) under weaker requirements on the given functions.
Namely, assuming that u0, f , ψ belong to the proper fractional Sobolev spaces, we prove
the one-to-one strong solvability in the class Wν0,p((0, T), Lp(Ω)) ∩ Lp((0, T), W2,p(Ω)),
p ≥ max(n + 2

ν0
; 1

ν0−ν1
) of (4)–(6) with g(u) ≡ 0. On this route, the main ingredient is a

priori estimates in the fractional Sobolev spaces, which give rise to the Hölder regularity of
a solution. Moreover, we establish similar results to the (M + 1)−term fractional equations:

Dν0
t ($0u)−

M+1

∑
i=1

Dνi
t ($iu)−L1u−K ∗ L2u = f ,

$0Dν0
t u−

M+1

∑
i=1

$iD
νi
t u−L1u−K ∗ L2u = f

with $i = $i(x, t), 0 < νi < ν0 < 1.
The second novelty of this paper is related to the well-posedness of the nonlinear

Cauchy–Dirichlet problem (4)–(6), i.e., g(u) 6= 0. Indeed, in [33], this nonlinear model
was analyzed in the case of a one-dimensional space domain and only time-dependent
coefficients $i = $i(t), i = 0, 1. Therefore, the second achievement of this art is the extension
of the result of [33] to the case of semilinear equation (4) with coefficients $i depending
on the space and time variables and stated in a multidimensional domain Ω. It worth
noting that, compared to [33], the analyzed model in the multidimensional case will require
C1-regularity on the memory kernelK. Namely, if g is locally Lipschitz, then the main point
to study the global classical solvability is searching a priori estimates for the solution u,
and in turn the bound for ‖u‖C(Ω̄T)

. In the one-dimensional case, the Sobolev embedding
theorem provides the inequality

‖u‖C(Ω̄T)
≤ C, (7)

exploiting only the bound of ‖u‖C((0,T),W1,2(Ω)). This trick cannot be drawn in the multidimen-
sional case, where bound (7) is eventually reached via the following iterative inequalities:

‖u‖C([0,T],Lp(Ω)) ≤ Cp1/p‖u(·, t)‖C([0,T],Lp/2(Ω)), p > 1.

To this end, we first rewrite equation (4) in a suitable form, where the memory term
does not contain the principal part of the operator L2 (i.e., aij ≡ 0). Then, we exploit the
integral iterative technique from [18]. At the same time, as a side effect, the term K̄′ ∗ u
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appears in the equation. Here, K̄ is the conjugate kernel, having the same properties of K.
This explains the requirement of a smoother kernel in the multidimensional case.

Outline of the Paper

The paper is organized as follows: in Section 2, we introduce the notation and the
functional setting. The main assumptions are given in Section 3. The principal results,
Theorems 1–2 and Lemma 1, are stated in Section 4. Theorem 1 is related to a priori estimates
of the solution u in Wν0,p((0, T), Lp(Ω))∩ Lp((0, T), W2,p(Ω)) and in Cα, αν0

2 (Ω̄T) in the case
of the linear version of (4)–(6), while Theorem 2 concerns the global classical solvability of
the corresponding nonlinear problem. The existence and the uniqueness of a strong solution
to (4)–(6) with g(u) ≡ 0 are stated in Lemma 1. It is worth noting that this claim is a simple
consequence of Theorem 1 and the results related to the one-to-one classical solvability
established in our previous work [32], so we give the proof of this lemma in Section 3. Some
definitions and some auxiliary results from fractional calculus, playing a key role in this art,
are given in Section 5. The proof of Theorem 1 is carried out in Section 6. Here, exploiting
so-called one variant of a Leibniz rule to Caputo derivatives, Dν0

t ($0u) and Dν1
t ($1u), and

following the approach from Section 5 in [18], we rewrite equation (4) in an appropriate
form, where the principal part of the integro-differential operator Dν0

t ($0u)−Dν1
t ($1u) is

represented as $0(x, t)Dν0
t u− $1(x, t)Dν1

t u; the leading part of the operator L2 (as we wrote
above) is not involved in the memory term. After that, in Section 6.1, we first obtain a
priori estimates in the fractional Sobolev spaces for a small time interval and then discuss
how these estimates can be extended to the whole time interval. In Section 6.2, collecting
the obtained estimates in the space Wν0,p((0, T), Lp(Ω)) ∩ Lp((0, T), W2,p(Ω)) with results
in [23], we evaluate the Hölder seminorms of the solution u. In particular, in the case of
homogeneous initial and boundary conditions, this estimate reads as

‖u‖
Cα,

αν0
2 (Ω̄T)

≤ C‖ f ‖Lp(ΩT)
.

Finally, Section 7 is devoted to the verification of Theorem 2. The main tool in our
arguments is the continuation method related to the study of a family of auxiliary problems
depending on a parameter λ ∈ [0, 1]. On this route, one has to obtain a priori estimates for
the solutions which are independent of λ (see Section 7.1). The key bound is the estimate of
‖u‖

Cα,
αν0

2 (Ω̄T)
, produced via integral iteration techniques adapted to the case of multi-term

fractional derivatives.

2. Functional Spaces and Notation

Throughout this art, C will be a generic positive constant, depending only on the given
data of the model. We will perform our study in the fractional Hölder spaces. To this end,
we take two arbitrary (but fixed) quantities

α ∈ (0, 1) and ν ∈ (0, 1).

Let l be any non-negative integer, and (X, ‖ · ‖X) be any Banach space. For any p ≥ 1,
s ≥ 0, we consider the usual spaces

Cs([0, T], X), C l+α(Ω̄), Ws,p(Ω), Lp(Ω), Ws,p((0, T), X).

Recall that for non-integer s, Ws,p is called the Sobolev–Slobodeckii space (for its
definition and properties see Chapter 1 in [34], and Chapter 1 in [35]).

Denoting for β ∈ (0, 1)
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〈v〉(β)
x,ΩT

= sup
{ |v(x1, t)− v(x2, t)|

|x1 − x2|β
: x2 6= x1, x1, x2 ∈ Ω̄, t ∈ [0, T]

}
,

〈v〉(β)
t,ΩT

= sup
{ |v(x, t1)− v(x, t2)|

|t1 − t2|β
: t2 6= t1, x ∈ Ω̄, t1, t2 ∈ [0, T]

}
,

we assert the following definition.

Definition 1. A function v = v(x, t) belongs to the class C l+α, l+α
2 ν(Ω̄T), for l = 0, 1, 2, if the

function v and its corresponding derivatives are continuous and the norms are finite:

‖v‖
C l+α, l+α

2 ν(Ω̄T)
=


‖v‖C([0,T],C l+α(Ω̄)) + ∑l

|j|=0〈D
j
xv〉(

l+α−|j|
2 ν)

t,ΩT
, l = 0, 1,

‖v‖C([0,T],C2+α(Ω̄)) + ‖Dν
t v‖
Cα, α

2 ν(Ω̄T)
+ ∑2

|j|=1〈D
j
xv〉(

2+α−|j|
2 ν)

t,ΩT
, l = 2.

In a similar way, we introduce the space C l+α, l+α
2 ν(∂ΩT), for l = 0, 1, 2.

The properties of these spaces were discussed in Section 2 [18]. It is worth noting that,
if ν = 1, the class C l+α, l+α

2 ν boils down to the usual parabolic Hölder space Hl+α, l+α
2 (see

(1.10)–(1.12) in [36]).
Finally, we will say that a function v defined in ΩT belongs to H

s1,s2
p (ΩT) with p > 1

and s1, s2 ≥ 0, if v ∈Ws1,p((0, T), Lp(Ω)) ∩ Lp((0, T), Ws2,p(Ω)), and the norm here below
is finite

‖v‖
H

s1,s2
p (ΩT)

= ‖v‖Ws1,p((0,T),Lp(Ω)) + ‖v‖Lp((0,T),Ws2,p(Ω)).

The space H
s1,s2
p (∂ΩT) is defined in a similar manner.

3. General Hypothesis

First, we state our general assumptions on the given data in the model. To this
end, denoting

ω1−θ(t) =
t−θ

Γ(1− θ)
, θ > 0,

we designate the positive values ν∗ and T∗, ν∗ ≤ 1, such that the difference

ω1−ν0(t)−ω1−ν1(t)

is non-negative for all t ∈ [0, T∗] and 0 < ν1 < ν0 ≤ ν∗ ≤ 1.
We notice that the existence of these values is provided by Lemma 4 [14], and besides,

some numerical examples of ν∗ and T∗ are discussed in Remark 3.2 [33].

H1 (Conditions on the fractional order of the derivatives). We assume that

ν0 ∈ (0, ν∗) and ν1 ∈
(

0,
ν0(2− α)

2

)
.

H2 (Ellipticity conditions). There are positive constants 0 < µ1 < µ2 and µ0, µ3 such that

µ1|ξ|2 ≤
n

∑
ij=1

aij(x, t)ξiξ j ≤ µ2|ξ|2,

for any (x, t, ξ) ∈ Ω̄T ×Rn, and

$0(x, t) ≥ µ0 > 0, |$1| ≥ µ3 > 0

for each (x, t) ∈ Ω̄T .



Fractal Fract. 2023, 7, 249 7 of 29

H3 (Conditions on the coefficients). For i, j = 1, . . . , n,

a0(x, t), b0(x, t) ∈ Cα, αν0
2 (Ω̄T), aij(x, t), ai(x, t), bi(x, t) ∈ C1+α, (1+α)ν0

2 (Ω̄T),

$0, $1 ∈ Cγ0([0, T], C1(Ω̄)), γ0 > max
{

1,
ν0(2 + α)

2

}
.

H4 (Conditions on the given functions).

K(t) ∈ C1([0, T]), u0(x) ∈ C2+α(Ω̄),

f (x, t) ∈ Cα, αν0
2 (Ω̄T), ψ(x, t) ∈ C2+α, 2+α

2 ν0(∂ΩT).

H5 (Compatibility conditions). The following compatibility conditions hold for each x ∈ ∂Ω
and t = 0,

ψ(x, 0) = u0(x) and

Dν0
t ($0ψ)|t=0 −Dν1

t ($1ψ)|t=0 = L1u0(x)|t=0 + f (x, 0) + g(u0).

H6 (Conditions on the nonlinearity). We assume that the function g satisfies the local Lipschitz
condition, i.e., for every ρ > 0 there exists a positive constant Cρ such that

|g(u1)− g(u2)| ≤ Cρ|u1 − u2|

for any u1, u2 ∈ [−ρ, ρ].

Moreover, there is a positive constant L such that

|g(u)| ≤ L(1 + |u|)

for any u ∈ R.

H7 (Conditions on the sign of the coefficient $1). We require that the function $1 retains its
sing in Ω̄T , i.e.,

either sgn $1(x, t) = 1 for all (x, t) ∈ Ω̄T

or sgn $1(x, t) = −1 for all (x, t) ∈ Ω̄T .

If $1(x, t) is positive in Ω̄T , we additionally assume that $1 ∈ Cγ0([0, T], C1+α(Ω̄)) and the
relation holds

$0(x, t) = $(x, t) + $1(x, t)

with a positive function $ having the same regularity as the function $1.

Moreover, we require that for each (x, t) ∈ Ω̄T

∂

∂t

(
$0

$1

)
≥ 0 if $1 is negative, and

∂

∂t

(
$0

$

)
≤ 0 if $1 is positive.

It is worth noting that the assumption H7 on the sign of the function $1 is needed only in the case
of the nonlinear model (see Theorem 2), while the analysis of the linear model requires only the
regularity of this function stated in H3.

Remark 1. It is apparent that the simplest example of functions $1, $0 satisfying assumption H7 is

$0 ≡ C0 and $1 ≡ C1,

where C0 > 0 and C1 are given constants, and C1 is negative if $1 is negative, while in the case of
positive $1 ($ = C0 − C1), the constant C1 is related to C0 via the relation 0 < C1 < C0.
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Remark 2. Thanks to Lemma 4.1 in [17], for any u ∈ C2+α, 2+α
2 ν0(∂ΩT), the equality

(K ∗ L2u)(x, 0) = 0

holds for any x ∈ ∂Ω. That explains the absence of the memory term (K ∗L2u) in the compatibility
condition H5.

4. Main Results

Now, we are ready to state our first main result related to the a priori estimates of a
solution to problem (4)–(6) in the case of the linear equation which will be a significant
point in the analysis of the nonlinear model as well as in the study of the existence of a
strong solution to the corresponding linear problem.

Theorem 1. Let g(u) ≡ 0, n ≥ 2, p > max{n + 2
ν0

; 1
ν0−ν1

}, ν0 ∈ (0, 1); and let ν1 satisfy H1.

We require that assumptions H2–H5 hold. Then the classical solution u ∈ C2+α, 2+α
2 ν0(Ω̄T) of

problem (4)–(6) satisfies the estimate

‖u‖
H

ν0,2
p (ΩT)

+ ‖u‖
Cα,

αν0
2 (Ω̄T)

+ ‖Dν1
t u‖Lp(ΩT)

≤ C{‖ f ‖Lp(ΩT)
+ ‖u0‖

W
2− 2

pν0
,p
(Ω)

+ ‖ψ‖
H

ν0(1−
1

2p ),2− 1
p

p (∂ΩT)

}. (8)

Here, the generic constant C is independent of the right-hand sides in (4)–(6).

Remark 3. In this art, we do not discuss the existence of the classical solution to the linear variant
of problem (4)–(6), i.e., if g(u) ≡ 0. This issue was studied in Theorem 4.1 [32].

Our next result is related to the global solvability of the semilinear problem (4)–(6).

Theorem 2. Let ∂Ω ∈ C2+α, T > 0 be arbitrarily fixed, ν1 satisfy H1, and let ν0 ∈ (0, 1) if $1 is
negative, while ν0 meets requirement H1 if the function $1 is positive. Then, under assumptions
H2–H7, problem (4)–(6) has a unique classical solution u = u(x, t) in ΩT possessing regularity

u ∈ C2+α, 2+α
2 ν0(Ω̄T), Dν1

t u ∈ Cα, αν0
2 (Ω̄T).

Remark 4. The arguments of Section 7 in the case of negative $1 provide that the results of
Theorem 2 hold in the case of more general assumptions on the nonlinearity g(u). Namely,

g ∈ C1(R), |g(u)| ≤ L1(1 + |u|δ), g(u)u ≤ L2 − L3|u|δ+1, g′(u) ≤ L4

with non-negative constants Li and δ.

Finally, we assert the result which is a simple consequence of Theorem 1 and is related
to the existence of a strong solution of linear version of (4)–(6).

Lemma 1. Let g(u) ≡ 0, ψ ≡ 0, ∂Ω ∈ C2+α, parameters p, n, ν0, ν1 satisfy the conditions
of Theorem 1, and let assumptions H2–H3 hold. Moreover, we assume that the kernel K meets
requirement H4; compatibility condition H5 is fulfilled on ∂Ω, and

f ∈ Lp(ΩT) ∩Ws1,r((0, T), Ws2,r(Ω)), u0 ∈W2− 2
pν0

,p
(Ω) ∩W2+s2,r(Ω), (9)

where r ≥ n + 1, s1 ∈ (r−1, 1), s2 ∈ ((n + 1)r−1, 1). Then for any fixed T > 0, the linear
initial-boundary value problem (4)–(6) admits a unique strong solution in the class H

ν0,2
p (ΩT),

satisfying estimate (8).
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Indeed, in order to verify this statement, it is enough to construct an approximate
solution un via Theorem 4.1 in [32] (see Lemma 3 here as a reformulated result). Then,
exploiting uniform estimates (8) for un and passing to the limit via standard arguments, we
obtain a strong solution to (4)–(6) satisfying the regularity established by Lemma 1. Finally,
estimate (8) provides the uniqueness of this strong solution.

Remark 5. We notice that some assumptions in Lemma 1 are not typical to the theory of the
existence of strong solutions. Namely, it is related to the second equality in H5 and to the requirement
of greater regularity (see (9)) of the right-hand sides f , u0 than is demanded in estimate (8). The
occurrence of these conditions is explained with our approach, which deals with obtaining the strong
solution as a limit of the corresponding approximated smooth solutions un given by Lemma 3. Recall
that, in order to the smooth solutions exist in the indicated classes, both compatibility conditions
in H5 are needed (see Theorem 4.1 [32]). Clearly, the additional regularity of the functions f , u0
provides the fulfillment of the second equality in H5.

Remark 6. Our assumption on the kernel K admits the case K ≡ 0, which means that the
multi-term subdiffusion equation

Dν0
t ($0u)−Dν1

t ($1u)−L1u = f (x, t) + g(u)

fits in our analysis and is described by Theorems 1–2 and Lemma 1.

Remark 7. Actually, with an inessential modification in the arguments, the results of Theorem 1
and Lemma 1 hold for the (M + 1)-term fractional equations:

Dν0
t ($0u)−

M

∑
i=1

Dνi
t ($iu)−L1u−

∫ t

0
K(t− s)L2u(x, s)ds = f (x, t),

$0(x, t)Dν0
t u−

M

∑
i=1

$i(x, t)Dνi
t u−L1u−

∫ t

0
K(t− s)L2u(x, s)ds = f (x, t).

In the case of the last equation, the regularity of the functions $i can be relaxed, namely, we assume
that $i ∈ Cα,αν0/2(Ω̄T). The details are left to the interested readers.

The remaining of the paper is devoted to the proof of Theorems 1 and 2.

5. Technical Results

In this Section we present some properties of fractional derivatives and integrals as
well as several technical results that will be used in this art. First, we begin with some
definitions of fractional derivatives and integrals.

Throughout this work, for any θ > 0, we denote (as we wrote before)

ωθ(t) =
tθ−1

Γ(θ)
, (10)

and define the fractional Riemann–Liouville integral and the derivative of the order θ,
respectively, of a function v(·, t) with respect to time t as

Iθ
t v(·, t) = (ωθ ∗ v)(·, t), ∂θ

t v(·, t) =
∂dθe

∂tdθe
(ωdθe−θ ∗ v)(·, t),

where dθe is the ceiling function of θ (i.e., the smallest integer is greater than or equal to θ).
Clearly, for θ ∈ (0, 1) we have

∂θ
t v(·, t) =

∂

∂t
(ω1−θ ∗ v)(·, t).
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Therefore, the Caputo fractional derivative of the order θ ∈ (0, 1) to a function v(x, t) can
be given as

Dθ
t v(x, t) = ∂θ

t v(x, t)−ω1−θ(t)v(x, 0), (11)

if both derivatives exist (see (2.4.8) [2]).
In the first proposition, which subsumes and partially generalizes (in particular, it

concerns (iii) in the statement below) Propositions 4.1 and 4.2 from [18], we remind the
reader of some useful properties of fractional integrals and derivatives.

Proposition 1. The following relations hold.

(i) Let θ, θ1 ∈ (0, 1), t ∈ [0, T]. Then for any function w = w(t) ∈ Cθ1([0, T]), there is

Iθ
t ∂θ

t w(t) = w(t).

If, in addition, θ < 2θ1, and p ≥ 2 is any even integer, it is also true that

∂θ
t wp(t) ≤ pwp−1(t)∂θ

t w(t).

(ii) Let θ be a positive number, k ∈ L1(0, T), and let W(t) be a bounded function on [0, T]. Then

Iθ
t (k ∗W)(t) = (k ∗ w)(t) where w = Iθ

t W(t).

(iii) Let k(t) ∈ C1([0, T]), w2(t) ∈ Cθ2([0, T]), θ2 ≥ 1, Dθ
t w(t) ∈ C([0, T]). Then the equality

holds:

(k ∗ w2Dθ
t w)(t) = k(0)w2(t)(ω1−θ ∗ [w− w(0)])(t) + (k′ ∗ w2(ω1−θ ∗ [w− w(0)]))(t)

+ (k ∗ w′2(ω1−θ ∗ [w− w(0)]))(t), t ∈ [0, T].

(iv) For any given positive numbers θ1 and θ2, the following equalities are fulfilled:

ωθ1 ∗ωθ2 = ωθ1+θ2(t), 1 ∗ωθ1 = ωθ1+1(t), ωθ1(t) ≥ CTθ1−1,

ωθ1 ∗ k(l) ≤ Cωθ1+1 ≤ Cωθ1 ,

l = 0, 1, for any t ∈ [0, T]. The positive constant C depends only on T, θ1 and either ‖k‖C1(0,T) if
l = 1 or ‖k‖L1(0,T) if l = 0.

The next result describes the main properties of the function d
dt (N ∗ w)(t), where a

kernel N = N (t) is completely monotonic and satisfies the following requirements.

H8. For any T > 0 (including T = +∞) and all t ∈ [0, T], there holds

N ∈
{

L1(0, T), if T is arbitrarily fixed,
L1,loc(R+), otherwise,

lim
t→0
N (t) = +∞.

Moreover, for some θ? ∈ (0, 1) and t? = min{1, T}, the following inequalities are fulfilled:∫ t

0
|N ′(s)|sθ?ds < +∞, t ∈ [0, t?],∫ t?

0
|N ′(s)|sθ?ds +

∫ t

t?
|N ′(s)|ds < +∞, t > t?,

(−1)k dkN
dtk (t) ≥ 0, k = 0, 1, 2, ....

Clearly, the last inequality in H8 tells us that the kernel N is a completely mono-
tonic function.
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Proposition 2. Let assumption H8 hold. Then, for any functions w1 = w1(t) and w2 = w2(t)
satisfying requirements

w1 ∈ Cθ1([0, T]), w2 ∈ Cθ2([0, T]), θ1 ∈ [0, 1), θ2 ∈ (0, 1], θ1 + θ2 ≥ θ?,

and

d
dt
(N ∗w1)(t),

d
dt
(N ∗w2)(t),

d
dt
(N ∗w1w2)(t) ∈ C([0, T]), lim

t→0
w1(t)w2(t)N (t) < +∞,

the following relations hold:

(i)

d
dt
(N ∗ w1w2)(t) = w1(t)

d
dt
(N ∗ w2)(t) + w2(t)

d
dt
(N ∗ w1)(t)− w1(t)w2(t)N (t)

+
∫ t

0
N ′(t− s)[w1(t)− w1(s)][w2(t)− w2(s)]ds, t ∈ [0, T].

(ii) For any integer even p ≥ 2, there is

pwp−1
1 (t)

d
dt
(N ∗ w1)(t) ≥

d
dt
(N ∗ wp

1 )(t).

If, in addition, w1 is non-negative, then this bound holds for integer odd p.

Proof. First, we verify the point (i) of this assertion. It is worth noting that ifN (t) = ω1−ν(t)
and θ? ∈ (ν, 1), this claim is proved in Lemma 1 [11] for any fixed T > 0. Here, we extend
this result to the case of a more general kind of N .

By the definition of a derivative, we have

d
dt
(N ∗ w1w2)(t) = lim

ε→0

1
ε

[ ∫ t+ε

0
N (t + ε− s)w1(s)w2(s)ds−

∫ t

0
N (t− s)w1(s)w2(s)ds

]
.

Then, taking advantage of the easily verified representation

w1(s)w2(s) = [w1(s)− w1(t)][w2(s)− w2(t)]− w1(t)w2(t) + w1(t)w2(s) + w1(s)w2(t),

we arrive at the equality

d
dt
(N ∗ w1w2)(t) =lim

ε→0

1
ε

[ ∫ t+ε

0
N (t + ε− s)[w1(s)− w1(t)][w2(s)− w2(t)]ds

−
∫ t

0
N (t− s)[w1(s)− w1(t)][w2(s)− w2(t)]ds

]
+ w1(t)lim

ε→0

1
ε

[ ∫ t+ε

0
N (t + ε− s)w2(s)ds−

∫ t

0
N (t− s)w2(s)ds

]
+ w2(t)lim

ε→0

1
ε

[ ∫ t+ε

0
N (t + ε− s)w1(s)ds−

∫ t

0
N (t− s)w1(s)ds

]
− w1(t)w2(t)lim

ε→0

1
ε

[ ∫ t+ε

0
N (t + ε− s)ds−

∫ t

0
N (t− s)ds

]
.

Finally, keeping in mind H8 and the smoothness of the functions w1 and w2, we end up
with the desired equality.

Coming to the proof of point (ii) in this proposition, we first verify the cases of p = 2
and p = 3. To this end, substituting

w2 =

{
w1, if p = 2,
w2

1, if p = 3,
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to the equality in (i) of this claim, we deduce the relations

d
dt
(N ∗ w2

1) = 2w1
d
dt
(N ∗ w1)(t)−N (t)w2

1(t) +
∫ t

0
N ′(t− s)[w1(s)− w1(t)]2ds,

d
dt
(N ∗ w3

1) = w1

[ d
dt
(N ∗ w2

1)(t) + w1(t)
d
dt
(N ∗ w1)(t)−N (t)w2

1(t)
]

+
∫ t

0
N ′(t− s)[w1(s)− w1(t)]2[w1(s) + w1(t)]ds.

Appealing to the complete monotonicity of N and to the non-negativity of the function w1
(if p = 3), we immediately end up with the desired estimates for p = 2, 3. Finally, taking
advantage of these estimates and exploiting the induction, we complete the proof of (ii) for
p > 3, and hence, the proof of Proposition 2.

Introducing the new function

Nν(t) = N (t; ν0, ν1) = ω1−ν0(t)−ω1−ν1(t) (12)

with ν1, ν0 ∈ (0, 1), we assert the following claim:

Corollary 1. Let 0 < ν1 < ν0 < ν∗ < 1. Then for any function w1 ∈ Cθ1([0, T∗]), θ1 ∈ (ν0, 1),
lim
t→0

w1(t)Nν(t) < +∞, and for each even integer p ≥ 2, the inequality

pwp−1
1

d
dt
(Nν ∗ w1)(t) ≥

d
dt
(Nν ∗ wp

1 )(t)

holds for all t ∈ [0, T∗]. If additionally w1 is non-negative, then this bound holds for any integer
odd p.

Proof. It is apparent that this statement is a simple consequence of Proposition 2 if Nν(t)
meets requirement H8. In light of (10) and (12), the kernel Nν(t) satisfies the first four
conditions in H8. Thus, we are left to check that Nν(t) is completely monotonic for all
t ∈ [0, T∗].

If ν1 and ν0 satisfy the assumption of this claim, then definitions of ν∗ and T∗ provide
the positivity of the function Nν(t) for all t ∈ [0, T∗]. Then, straightforward calculations
arrive at the equality

(−1)k dkNν

dtk (t) = (−1)2kt−kNν(t)
k−1

∏
j=0

(ν0 + j)

+ (−1)2k t−ν1−k

Γ(1− ν1)

[ k−1

∏
j=0

(ν0 + j)−
k−1

∏
j=0

(ν1 + j)
]
, k = 0, 1, 2 . . .

Finally, appealing to the positivity ofNν(t) and bearing in mind the relation 0 < ν1 < ν0,
we immediately obtain the non-negativity of the function (−1)k dkNν

dtk (t). This finishes the
proof of this corollary.

The next assertion is related to the fractional differentiation of a product, the so-called
one variant of the Leibniz rule in the case of fractional derivatives.

Corollary 2. Let w1 ∈ C1([0, T]) and w2 ∈ C([0, T]). For θ ∈ (0, 1), we assume that

(i) either Dθ
t w2 ∈ C([0, T]),

(ii) or Dθ
t w2 ∈ Lp(0, T) with p ≥ 2.

Then the equality
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Dθ
t (w1w2) = w1(t)Dθ

t w2(t) + w2(0)Dθ
t w1(t)

+
θ

Γ(1− θ)

t∫
0

[w1(t)− w1(s)][w2(s)− w2(0)]
(t− s)1+θ

ds (13)

holds, and Dθ
t (w1w2) has the regularity

Dθ
t (w1w2) ∈

{
C([0, T]) in the case of (i),
Lp(0, T) in the case of (ii).

If, in addition, w2(0) = 0, then for any θ1 ≥ θ and all t ∈ [0, T], the equality holds

Iθ1
t (w1∂θ

t w2)(t) = Iθ1−θ
t (w1w2)(t)− θ I1−θ+θ1

t (W(w1)w2)(t) (14)

withW(w1) =
1∫

0

∂w1
∂z dτ, z = τt + (1− τ)s, 0 < s < t.

Proof. First of all, we remark that under a stronger regularity on the function w2, represen-
tation (13) was proved in Corollary 3.1 [37]. Here, we just extend this result to the case of a
weaker assumption on the w2. Namely, we require that Dθ

t w2 belongs to either Lp(0, T) or
C([0, T]).

Appealing to the definition of the Caputo fractional derivative and taking into account
the smoothness of functions w1 and w2, we easily conclude that

Dθ
t (w1w2) = w1(t)Dθ

t w2(t) + w2(0)Dθ
t w1(t) +

1
Γ(1− θ)

w′1(t)
t∫

0

[w2(s)− w2(0)]
(t− s)θ

ds

− 1
Γ(1− θ)

t∫
0

[w2(s)− w2(0)]
∂

∂t
[w1(t)− w1(s)]

(t− s)θ
ds.

After that, performing differentiation in the last integral arrives at the desired equality.
Coming to the smoothness of the function Dθ

t (w1w2), it is a simple consequence of the
obtained representation (13) and the regularity of w1 and w2.

Obviously, relation (14) is a simple consequence of (13) and (11). Indeed, in virtue of
w2(x, 0) = 0, we can rewrite (13) as

w1(t)∂θ
t w2 = ∂θ

t (w1w2)− θ I1−θ
t (W(w1)w2).

Finally, computing the fractional integral Iθ1
t of both sides in this equality and taking into

account Proposition 2.2 in [2] and semigroup property to the fractional Riemann-Liouville
integral, we end up with (14). This completes the verification of this corollary.

We now state and prove some inequalities that will be needed to prove estimate (8) in
Section 6.2. First, we introduce the function

Iθ(t) = Iθ(t; w1, w2) =
∫ t

0

[w1(x, t)− w1(x, s)][w2(x, s)− w2(x, 0)]
(t− s)1+θ

ds, (15)

where θ ∈ (0, 1), w1 and w2 are some given functions whose smoothness provides the
boundedness of the singular integral in (15).

Lemma 2. Let arbitrarily fixed T > 0, p ≥ 2, and θ ∈ (0, 1). We assume that w1 ∈ C1(Ω̄T),
w2 ∈ Lp(ΩT) and K ∈ C([0, T]). Then, there are the following inequalities:
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(i)

‖K ∗ w2‖Lp(ΩT)
≤ CYT‖K‖C([0,T])‖w2‖Lp(ΩT)

,

‖ωθ ∗ w2‖Lp(ΩT)
≤ CY

Tθ

Γ(1 + θ)
‖w2‖Lp(ΩT)

,

‖K ∗ωθ ∗ w2‖Lp(ΩT)
≤ CY

T1+θ

Γ(2 + θ)
‖K‖C([0,T])‖w2‖Lp(ΩT)

,

where CY is the positive constant in the Young inequality for a convolution (see [38]).
(ii)

‖Iθ(t)‖Lp(ΩT)
+ ‖K ∗ Iθ(t)‖Lp(ΩT)

≤ CY[1 + CYT‖K‖C([0,T])]
T1−θ

(1− θ)
‖w1‖C1(Ω̄T)

‖W2‖Lp(ΩT)
,

where W2(x, t) = w2(x, t)− w2(x, 0).
(iii) If, for any θ1 ∈ (0, θ), θ2 ∈ (θ1, θ] and p > 1

θ2−θ1
, we additionally assume that w2 ∈ H θ,2

p (ΩT)

and w2(x, 0) = 0 for all x ∈ Ω̄. Then, for any small ε ∈ (0, 1), the estimates hold:

‖∂θ1
t w2‖Lp(ΩT) ≤ Cθ Tθ2−θ1‖w2‖Wθ2,p((0,T),Lp(Ω)),

‖w2‖Lp(ΩT) + ‖K ∗ w2‖Lp(ΩT) ≤ CYCθ [1 + CYT‖K‖C([0,T])]T
θ‖w2‖Wθ,p((0,T),Lp(Ω)),

‖Dxw2‖Lp(ΩT) + ‖K ∗ Dxw2‖Lp(ΩT) ≤ ε[1 + CYT‖K‖C([0,T])]‖w2‖Lp((0,T),W2,p(Ω))

+ CTθ‖w2‖Wθ,p((0,T),Lp(Ω)).

Here

C = CGN(1 + ε−1)
4p−1CθCY
Γ(1 + θ1)

[1 + CYT‖K‖C([0,T])]

and CGN is the constant in the Gagliardo–Nirenberg inequality.

Proof. The inequalities in point (i) are verified with straightforward calculations, where
we exploit the Young inequality for a convolution and relations in (iv) of Proposition 1.

Concerning point (ii), this estimate is a simple consequence of the easily veri-
fied inequality

|Jθ(t)| ≤ ‖w1‖C1(Ω̄T)

∫ t

0

|w2(x, s)− w2(x, 0)|
(t− s)θ

ds,

and the Young inequality for a convolution.
As for the verification of the first inequality in (iii), bearing in mind restrictions on

p, θ1, θ2, and appealing to the embedding Theorem (see (1.4.4.6) in [35]), we conclude that

w2 ∈ Cθ2− 1
p ([0, T], Lp(Ω)) and

‖w2‖
Cθ2−

1
p ([0,T],Lp(Ω))

≤ C‖w2‖Wθ2,p((0,T),Lp(Ω)). (16)

Collecting (15), (16) with the homogeneous initial data of w2 and (15) allows us to apply
Theorem 3.1 [37] and deduce the equality

∂θ1
t w2 =

1
Γ(1− θ1)

w2(x, t)− w2(x, 0)
tθ1

+
θ1

Γ(1− θ1)

∫ t

0

w2(x, t)− w2(x, τ)

(t− τ)1+θ1
dτ.
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Next, taking advantage of this representation to compute Lp− norm of ∂θ1
t w2 and perform-

ing standard technical calculations, we have

‖∂θ1
t w2‖Lp(ΩT)

≤ C‖w2‖
Cθ2−

1
p ([0,T],Lp(Ω))

[( ∫ T

0
t(θ2−θ1)p−1dt

) 1
p

+

( ∫ T

0

( ∫ t

0
(t− τ)

θ2−θ1− 1
p−1dτ

)p

dt
) 1

p
]

.

Finally, straightforward calculations and inequality (16) arrive at the desired bound.
Consecutive application of formula (3.5.4) in [2] to the difference |w2(x, s)− w2(x, 0)|,

Young inequality for a convolution and, finally, the first inequality in (iii) of this claim
provides the estimate

‖w2‖Lp(ΩT)
≤ CY‖∂θ1

t w2‖Lp(ΩT)
‖ωθ1‖L1(0,T)

≤ CθCY
Tθ

Γ(1 + θ1)
‖w2‖Wθ,p((0,T),Lp(Ω)) (17)

for any θ1 ∈ (0, θ). Finally, using this bound and the Young inequality to manage the term
‖K ∗ w2‖Lp(ΩT)

, we arrive at the first estimate in (iii).
Coming to the second inequality in (iii), the Gagliardo–Nirenberg and Cauchy inequal-

ities lead to the bound

‖Dxw2‖Lp(Ω) ≤ ε1‖D2
xw2‖Lp(Ω) + CGN [1 + ε−1

1 ]‖w2‖Lp(Ω)

for any ε1 ∈ (0, 1), which together with Jensen’s inequality to a sum, in turn, provides

‖Dxw2‖Lp(ΩT)
≤ 2p−1ε1‖D2

xw2‖Lp(ΩT)
+ 2p−1CGN [1 + ε−1

1 ]‖w2‖Lp(ΩT)
.

After that, choosing ε = ε12p−1 < 1 and applying (17) to control the second term in the
right-hand side of the inequality above, we immediately end up with

‖Dxw2‖Lp(ΩT)
≤ ε‖w2‖Lp((0,T),W2,p(Ω)) + 4p−1[1 + ε−1]

CGNCθCYTθ

Γ(1 + θ1)
‖w2‖Wθ,p((0,T),Lp(Ω)).

Finally, collecting this estimate with the first inequality in (i) yields the estimate in (iii).
This completes the proof of Lemma 2.

Remark 8. It is worth noting that repeating the arguments leading to the first bound in (iii) of
Lemma 2 arrives at the following inequalities in the case of w2(x, 0) 6= 0:

‖Dθ1
t w2‖Lp(ΩT)

≤ CθTθ2−θ1‖w2‖Wθ2,p((0,T),Lp(Ω)),

‖∂θ1
t W2‖Lp(ΩT)

≤ CθTθ2−θ1‖W2‖Wθ2,p((0,T),Lp(Ω))

with W2 being defined in (ii) of Lemma 2.

Finally, for convenience, we remind the reader of the result related to the global
classical solvability of the linear problem corresponding to (4)–(6). The result, written as a
lemma, is obtained in our previous work [32] (see Theorem 4.1 there) and will be exploited
in Section 7 to prove the one-valued solvability of the nonlinear model (4)–(6).

Lemma 3. Let T > 0 be any fixed, ∂Ω ∈ C2+α, g(u) ≡ 0, and let ν0 ∈ (0, 1), ν1 ∈ (0, ν0(2− α)/2).
We assume that assumptions H2–H5 hold. Then, linear equation (4) with the initial condition (5),
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subject to the Dirichlet boundary condition (6), has a unique classical solution u = u(x, t) in Ω̄T ,
possessing the regularity u ∈ C2+α, 2+α

2 ν0(Ω̄T). This solution fulfills the estimate

‖u‖
C2+α, 2+α

2 ν0 (Ω̄T)
+ ‖Dν1

t u‖
Cα, α

2 ν0 (Ω̄T)
≤ C[‖ f ‖

Cα, α
2 ν0 (Ω̄T)

+ ‖u0‖C2+α(Ω̄)+ ‖ψ‖C2+α, 2+α
2 ν0 (∂ΩT)

].

The generic constant C is independent of the right-hand sides of (4)–(6).

6. Proof of Theorem 1

We start the proof of Theorem 1 with estimating a solution in the space H
ν0,2
p (ΩT).

On this route, we collect certain results from Section 5.1 in [18] and from Sections 2 and 4
in [23]. The second part of this Section is devoted to obtaining the estimate of u in the
Hölder spaces.

6.1. Estimate of ‖u‖
H

ν0,2
p (ΩT)

We first study in detail the special case where ψ ≡ 0 and u0 ≡ 0, i.e., (5) and (6) are
replaced by the simpler conditions

u(x, 0) = 0 in Ω̄, u(x, t) = 0 on ∂ΩT . (18)

In a farther step, we will discuss how to come from the general case to this special one.
Here, we will follow the strategy consisting in two main steps. The first one is related to
obtaining the estimate in a small time interval [0, T1]. On the second step, we discuss the
extension of this estimate to the interval [T1, T].

Step 1. Let T1 ∈ (0, T] be specified below. Keeping in mind the regularity of u, $0 and
$1 (see assumption H3), we apply Corollary 2 to the first two terms in the left-hand side of
(4) and rewrite this equation in more suitable form:

$0Dν0
t u− $1Dtν1 u−L1u−K ∗ L2u +

ν0

Γ(1− ν0)
Iν0(t; $0, u)

− ν1

Γ(1− ν1)
Iν1(t; $1, u) = f (x, t).

After that, Proposition 4.4 in [18], where we set

w̄ = −L0u,

w = f − $0Dν0
t u + $1Dν1

t u + (L1 −L0)u +K ∗ (L2 −L0)u

− ν0

Γ(1− ν0)
Iν0(t; $0, u) +

ν1

Γ(1− ν1)
Iν1(t; $1, u),

and the point (iii) of Proposition 1 allow us to remove the term K ∗ L0u from the equation
above. Hence, we have

Dν0
t u− 1

$0
L0u +

n

∑
ij=1

1
$0

∂aij

∂xi

∂u
∂xj

=
8

∑
l=0,l 6=1

1
$0

Fl(u) +
1
$0

F1( f ), (19)

where denoting the conjugate kernel to K by K̄ ∈ C1([0, T]) (see its properties in Proposi-
tion 4.4 [18]), we put

F0(u) = $1Dν1
t u, F1( f ) = f − K̄ ? f , F2(u) = (L1 −L0)u +

n

∑
ij=1

∂aij

∂xi

∂u
∂xj

,

F3(u) = −K̄ ∗ (L1 −L0)u, F4(u) = K̄ ∗ (L2 −L0)u,

F5(u) = −
ν0

Γ(1− ν0)
Iν0(t; $0, u) +

ν0

Γ(1− ν0)
K̄ ∗ Iν0(t; $0, u),
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F6(u) =
ν1

Γ(1− ν1)
Iν1(t; $1, u)− ν1

Γ(1− ν1)
K̄ ∗ Iν1(t; $1, u),

F7(u) = K̄(0)$0(ω1−ν0 ∗ u)− K̄ ∗ ∂$0

∂t

(
ω1−ν0 ∗ u

)
+ K̄′ ∗ $0(ω1−ν0 ∗ u),

F8(u) = −K̄(0)$1(ω1−ν1 ∗ u) + K̄ ∗ ∂$1

∂t

(
ω1−ν1 ∗ u

)
− K̄′ ∗ $1(ω1−ν1 ∗ u).

Then, bearing in mind assumptions H2 and H3, we take advantage of Theorem 2.3 in [23]
to problem (18), (19) and conclude that

‖u‖Lp((0,T1),W2,p(Ω)) + ‖u‖Wν0,p((0,T1),Lp(Ω)) ≤ C0

8

∑
l=0
‖$−1

0 Fl‖Lp(ΩT1 )
, (20)

where the positive constant C0 depends only on ν0, n, p, the Lebesgue measure of Ω, T and
the norms of the coefficients aij and $0, $1.

At this point, setting F1 = F1( f ) and Fl = Fl(u), we examine each term in the
right-hand side of (20), separately.
• Keeping in mind assumptions H2, H3 and the homogeneous initial condition, we can ex-
ploit estimates in (iii) of Lemma 2 (with θ1 = ν1, θ = ν0, Cθ = Cν) and deduce the estimates

‖$−1
0 F0‖Lp(ΩT1 )

≤
‖$1‖C(Ω̄T)

µ0
‖∂ν1

t u‖Lp(ΩT1 )

≤
Cν‖$1‖C(Ω̄T)

µ0
‖u‖Wν1+ν2,p((0,T1),Lp(Ω))

with a some quantity ν2 satisfying inequalities 0 < ν1 + ν2 < ν0.
After that, standard calculations and estimate (17) lead to

‖u‖Wν1+ν2,p((0,T1),Lp(Ω)) ≤
[

CνCYTν0
1

Γ(1 + ν0)
+ Tν0−ν1−ν2

1

]
‖u‖Wν0,p((0,T1),Lp(Ω)).

Collecting all these bounds, we end up with∥∥∥∥$−1
0 F0

∥∥∥∥
Lp(ΩT1 )

≤ C1Tν3
1 ‖u‖Wν0,p((0,T1),Lp(Ω)),

where

ν3 = ν0 − ν1 − ν2, C1 =
‖$1‖C(Ω̄T)

µ0

{
CνCYTν1+ν2

Γ(1 + ν0)
+ 1
}

.

• Obviously, the Young inequality for a convolution and assumptions (H2), (H4) provide

‖$−1
0 F1‖Lp(ΩT1 )

≤ µ−1
0 [1 + T‖K‖C([0,T])]‖ f ‖Lp(ΩT1 )

.

Here, we appeal to the fact that K̄ is the conjugate kernel to K (see Proposition 4.4 in
[18]), and thus

‖K̄‖C([0,T]) ≤ C‖K‖C([0,T]). (21)

• As for terms Fl , l = 2, 3, 4, they are examined with inequalities in (iii) of Lemma 2 and
the bound (21). Hence, we have for any small ε ∈ (0, 1) (which will be specified below)
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∥∥∥∥$−1
0

4

∑
l=2

Fl

∥∥∥∥
Lp(ΩT1 )

≤ µ−1
0

[ n

∑
i=1

(
‖ai‖C(Ω̄T)

+ ‖bi‖C(Ω̄T)
+

n

∑
j=1

∥∥∥∥∂aij

∂xi

∥∥∥∥
C(Ω̄T)

)

+ ‖a0‖C(Ω̄T)
+ ‖b0‖C(Ω̄T)

]
×
[ n

∑
j=1

(∥∥∥∥ ∂u
∂xj

∥∥∥∥
Lp(ΩT1 )

+

∥∥∥∥K̄ ∗ ∂u
∂xj

∥∥∥∥
Lp(ΩT1 )

)

+ ‖u‖Lp(ΩT1 )
+ ‖K̄ ∗ u‖Lp(ΩT1 )

]
≤ C2Tν0

1 ‖u‖Wν0,p((0,T1),Lp(Ω)) + C3ε‖u‖Lp((0,T1),W2,p(Ω)),

where

C2 = µ−1
0

[
‖a0‖C(Ω̄T)

+ ‖b0‖C(Ω̄T)
+

n

∑
i=1

(
‖ai‖C(Ω̄T)

+ ‖bi‖C(Ω̄T)
+

n

∑
j=1

∥∥∥∥∂aij

∂xi

∥∥∥∥
C(Ω̄T)

)]

×
[
Cn + (1 + CYT‖K‖C([0,T]))

CνCY
Γ(1 + ν0)

]
,

C3 =
n
µ0

[
‖a0‖C(Ω̄T)

+ ‖b0‖C(Ω̄T)
+

n

∑
i=1

(
‖ai‖C(Ω̄T)

+ ‖bi‖C(Ω̄T)
+

n

∑
j=1

∥∥∥∥∂aij

∂xi

∥∥∥∥
C(Ω̄T)

)]
× (1 + CYT‖K‖C([0,T])).

• Concerning the terms F5
$0

and F6
$0

, we apply the point (ii) of Lemma 2 and (21) to deduce

∥∥∥∥ 6

∑
l=5

$−1
0 Fl

∥∥∥∥
Lp(ΩT1 )

≤
CYT1−ν0

1
µ0

[
ν0‖$0‖C1(Ω̄T)

Γ(2− ν0)
+

ν1‖$1‖C1(Ω̄T)

Γ(2− ν1)
Tν0−ν1

]
× [1 + CYT‖K‖C([0,T])]‖u‖Lp(ΩT1 )

.

Then, to estimate ‖u‖Lp(ΩT1 )
, we use the first inequality in (iii) of Lemma 2 and arrive at

∥∥∥∥ 6

∑
l=5

$−1
0 Fl

∥∥∥∥
Lp(ΩT1 )

≤ C4T1‖u‖Wν0,p((0,T1),Lp(Ω))

with the positive constant

C4 =
C2

YCν

µ0Γ(1 + ν0)

[
ν0‖$0‖C1(Ω̄T)

Γ(2− ν0)
+

ν1‖$1‖C1(Ω̄T)

Γ(2− ν1)
Tν0−ν1

]
[1 + CYT‖K‖C([0,T])]

2.

• Finally, the term F7+F8
$0

is evaluated via (i) and (iii) of Lemma 2. Thus, we obtain

∥∥∥∥ 8

∑
l=7

$−1
0 Fl

∥∥∥∥
Lp(ΩT1 )

≤ C5T1‖u‖Wν0,p((0,T1),Lp(Ω)),

where

C5 =
C2

YCν‖K‖C1([0,T])

Γ(1 + ν0)

[
1 +
‖$1‖C1(Ω̄T)

+ ‖$0‖C1(Ω̄T)

µ0

]
[1 + CYT‖K‖C([0,T])]

×
[

1
Γ(2− ν0)

+
Tν0−ν1

Γ(2− ν1)
+

T
Γ(3− ν0)

+
T1+ν0−ν1

Γ(3− ν1)

]
.
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Collecting relation (20) with estimates of Fl , and choosing ε and T1 satisfying inequalities

ε =
1

2C0C3
and C0(T

ν3
1 C1 + Tν0

1 C2 + C4T1 + C5T1) <
1
2

,

we end up with bounds

‖u‖Wν0,p((0,T1),Lp(Ω)) + ‖u‖Lp((0,T1),W2,p(Ω)) ≤
2C0

µ0
[1 + T‖K‖C([0,T])]‖ f ‖Lp(ΩT1 )

≤ C6‖ f ‖Lp(ΩT1 )
≤ C6‖ f ‖Lp(ΩT)

,

‖u‖C(Ω̄T1 )
≤ C6‖ f ‖Lp(ΩT1 )

≤ C6‖ f ‖Lp(ΩT)
. (22)

It is worth noting that, in light of the relation between p, ν0 and n, the second estimate
is a simple consequence of the first inequality in (22) and the embedding Theorem (see
Theorem 1.4.33 and (1.4.4.6) in [35] and also p. 818 in [23]).

Step 2: Extension of estimate (22) to whole time interval. First of all, we discuss the
technique which allows us to extend estimate (22) to interval [0, 3T1/2]. After that, we recast
this procedure a finite number of times until the entire [0, T] is exhausted. Hence, estimating
the first term in the left-hand side of (8) is completed under additional assumption (18). To
this end, we introduce a new function

Φ(x, t) =

{
$0Dν0

t u−L1u, if (x, t) ∈ ΩT1/2,
[$0Dν0

t u−L1u]|t=T1/2, if x ∈ Ω, t ≥ T1/2,
(23)

and define the function U (x, t) which solves the initial-boundary value problem
$0Dν0

t U − L1U = Φ(x, t) in Ω3T1/2,
U (x, 0) = 0 in Ω̄,
U (x, t) = 0 on ∂Ω3T1/2.

Bearing in mind that the function u(x, t) solves problem (4), (18) and satisfies estimate
(22) for t ∈ [0, T1], we exploit Theorem 2.3 [23] and Lemma 2, and assert the following result.

Corollary 3. The following relations hold:

U (x, t) = u(x, t) in Ω̄T1/2,

‖Φ‖Lp(Ω3T1/2)
≤ C6‖ f ‖Lp(ΩT)

,

‖U‖Wν0,p((0,3T1/2),Lp(Ω)) + ‖U‖Lp((0,3T1/2),W2,p(Ω)) ≤ C6‖ f ‖Lp(ΩT)
,

‖Dν0
t ($0U )−Dν1

t ($1U )−L1U −K ∗ L2U‖Lp(Ω3T1/2)
≤ C‖ f ‖Lp(ΩT)

with constants C and C6 being independent of T1.

Finally, introducing new unknown function

U = u(x, t)−U (x, t),

and then the new time variable

σ = t− T1/2, σ ∈ [−T1/2, T1] for t ∈ [0, 3T1/2],

in problem (4), (18), we recast arguments of Section 6.3 in [32] and deduce
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Dν0

σ ($̄0Ū)−Dν1
σ ($̄1Ū)− L̄1Ū−K ∗ L̄2Ū = f ?(x, σ) in ΩT1 ,

Ū(x, 0) = 0, in Ω̄,
Ū(x, σ) = 0, on Ω̄T1 ,

(24)

and, besides, Ū(x, σ) = 0, σ ∈ [−T1/2, 0].
Here, we put

Ū(x, σ) = U(x, σ + T1/2), $̄0(x, σ) = $0(x, σ + T1/2),

$̄1(x, σ) = $1(x, σ + T1/2), āij(x, σ) = aij(x, σ + T1/2),

āi(x, σ) = ai(x, σ + T1/2), ā0(x, σ) = a0(x, σ + T1/2),

b̄i(x, σ) = bi(x, σ + T1/2), b̄0(x, σ) = b0(x, σ + T1/2),

f ?(x, σ) = f (x, σ + T1/2)− f̄ (x, σ + T1/2), where

f̄ (x, σ + T1/2) = {Dν0
t ($0U )−Dν1

t ($1U )−L1U −K ∗ L2U}|t=σ+T1/2,

and we call L̄i the operators Li with the bar coefficients. It is easy to verify that the
coefficients of the operators L̄i and $̄0, $̄1 meet the requirements of Theorem 1.

Then, recasting the arguments leading to (22) (see Step 1 in this subsection), we deduce

‖Ū‖Lp((0,T1),W2,p(Ω)) + ‖Ū‖Wν0,p((0,T1),Lp(Ω)) + ‖Ū‖C(Ω̄T1 )
≤ C6[‖ f ‖Lp(ΩT)

+ ‖ f̄ ‖Lp(ΩT1 )
].

Collecting this estimate with Corollary 3 and the representation of the function u, we arrive
at the inequality

‖u‖Lp((0,3T1/2),W2,p(Ω)) + ‖u‖Wν0,p((0,3T1/2),Lp(Ω)) + ‖u‖C(Ω̄3T1/2)

≤ C6[‖ f ‖Lp(ΩT)
+ ‖ f̄ ‖Lp(ΩT1 )

] ≤ C‖ f ‖Lp(ΩT)
,

which in turn tells us that we extended inequality (22) from [0, T1] to [T1, 3T1/2]. It is worth
noting that the constant C in this estimate is independent of T1.

Thus, we finished the evaluation of the first term in the left hand-side of (8) for
t ∈ [0, T] under assumption (18).

Step 3: Removing restriction (18). To this end, we look for a solution of (4)–(6) in the form

u = u1 + u2,

where u1 solves the Cauchy–Dirichlet problem to the homogeneous subdiffusion equation
$0Dν0

t u1 −L1u1 = 0 in ΩT ,
u1(x, 0) = u0(x) in Ω̄,
u1(x, t) = ψ(x, t) on ∂ΩT ,

(25)

while u2 is a solution of problem (4), (18) with the new right-hand side in the equation

f = f +K ∗ L2u1 + $1Dν1
t u1 −

ν0

Γ(1− ν0)
Jν0(t; $0, u1) +

ν1

Γ(1− ν1)
Jν1(t; $1, u1).

After that, applying Theorem 2.3 [23] and Lemma 2 to problem (25) and recasting the
arguments leading to estimates of F0( f ) and Fl(u), l = 5, 6, (see Step 1 in this subsection)
provide the following relations:

‖u1‖H ν0,2
p (ΩT)

+ ‖u1‖C(Ω̄T)
≤ C[‖u0‖

W
2− 2

pν0
,p
(Ω)

+ ‖ψ‖
H

ν0(1−
1

2p ),2− 1
p

p (∂ΩT)

],

‖f‖Lp(ΩT)
≤ C[‖u0‖

W
2− 2

pν0
,p
(Ω)

+ ‖ f ‖Lp(ΩT)
+ ‖ψ‖

H
ν0(1−

1
2p ),2− 1

p
p (∂ΩT)

].
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Accordingly, we can repeat the whole argument of Steps 1–2, so drawing the estimate
of the first term in the left hand-side of (8) to the function u2. As a byproduct, u = u1 + u2
is the solution satisfying the corresponding estimate in (8) in the general case

‖u‖
H

ν0,2
p (ΩT)

+ ‖u‖C(Ω̄T)
≤ C{‖ f ‖Lp(ΩT)

+ ‖u0‖
W

2− 2
pν0

,p
(Ω)

+ ‖ψ‖
H

ν0(1−
1

2p ),2− 1
p

p (∂ΩT)

}. (26)

We notice that the bound of ‖Dν1
t u‖Lp(ΩT)

is a simple consequence of estimate (21) and
Remark 8.

6.2. Conclusion of the Proof of Theorem 1

To complete the proof of this theorem, we are left to obtain the estimate of the corre-
sponding Hölder seminorms to u. We remark that the verification of this estimate follows
from Theorem 4.1 in [23] and (26).

For this purpose, it is enough to examine the initial-boundary value problem in the
case of homogeneous initial and boundary conditions (18). Namely, in order to convert
the general case to this special one, we repeat arguments of Step 3 in Section 6.1 and take
advantage of Theorem 4.1 in [23]. Coming to problem (4), (18), we again rewrite equation (4)
in the form of (19) and then apply Theorem 4.1 [23] with p = q = r to problem (19), (18).
Thus, we obtain

〈u〉(α)x,ΩT
+ 〈u〉(αν0/2)

t,ΩT
≤ C

[ 8

∑
l=0
‖$−1

0 Fl‖Lp(ΩT)
+ ‖u‖C(Ω̄T)

]

≤ C
[ 8

∑
l=0
‖$−1

0 Fl‖Lp(ΩT)
+ ‖ f ‖Lp(ΩT)

]
. (27)

Here, to control the term ‖u‖C(Ω̄T)
, we use (26) with u0 = ψ = 0. Then, to evaluate

∑8
l=0 ‖$

−1
0 Fl‖Lp(ΩT)

, we recast the arguments of Step 1 of Section 6.1 with T1 = T and then
exploit (26). Thus, we end up with

8

∑
l=0
‖$−1

0 Fl‖Lp(ΩT)
≤ C{‖u‖Lp((0,T),W2,p(Ω)) + ‖u‖Wν0,p((0,T),Lp(Ω)) + ‖ f ‖Lp(ΩT)

}

≤ C‖ f ‖Lp(ΩT)

with the positive C depending only on T, p, ν0, ν1, and |Ω|, and the corresponding norms
of K and of the coefficients of the operators Li.

At last, collecting this estimate with (27) yields

〈u〉(α)x,ΩT
+ 〈u〉(αν0/2)

t,ΩT
≤ C‖ f ‖Lp(ΩT)

.

As a result, this inequality and (26) complete the evaluation of the second term in the
left-hand side of (8) and, as a consequence, Theorem 1.

7. Proof of Theorem 2

Here, we proceed with a detailed proof of this Theorem in the case of homogeneous
initial and boundary conditions, i.e., (18). Indeed, to convert the general case to this special
one, we take advantage of Remark 3.1 in [18] and Lemma 3 to the linear model for the
unknown function v = v(x, t) : ΩT → R,

Dν0
t ($0v)−Dν1

t ($1v)−L1v−K ∗ L2v = f (x, t) + g(u0) in ΩT ,
v(x, t) = ψ(x, t) on ∂ΩT ,
v(x, 0) = u0(x) in Ω̄,
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and we obtain the existence of a unique solution v ∈ C2+α, 2+α
2 ν0(Ω̄T) satisfying the bound

‖v‖
C2+α, 2+α

2 ν0 (Ω̄T)
+ ‖Dν1

t v‖
Cα,

ν0α
2 (Ω̄T)

≤ C
[
‖g(u0)‖

Cα,
ν0α

2 (Ω̄T)
+ ‖ f ‖

Cα,
ν0α

2 (Ω̄T)
+ ‖u0‖C2+α(Ω̄) + ‖ψ‖C2+α, 2+α

2 ν0 (∂ΩT)

]
≤ C

[
1 + ‖ f ‖

Cα,
ν0α

2 (Ω̄T)
+ ‖u0‖C2+α(Ω̄) + ‖ψ‖C2+α, 2+α

2 ν0 (∂ΩT)

]
≡ CG(u0, f , ψ).

Here, we used assumption H6 and Remark 3.1 [18] to handle the term ‖g(u0)‖
Cα,

ν0α
2 (Ω̄T)

.

Then, we search a solution of the original problem (4)–(6) in the form

u(x, t) = v(x, t) + V(x, t), (28)

where the unknown function V = V(x, t) is a solution of the problem
Dν0

t ($0V)−Dν1
t ($1V)−L1V −K ∗ L2V = F(x, t) + G(V) in ΩT ,

V(x, t) = 0 on ∂ΩT ,
V(x, 0) = 0 in Ω̄.

(29)

Here, we set
F(x, t) = g(v)− g(u0), G(V) = g(V + v)− g(v).

Remark 9. Assumption (H6) and the estimates of v readily provide the following inequalities for
the functions F and G:

‖F‖
Cα,

ν0α
2 (Ω̄T)

≤ CG(u0, f , ψ),

and for all ui ∈ [−ρ, ρ] and u ∈ R,

|G(u1)− G(u2)| ≤ Cρ|u1 − u2|, |G(u)| ≤ L0(1 + |u|)

with
L0 = L[1 + 2sup

Ω̄T

|v|] ≤ L[1 + 2CG(u0, f , ψ)].

Moreover, the straightforward calculations and the definition of the function v arrive at
the equalities

F(x, 0) = 0 for any x ∈ Ω̄, G(0) = 0 for each (x, t) ∈ Ω̄T .

Hence, the last relations mean that the compatibility conditions hold in problem (29).
As a result, Theorem 2 should be proved only in the case of homogeneous initial and boundary

conditions, i.e., for problem (29).
To this end, we exploit the so-called continuation argument, similar to the case of

subdiffusion equations with a single-term fractional derivative (i.e., if $0 = 1 and $1 = 0)
described in our previous work [18]. This approach is related to the analysis of the family
of problems for λ ∈ [0, 1]:

Dν0
t ($0V)−Dν1

t ($1V)−L1V −K ∗ L2V = F(x, t) + λG(V) in ΩT ,
V(x, t) = 0 on ∂ΩT ,
V(x, 0) = 0 in Ω̄.

(30)

Let (30) be solvable on [0, T] for any λ ∈ Λ. Clearly, for λ = 0, problems (30) transform
to the linear problem studied in [32]. Thus, keeping in mind assumptions H1–H5 and
Remark 9, we can apply Lemma 3 to (30) with λ = 0 and deduce the global classical



Fractal Fract. 2023, 7, 249 23 of 29

solvability in the corresponding classes. Therefore, 0 ∈ Λ. Then, we have to check that the
set Λ is open and closed at the same time. On this step, we use the essential arguments
described in Section 5.3 [18] (i.e., in the case of the equation with a single-term fractional
derivative in time). Hence, in our consideration here, we restrict ourselves to a detailed
description of only the differences in the proof, which emphasize the difficulties involved
in the multi-term fractional derivatives (in general with a non-positive kernel Nν(t)). We
preliminarily observe that these peculiarities are related to producing a priori estimates for
the solutions to (30) in C(Ω̄T) and C2+α, 2+α

2 ν0(Ω̄T), uniformly as λ ∈ [0, 1], and are stated
in the following lemma. The proof of this claim is provided in Section 7.1.

Lemma 4. Let the assumptions of Theorem 2 hold, and let V ∈ C2+α, 2+α
2 ν0(Ω̄T) be the solution to

problems (30). Then for any λ ∈ [0, 1], there are the following estimates:

‖V‖C(Ω̄T)
≤ C[1 + ‖F‖Cα,αν0/2(Ω̄T)

]

≤ C[1 +G(u0, f , ψ)],

‖V‖
C2+α, 2+α

2 ν0 (Ω̄T)
+ ‖Dν1

t V‖Cα,
ν0α

2 (Ω̄T)
≤ C[1 + ‖F‖Cα,αν0/2(Ω̄T)

] (31)

≤ C[1 +G(u0, f , ψ)].

The positive constant C is independent of λ and the right-hand sides of (30), and depends only on T
and the structural parameters of the problem.

Finally, exploiting Lemma 4 and Theorem 1 (in particular, the estimate ‖u‖Cα,αν0/2(Ω̄T)

in (8)) and recasting step-by-step the arguments of Section 5.2 in [18], we complete the
proof of Theorem 2.
Thus, we are left to verify statements in Lemma 4.

7.1. Proof of Lemma 4: Verification of Estimates in (31)

First, we remark that the second estimate in (31) is verified with the standard Schauder
technique and by means of Lemma 3, Remark 9 and the estimate of ‖V‖C(Ω̄T)

in (31). Hence,
to prove Lemma 4, we are left to produce the first inequality in (31). We proceed here with
a detailed proof of this estimate in the case of the positive function $1. This means that the
second fractional derivative in time may have a negative kernel. Another case is simpler
and is examined either in the similar manner or with arguments from Section 5.1 in [18].

Here, contrary to the case of a single-term fractional derivative in time (see arguments
in Lemma 5.2 [18]) we first estimate the maximum of V in a small time interval. It is worth
noting that, in the case of negative $1, this estimate is obtained straight on the whole time
interval [0, T].

Namely, on the first step, exploiting the integral iteration technique adapted to the
case of multi-term fractional derivatives, we obtain the bound

‖V‖C(Ω̄T0 )
≤ C‖ f ‖C(Ω̄T0 )

(32)

for each fixed T0, 0 < T0 < T∗.
The second stage deals with the extension of (32) to the whole time interval [T0, T].

Step 1: Estimates of sup
Ω̄T0

|u(x, t)|. Recasting the arguments of Step 1 of Section 6.1 leading to

representation (19), we rewrite the equation in (30) in the form

Dν0
t ($0V)−Dν1

t ($1V)−L0V = F1(F) + λF1(G(V)) +
6

∑
l=2

F?
l (V), (33)
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where we set

F?
2 = F2(V)−

n

∑
ij=1

∂aij

∂xi

∂V
∂xj

, F?
l = Fl(V), l = 3, 4,

F?
5 = K̄(0)(ω1−ν0 ∗ ($0V)) + K̄′ ∗ω1−ν0 ∗ ($0V),

F?
6 = −K̄(0)(ω1−ν1 ∗ ($1V))− K̄′ ∗ω1−ν1 ∗ ($1V),

while Fl , l = 1, 2, 3, 4, are defined in (19). Collecting equalities (11) (where V(x, 0) = 0) and
(12) with assumption H7, we deduce that

Dν0
t ($0V)−Dν1

t ($1V) =
∂

∂t
(Nν ∗ ($0V)) + ∂ν1

t ($V).

Then, taking into account this equality and multiplying (33) by p($0V)p−1 with p = 2m,
m ≥ 1, and then integrating over Ω, we arrive at the inequality (after standard technical
calculations with appealing to H2)∫

Ω
p($0V)p−1(x, τ)

∂

∂τ
(Nν ∗ ($0V))(x, τ)dx +

∫
Ω

p($0V)p−1(x, τ)∂ν1
τ ($V)(x, τ)dx

+
p(p− 1)µ1

‖$0‖C(Ω̄T)

∫
Ω
($0V)p−2|∇($0V)|2dx

≤
6

∑
l=2

∫
Ω

p($0V)p−1F?
l (V)dx +

∫
Ω

p(p− 1)
n

∑
ij=1

aij

$2
0
($0V)p−1 ∂($0V)

∂xj

∂$0

∂xi
dx

+
∫

Ω
p($0V)p−1[F1(F) + λF1(G(V))]dx.

To handle the first two terms in the left-hand side of this estimate, we use Corollary 1
and statement (i) in Proposition 1, respectively, and we deduce

∫
Ω

∂

∂τ
(Nν ∗ ($0V)p)(x, τ)dx +

∫
Ω

(
$0

$

)p−1

∂ν1
τ ($V)p(x, τ)dx

+
p(p− 1)µ1

‖$0‖C(Ω̄T)

∫
Ω
($0V)p−2|∇($0V)|2dx ≤

6

∑
l=2

∫
Ω

p($0V)p−1F?
l (V)dx

+
∫

Ω
p(p− 1)($0V)p−1

n

∑
ij=1

aij

$2
0

∂($0V)
∂xj

∂$0

∂xi
dx

+
∫

Ω
p($0V)p−1[F1(F) + λF1(G(V))]dx.

Then, taking into account the definition of Nν, Proposition 2.2 in [2] and keeping in mind
(14), we compute the fractional integral Iν0

t of both sides in this inequality. Hence, we end
up with

∫
Ω
($0V)p(x, t)dx +

p(p− 1)µ1

‖$0‖C(Ω̄T)
Iν0
t

( ∫
Ω
($0V)p−2|∇($0V)|2dx

)
(t) ≤

8

∑
j=0

Dl(t),

where
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D1(t) = Iν0
t

( ∫
Ω

p($0V)p−1[F1(F) + λF1(G(V))]dx
)
(t),

D2(t) = Iν0
t

( ∫
Ω

p($0V)p−1
[
F?

2(V) + (p− 1)
n

∑
ij=1

aij

$2
0

∂($0V)
∂xj

∂$0

∂xi

]
dx
)
(t),

Dl(t) = Iν0
t

( ∫
Ω

p($0V)p−1F?
l (V)dx

)
(t), l ∈ {3, 4, 5, 6},

D7(t) = ν1 I1+ν0−ν1
t

( ∫
Ω
($V)pW

([$0

$

]p−1
)

dx
)
(t),

D8(t) = Iν0−ν1
t

( ∫
Ω
($0V)p $

$0
dx
)
(t).

We recall that

W
([$0

$

]p−1
)
=
∫ 1

0
(p− 1)

[$0

$

]p−2 ∂

∂z

(
$0

$

)
ds with z = st + (1− s)τ, τ ∈ (0, t).

At this point, we evaluate each term Dj, separately.
• It is worth noting that, the terms Dl , l = 1, 2, 3, 4, are examined with arguments leading
to (5.8), (5.10) and (5.11) in [18]. Thus, taking into account Remark 9 and assumptions H2,
H3, H7, we immediately achieve the estimate

4

∑
l=1
|Dl(t)| ≤ Cp(‖F‖p

C(Ω̄T)
+ 1) +

µ1 p(p− 1)
2‖$0‖C(Ω̄T)

Iν0
t

( ∫
Ω
($0V)p−2|∇($0V)|2dx

)
(t).

• As for D5(t) and D6(t), we pre-observe that the bound of D6(t) is the same as the one of
D5(t). Applying the Young inequality to the function ($0V)(x, s)($0V)p−1 (x, τ) and then
collecting Proposition 1 with the smoothness of $0, $ and K̄, we end up with

|D5(t)|+ |D6(t)| ≤ CpIν0
t

( ∫
Ω
($0V)pdx

)
(t),

where the positive constant C depends only on T, ν0, ν1, µ0 and the corresponding norms
of K and $1.
• By assumption H7, we immediately conclude that

|D8(t)| ≤ Iν0−ν1
t

( ∫
Ω
($0V)pdx

)
(t) and W

([$0

$

]p−1
)
≤ 0.

In particular, the last inequality arrives at the estimate

D7(t) ≤ 0.

Now, collecting the estimates of |Dl | with the relation

|∇($0V)p/2|2 ≤ p(p− 1)($0V)p−2|∇($0V)|2,

we conclude that∫
Ω
($0V)p(x, t)dx + Iν0

t

( ∫
Ω
|∇($0V)p/2|2dx

)
(t)

≤ Cp
{
‖F‖p

C(Ω̄T)
+ 1 + (p− 1)Iν0

t

( ∫
Ω
($0V)pdx

)
(t)
}
+ Iν0−ν1

t

( ∫
Ω
($0V)pdx

)
(t). (34)
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In order to evaluate the integral Iν0
t

( ∫
Ω($0V)pdx

)
(t), we appeal to the first interpola-

tion inequality in Proposition 4.6 [18] with ε = 1
2Cp(p−1) . Hence, we have

∫
Ω
($0V)p(x, t)dx +

1
2

Iν0
t

( ∫
Ω
|∇($0V)p/2|2dx

)
(t)

≤ Cp[‖F‖p
C(Ω̄T)

+ 1] + [2Cp(p− 1)]
n+2

2

∥∥∥∥ ∫Ω
($0V)p/2dx

∥∥∥∥2

C([0,T0])

+ Iν0−ν1
t

( ∫
Ω
($0V)pdx

)
(t). (35)

Exploiting the Gronwall inequality (see Proposition 4.3 [18]) arrives at∫
Ω
($0V)p(x, t)dx ≤ AEν0−ν1(t

ν0−ν1)

for any t ∈ [0, T0], where we set

A = Cp[‖F‖p
C(Ω̄T)

+ 1] + [2Cp(p− 1)]
n+2

2

∥∥∥∥ ∫Ω
($0V)p/2dx

∥∥∥∥2

C([0,T0])

,

while Eθ(z) = ∑+∞
m=0

zm

Γ(mθ+1) is the classical Mittag–Leffler function of the order θ (see its
definition in (2.2.4) [39]).

After that, applying this estimate to handle the last term in the right-hand side of (35)
and then taking into account formula (3.7.44) in [39] to compute the fractional integral of
the Mittag–Leffler function, we obtain∫

Ω
($0V)p(x, t)dx ≤ CpEν0−ν1(t

ν0−ν1)[‖F‖p
C(Ω̄T)

+ 1

+ 2(p− 1)(2Cp(p− 1))
n
2 ‖($0V)p/2‖p

C([0,T0],Lp/2(Ω))
].

At last, denoting

B = 4CEν0−ν1(T
ν0−ν1) and Am = sup

t∈[0,T0]

( ∫
Ω
($0V)pdx

)1/p

with p = 2m, T0 < T∗, we derive the bound

Am ≤ Bm2−m
(‖F‖C(Ω̄T0 )

+ 1) + Bnm2−mAm−1. (36)

At this point, we discuss two possibilities:

(i) either max{Am−1, ‖F‖C(Ω̄T0 )
+ 1} = ‖F‖C(Ω̄T0 )

+ 1,

(ii) or max{Am−1, ‖F‖C(Ω̄T0 )
+ 1} = Am−1.

Clearly, in the case (i), passing to the limit as m → +∞ in (36), we end up with the
desired estimate. Conversely, if (ii) holds, then

Am ≤ [Bm2−m
+ Bnm2−m

]Am−1 < C
m

∏
k=1

[B + Bn]k2−kA1 < C exp
{
| ln[B + Bn]|

+∞

∑
k=1

kn
2k

}
A1,

and letting m→ +∞ and having in mind the convergence of the series, we deduce that

sup
Ω̄T0

|$0V| ≤ CA1.
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Finally, to control the term A1, we first put p = 2 in (34) and then apply the Gronwall
inequality (4.3) in [18] (where we set k = ων0(t) + ων0−ν1(t)). As a result, taking into
account assumption H2, we end up with the desired estimate (32) and, hence, the second
inequality in (31) for each T0 ∈ (0, T∗].
Step 2: Extension of estimate (32) to the whole time interval. To this end, we modify the
arguments of Step 2 in Section 6.1. Indeed, setting there (see (23) and (24))

Φ(x, t) =

{
Dν0

t ($0V)−Dν1
t ($1V)−L1V −K ∗ V , if (x, t) ∈ Ω̄T0/2,

[Dν0
t ($0V)−Dν1

t ($1V)−L1V −K ∗ V ]|t=T0/2, if x ∈ Ω̄, t ≥ T0/2,

we designate U (x, t) as a solution of the linear problem
Dν0

t ($0U )−Dν1
t ($1U )−L1U −K ∗ U = Φ(x, t) in Ω3T0/2,

U (x, 0) = 0 in Ω̄,
U (x, t) = 0 on ∂Ω3T0/2.

(37)

Thanks to (32) and (31) with t ∈ [0, T0], we have

‖Φ‖
Cα,

αν0
2 (Ω̄3T0/2)

≤ C‖V‖
C2+α,

(2+α)ν0
2 (Ω̄T0 )

≤ C[1 +G(u0, f , ψ)], Φ(x, 0) = 0 if x ∈ ∂Ω

(38)
with the constant C being independent of T0 and λ.

Then, appealing to relations (38), we apply Theorem 4.1 in [32] to problem (37) and
end up with the one-valued classical solvability of this problem such that

‖U‖
C2+α, 2+α

2 ν0 (Ω̄3T0/2)
+ ‖Dν1

t U‖Cα,
αν0

2 (Ω̄3T0/2)
≤ C[1 +G(u0, f , ψ)],

U (x, t) = V(x, t) if (x, t) ∈ Ω̄T0/2. (39)

After that, we introduce new unknown function

U(x, t) = V(x, t)−U (x, t)

satisfying relations
Dν0

t ($0U)−Dν1
t ($1U)−L1U−K ∗ U = f ? + λG?(U) in Ω3T0/2,

U(x, 0) = 0 in Ω̄,
U(x, t) = 0 on ∂Ω3T0/2,

(40)

where we set
f ?(x, t) = F(x, t)−Φ(x, t), G?(U) = G(U+ U ).

By virtue of (38) and (39), we deduce that

U(x, t) = 0 if (x, t) ∈ Ω̄T0/2; f ?(x, 0) = 0 and G?(U)|t=0 = 0 if x ∈ ∂Ω.

Moreover, the estimate

‖ f ?‖
Cα,

αν0
2 (Ω̄3T0/2)

≤ C[1 +G(u0, f , ψ)]

holds, and G?(U) has the properties of G(V) (see Remark 9).
At last, introducing new variable

σ = t− T0/2, t ∈ [0, 3T0/2],
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and performing the change of variable in (40) (that is similar to Step 2 in Section 6.1), and
then recasting the arguments of Step 1 in this subsection, we arrive at estimate (31) for
t ∈ [0, 3T0/2]. Finally, repeating this procedure a finite number of times, we exhaust the
entire [0, T], which proves estimate (31) if t ∈ [0, T] for any fixed T > 0.

8. Conclusions

In this art, we discuss the initial-boundary value problem to linear and semilinear
multi-term fractional subdiffusion equations with memory terms. We establish sufficient
conditions on the order of the fractional derivatives and given parameters in the model,
ensuring the well-posedness of these problems in fractional Sobolev and Hölder spaces. The
particular case of the studied problems models the oxygen transport through capillaries [4].
Thus, our analytical technique and ideas can be incorporated to study the corresponding
inverse problems concerning to identification of the unknown parameters (e.g., the time
lag in concentration of oxygen along capillaries, the order of oxygen subdiffusion and
so on). On the other hand, our approach can be generalized and employed in order to
research linear and nonlinear degenerate subdiffusion equations with multi-term fractional
derivatives. These issues will be addressed with possible further research.
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