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Abstract: We propose both a probabilistic fractal model and fractal dimension estimator for multi-
spectral images. The model is based on the widely known fractional Brownian motion fractal model,
which is extended to the case of images with multiple spectral bands. The model is validated
mathematically under the assumption of statistical independence of the spectral components. Using
this model, we generate several synthetic multi-spectral fractal images of varying complexity, with
seven statistically independent spectral bands at specific wavelengths in the visible domain. The
fractal dimension estimator is based on the widely used probabilistic box-counting classical approach
extended to the multivariate domain of multi-spectral images. We validate the estimator on the
previously generated synthetic multi-spectral images having fractal properties. Furthermore, we
deploy the proposed multi-spectral fractal image estimator for the complexity assessment of real
remotely sensed data sets and show the usefulness of the proposed approach.

Keywords: fractal dimension; box counting; multi-spectral fractal images; remotely sensed multi-
spectral images

1. Introduction

Fractal geometry, proposed by B. Mandelbrot in [1], triggered the computer-based
analysis of self-similar and scale-independent objects called fractals and enabled their
application in many domains. The fundamental fractal measure is the fractal dimension,
defined to assess the roughness or complexity of such objects. To be more specific, the fractal
dimension objectively quantifies the variations of a fractal object or a signal exhibiting
fractal properties along the analysis scales [2]. The resulting fractal dimension is a scalar
comprising the interval [E, E + 1], where E is the topological dimension of a scalar-value
object. For a grayscale image, the fractal dimension is between 2 and 3, taking into account
that the topological dimension of the image support is E = 2. For an RGB color image,
the color fractal dimension should belong to the interval [E, E + 3], which is between 2 and
5 according to [3]. By generalization, for multidimensional signals and in particular for
multi-spectral images, the fractal dimension should be within [E, E + M], where M is the
number of image spectral bands [4]. The fractal dimension has been used in a plethora of
applications for the classification of signals or patterns exhibiting fractal properties, such
as texture images [5,6], or for image segmentation [7,8]. In the fields of remote sensing
and Earth observation, fractal analysis was used for noise characterization in SAR sea-ice
images [9], while the fractal dimension was used to correct the scale [10].

The theoretical fractal dimension is the Hausdorff dimension [11], which cannot be
used in practice due to its definition for continuous objects. Consequently, various esti-
mators were proposed in order to allow the fractal analysis for digital images with fractal
properties: the similarity dimension [1], the probability measure [12,13], the Minkowski–
Bouligand dimension, also known as the Minkowski dimension or box-counting dimen-
sion [14], the δ-parallel body method, also known as the covering blanket approach, mor-
phological covers or Minkowski sausage [15], the gliding box-counting algorithm based on
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the box-counting approach [16], the fuzzy logic-based approaches [17,18], and the pyra-
midal decomposition-based approach [19]. There also exist various surveys on fractal
estimators, such as [20,21], as well as an attempt to unify several existing approaches into
a single one [22]. However, all these approaches were designed for binary and grayscale
images, and they are usually used without calibration or referencing to fractal images with
known fractal dimensions.

Various attempts were made to extend the fractal dimension estimation approaches
to the multivariate image domain, starting with color and extending to the multi-spectral
images. The initial approaches for defining the fractal measures for color images were
marginal, considering each color channel independently [23]. The probabilistic box-
counting approach was extended for the complexity assessment of color fractal images
with independent color components, and its validity was proven first mathematically and
then experimentally in [3]. Some limitations of this latter approach were underlined in [24].
In [25], the authors proposed an approach based on the box-counting paradigm by dividing
the image in non-overlapping blocks and considering the pixel count in the RGB color
domain for both synthetic and natural images. In [26], extensions of the differential box-
counting approach were proposed for RGB color images without a mathematical proof or
calibration. The approach proposed in [27] allows for an extension to the multi-spectral
image domain. Recently, the fractal generation and fractal dimension estimation were
extended to the multi-spectral image case [4] without a mathematical proof of validity of
the multi-spectral fractal image model.

The domain of multi-spectral and hyper-spectral imaging, which experienced great
development recently, requires the adaptation of existing tools or even the definition
of new tools for image analysis. Multi-spectral and hyper-spectral imaging allows for
capturing higher-resolution spectral information for a scene, sometimes covering both the
visible and infrared wavelength spectra. A better spectral resolution can provide a deeper
understanding of the materials and surfaces in the scene, particularly for the land cover
type in an Earth observation scenario [28]. Spectral imaging, in a more general sense, is used
in a wide variety of applications, such as agriculture [29,30], forest management [31,32],
and geology [33,34].

In this article, we embrace the approach in [4]. We describe it extensively, mathemat-
ically prove the conjecture in [4], and add more experimental results for both synthetic
and real multi-spectral images. More specifically, in Section 2, we first propose the ex-
tension of the midpoint displacement generation technique to the case of multi-spectral
images with seven spectral bands and then visualize the generated images using three
different techniques. We then prove mathematically the validity of the fractal model
for the generated synthetic multi-spectral fractal bands with statistically independent
bands. In the end, we extend to the domain of multi-spectral images the probabilistic
box-counting approach for the estimation of the fractal dimension. In Section 3, we tune
the proposed estimation approach on the generated synthetic multi-spectral images with
seven statistically-independent spectral bands in an attempt to reach the theoretical fractal
dimensions of the respective images. In Section 4, we estimate the fractal dimensions of
real satellite images, and in Section 5, we draw our conclusions.

2. Proposed Approach
2.1. Theoretical Considerations

According to [2], the fractal dimension of a grayscale fractal image is

D = E + 1− H = 3− H (1)

where E = 2 is the topological dimension of the image support and H is the Hurst
coefficient, which controls the complexity of the fractal object. The Hurst coefficient takes
on values between 0 and 1, with a small value indicating a highly complex object and a
large value indicating a less complex object. The H parameter controls the complexity
of the resulting fractal object from the point of view of the generation process. From the
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perspective of complexity evaluation of a given object, D is the estimated complexity (which
is usually underestimated by the existing fractal dimension estimation approaches).

According to [3], it is obvious that for color fractal images with independent color
components, the color fractal dimension is

Dcol = E + |RGB| − 3H = 5− 3H (2)

where |RGB| = 3 is the cardinal of the set of color channels and H is the Hurst coefficient
of each color plane, assuming that the color fractal image comprises three color planes
of the same complexity and thus yields the same value for the Hurst coefficient for all
three channels.

Equation (2) offers a less intensive computing alternative for the estimation of the
color fractal dimension, based on the estimation of the Hurst parameter on the grayscale
image representing the first principal component after computing the PCA for the color
image data.

For the case of multi-spectral images with statistically independent bands, the theoret-
ical fractal dimension should be

DMSI = E + M−MH (3)

where M is the number of spectral bands. For a multi-spectral fractal image with E = 2
and M = 7 spectral bands (a septa-spectral image), such as in the experimental results
presented in this paper, the theoretical fractal dimension is

D7SI = 9− 7H (4)

Consequently, in theory, the highest fractal dimension of the most complex multi-
spectral image with seven spectral bands should be nine.

2.2. Fractal Model Extension to the Multi-Spectral Domain

Considering the conclusion in [3], one can extend the proposed approach for the
generation of color fractal images to the domain of multi-spectral and perhaps even hyper-
spectral fractal images. Consequently, in this paper, we embrace the midpoint displacement
algorithm for generating fractal images based on the fractional Brownian motion model.
We generated three multi-spectral images of different generated complexities: low gener-
ated complexity (H = 0.9), medium generated complexity (H = 0.5), and high generated
complexity (H = 0.1). For each of the three complexities, we generated seven statistically
independent fractal images using the midpoint displacement approach [2], with each of
them corresponding to a wavelength or band in the resulting synthetic multi-spectral image.
For the three synthetic fractal multi-spectral images, we chose the following seven wave-
lengths for the corresponding spectral bands: 450, 500, 550, 600, 650, and 700 nm, all of
which are in the visible spectrum. The choice of the wavelengths was completely arbitrary
and was performed solely for visualization purposes. In Figures 1–3, from (a) to (g), we
depict the seven spectral bands (b1, b2 · · · b7) of each of the three generated multi-spectral
images. The random seeds used in the generation process were the same for the three
multi-spectral images in order to generate similar terrain for the corresponding bands.

The next step is to assign each band in the generated multi-spectral fractal images
to a certain wavelength in the visible spectrum. We arbitrarily chose the following map-
ping between the seven bands of each multi-spectral fractal image (Table 1) in order to
produce the actual data cubes corresponding to the synthetic multi-spectral fractal images
and, furthermore, to be able to visualize the multi-spectral images (MSIs) as color RGB
composite images.
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Table 1. The arbitrary mapping between the seven generated bands and the corresponding wave-
lengths.

b1 b2 b3 b4 b5 b6 b7

400 nm 450 nm 500 nm 550 nm 600 nm 650 nm 700 nm

Figure 1. The seven spectral bands of the MSI with low generated complexity (H = 0.9).

Figure 2. The seven spectral bands of the MSI with medium generated complexity (H = 0.5).

In Figure 4, we show the resulting data cubes for the three generated multi-spectral
fractal images (MSFIs) with seven spectral bands. Note that the pseudo coloring of each
spectral band channel is used to illustrate the approximate position of the correspond-
ing wavelength on the lambda axis and does not necessarily represent the actual color
corresponding to the exact wavelength.
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Figure 3. The sevenspectral bands of the MSI with high generated complexity (H = 0.1).

Figure 4. The multi-spectral fractal image data cubes.

2.3. Visualization of the Multi-Spectral Images

There is a plethora of approaches for the visualization of multi-spectral and hyper-
spectral images, and choosing the most appropriate one is not trivial, as the appropriate
visualization can be of high importance for the consequent analysis tasks [35]. The existing
visualization approaches can be categorized from the simplest band selection to model-
based approaches or approaches based on digital image processing techniques and up to
more recent methods using machine learning and deep learning paradigms [36].

Band selection consists of a mechanism for choosing three spectral bands from the
spectral image and mapping them to the red (R), green (G), and blue (B) channels in the
resulting color image. The selection can be performed manually by the user, as in software
products such as ENVI [37], or automatically by unsupervised approaches based on the
one-bit transform (1BT) [38], normalized information (NI) [39], linear prediction (LP), or
minimum end member abundance co-variance methods [40]. Another set of approaches
deploys principal component analysis (PCA) for dimensionality reduction of the spectral
image data. The straightforward way is to map the first three principal components to
the R, G, and B channels of the color image [41]. Other methods use PCA as part of a
more complex approach. In [42], an interactive visualization technique based on PCA
followed by convex optimization is proposed. In [43], the color RGB image is obtained
by fusing the spectral bands with saliency maps obtained before and after applying PCA.
In [28], the spectral image is decomposed into two different layers (base and detail) through
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edge-preserving filtering and dimensionality reduction performed by applying PCA on
the base layer and a weighted averaging-based fusion on the detail layer, with the final
result being a combination of the two layers. Another set of approaches is based on digital
image processing techniques. The authors of [44] used multidimensional scaling followed
by detail enhancement using a Laplacian pyramid. The authors of [45] used averaging
in order to reduce the number of bands to nine, and then a decolorization algorithm was
applied on groups of three adjacent channels, thus producing the final RGB color image.
The authors of [46] based their method on t-distributed stochastic neighbor embedding
(t-SNE) and bilateral filtering. The work in [47] is also based on bilateral filtering, combined
with high-dynamic range processing. The authors of [48] described a pairwise-distance
analysis-driven visualization technique.

One approach we embraced for visualization of the generated synthetic multi-spectral
images is based on a linear model of color formation proposed in [36]. In this approach,
the resulting RGB triplet is obtained by integrating the product of the spectral reflectance
curve of each pixel and the spectral sensitivity curve of a camera over the corresponding
interval of wavelengths in the visible spectrum. Other linear methods for visualization exist.
In [49,50], the RGB values are computed as projections of the hyperspectral pixel values
on a particular vector basis, similar to a stretched version of the CIE 1964 color-matching
functions, a constant-luma disc basis, or an unwrapped cosine basis.

Another approach we embraced for visualization is the one based on artificial neu-
ral networks trained to learn the correspondence between spectral signatures and RGB
triplets [36]. Spectral image visualization methods based on machine learning or deep
learning usually rely on a pair of matched images: one spectral and one color. The latter
one is either obtained through band selection from the spectral image or is independently
captured by a different color image sensor. In remote sensing, the two images are registered
in order to represent the same geographical area. Such approaches include constrained
manifold learning [51], self-organizing maps [52], a moving least squares framework [35],
a multi-channel pulse-coupled neural network [53], or convolutional neural networks
(CNNs) [54,55].

For each multi-spectral image previously generated, we show in Figures 5–7a the
color RGB image obtained by using the band selection technique. The wavelengths of
650, 550, and 450 nm were chosen for the R, G, and B channels, respectively, in order to
produce the color RGB rendering of the corresponding multi-spectral images. However,
displaying a multi-spectral image poses the problem of reducing the potentially large
number of bands to just three color RGB channels in order to render the resulting RGB
color image on a computer monitor while ensuring that the displayed information was
meaningful from the user’s point of view. In Figures 5–7b,c, we depict the RGB color images
obtained using the linear model and the artificial neural network approaches proposed
in [36], respectively. One can observe noticeable differences between the three types of
visualization results (including the band selection approach). One reason for this is that
the different visualization techniques tend to produce different results, as one can observe
in [36]. Another reason is that the resulting multi-spectral pixel values in the generated
synthetic fractal images had high variability due to the randomness in the generation
mechanism and the statistical independence between bands, which was more than the
variability of a natural spectral signature, resulting in the acquisition process of a real scene.
Last but not least, in all three cases, the original information, which was richer, was reduced
to less information (the dimensionality reduction was from seven spectral bands to only
three), and thus more than half of the information was lost in the process of rendering the
color RGB composite image.
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Figure 5. The RGB color composite images of the MSFI in Figure 4a.

Figure 6. The RGB color composite images of the MSFI in Figure 4b.

Figure 7. The RGB color composite images of the MSFI in Figure 4c.

2.4. Mathematical Proof

Now, for the generated synthetic fractal multi-spectral images, the question is whether
they are fractal objects. More concretely, does the variance in the increments result in
the generation process obeying the fractal condition? In this section, the generation of
multi-spectral fractal images with independent spectral bands is validated mathematically
before showing its possible usage in experiments. In [3], it is shown that the resulting color
fractal images with three statistically independent color components obey the law of direct
proportionality of the variance in the increments. We shall take the same approach for the
multi-spectral fractal images with M independent bands.

For an object or signal X having two spatial arguments and M-dimensional vector
values (i.e., for the M spectral bands), the variance in the vectorial increments (considering
a Euclidean distance between two samples of the signal X) is the following:

σ2
i =


√√√√ M

∑
k=1

[Xk(t1, t2)− Xk(s1, s2)]
2


2

(5)
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By raising the square root to the power of two in Equation (5) and taking into account
that the quantities under the square root are positive, one obtains the following expression:

σ2
i =

M

∑
k=1

[Xk(t1, t2)− Xk(s1, s2)]
2 (6)

Now, the statistical operator can be distributed to all the M terms regardless of whether
they are correlated or not:

σ2
i =

M

∑
k=1

[Xk(t1, t2)− Xk(s1, s2)]
2 (7)

By identification, each term represents the marginal variance of the signal X for each
spectral band. They should be statistically independent, and each of them, obeying the
fractal law in the generation process, assumes a Hurst coefficient that is identical for all
spectral bands:

σ2
i ∝

(
2

∑
i=1

(ti − si)
2

)H

(8)

Consequently, the variance of the vectorial increments of the X signal is directly
proportional to

σ2
i ∝ M

(
2

∑
i=1

(ti − si)
2

)H

∝

(
2

∑
i=1

(ti − si)
2

)H

(9)

which proves that for a multi-spectral image with M statistically-independent spectral
bands, the variance of the M-dimensional increments obeys the self-similarity statistical
law in Equation (8), thus validating the generation of synthetic multi-spectral images with
fractal properties. In conclusion, we analytically showed in Equation (9) that the multi-
spectral fractal images with independent spectral bands also obey the fractal law for the
generation process. Consequently, they are fractal objects, enabling the estimation of their
multi-spectral fractal dimensions.

2.5. Fractal Dimension Estimation for Multi-Spectral Images

We embraced the approach in [27], which allows extending the classical probabilistic
box-counting from three color channels to theoretically any number of spectral bands.
In order to compute the N(δ) measure required for the fractal dimension estimation, one
has to adopt the analysis boxes for the multi-spectral case. In Figure 8, we show the multi-
spectral boxes of sizes δ = 3, δ = 5, and δ = 7 for the case of multi-spectral images with
two spatial coordinates and M = 7 spectral bands.

In Figure 9, we depict in blue the vector value of one randomly chosen reddish pixel
in the multi-spectral image from Figure 4b, illustrating with light gray the box of size δ
around the pixel’s spectral value. The box size δ is very often varied from 3 to 41 in steps of
2 (i.e., only the odd-sized boxes for a simpler implementation). For a specific value of δ,
in the estimation of the N(δ) measure, and for a spectral pixel vector value S(λ), the upper
and lower δ parallel covers indicating the limits of the analysis boxes (hyper-cubes) are
given by S(λ) + δ

2 and S(λ)− δ
2 , respectively.
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Figure 8. The analysis boxes for sizes δ = 3, δ = 5, and δ = 7.

One question emerging from this experimental set-up regards the pertinence of the
embraced fractal model with respect to the generation of multi-spectral images with spectral
pixel values corresponding to real spectra. Is the spectral pixel value in Figure 9 a valid
spectral signature which could represent a real remotely sensed spectrum from a real scene
on the surface of the Earth? To a certain extent, the answer is yes. Given that a reddish
pixel was chosen from the lower-right corner of the multi-spectral image in Figure 4b,
the shape of the spectral pixel value is pertinent, showing higher values corresponding
to the interval corresponding to the red wavelengths. In addition, given the relatively
large gaps between spectral bands (i.e., 50 nm), one can assume that the neighbor values in
the spectral signature of the pixels are statistically-independent, which is the case in the
embraced model. Evidently, for the synthesis of higher-spectral resolution images (such as
hyper-spectral images) with fractal properties, this assumption does not stand anymore.

Figure 9. One pixel value (in blue) and the corresponding area between the δ-parallel covers (for
δ = 3, 5, 7).
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3. Fine-Tuning the Estimator

In order to experimentally test and validate the proposed approach, we considered
the three generated multi-spectral fractal data cubes or images with seven spectral bands
in Figure 4, having a spatial resolution of 256× 256 pixels, of varying fractal complexity
(i.e., low, medium, and high, which translate into Hurst coefficients of 0.9, 0.5, and 0.1,
respectively). As we mentioned in the theoretical considerations, the fractal dimension
of such a multi-spectral fractal image should comprise between 2 (the complexity of a
plane for a uni-image or an image having the same color in every pixel) and 9 (the highest
value achievable for a nine-dimensional image (i.e., 2 + 7, with two spatial coordinates
plus seven spectral coordinates)). For the three synthetic multi-spectral images, we ran the
proposed probabilistic box-counting fractal dimension estimation adapted to the multi-
spectral case. The maximum analysis window size δmax was varied for all three images from
41 to 101 in steps of 10. However, the maximum analysis window was set to smaller values
for the low- and mid-complexity images, as a maximum window of 31 proved to be very
large, especially for the low-complexity image. The threshold for the standard deviation
σth was varied from 10−4 to 10−10 in steps of 10−1. This standard deviation refers to the
extent to which the regression line slope estimation approaches should agree on the N(δ)
measure (represented in a log-log space), which has a direct impact on the fractal dimension
estimation. For the three multi-spectral images we obtained the numerical results presented
in Tables 2–4 for the low, middle and high generated complexity, respectively.

For the lowest-complexity image, the highest achievable fractal dimension was 2.7653
for δmax = 11 and for the standard deviation comprised between 10−5 and 10−8. For the
mid-complexity image, the highest achievable fractal dimension was 4.229 for δmax = 31
and for the standard deviation comprised between 10−8 and 10−10. It is important to
mention the fact that when setting a threshold to such small values, the estimated fractal
dimension was estimated based only on three points in the N(δ) measure. A more reliable
estimation would be 4.2133 for δmax = 41 and for the standard deviation comprised between
10−5 and 10−7. For the high-complexity image, the highest achievable fractal dimension
was 6.6636 for δmax = 91 and for the standard deviation comprised between 10−8 and 10−10.
Making the same observation as before, a more confident estimation would be 6.6555 for
δmax = 71 and for the standard deviation comprised between 10−7 and 10−10. As a general
observation, the estimated fractal dimensions indicated the correct ranking of the generated
image complexity. In addition, as expected, the parameter δmax has to be adapted to the
complexity of the image, which in practical application of the fractal estimation approach
leads to a paradoxical situation: the fractal dimension which is desired to be estimated
and thus unknown should be known in order to set the correct parameter values for the
estimator. Another important observation is that, when comparing the current obtained
results to the one obtained for color fractal images in [27], the extra information due to the
additional four spectral bands, compared with the color RGB case, led to higher complexity
values.

Table 2. The estimated multi-spectral fractal dimension (MFD) of multi-spectral fractal image with
low generated complexity (H = 0.9).

δmax
σth 10−4 10−5 10−6 10−7 10−8 10−9 10−10

7 2.2727 2.2727 2.2727 2.2727 2.2727 2.2727 2.2727
11 2.4790 2.7653 2.7653 2.7653 2.7653 2.6934 2.6934
21 2.5873 2.5578 2.5411 2.5308 2.5268 2.5268 2.5257
31 2.5393 2.5134 2.5134 2.5134 2.5083 2.5083 2.4816
41 2.5233 2.5065 2.5013 2.4965 2.4755 2.4755 2.4733
51 2.5014 2.4893 2.4839 2.4604 2.4574 2.4394 2.4394
61 2.4903 2.4786 2.4533 2.4471 2.4443 2.4164 2.4080
71 2.4702 2.4625 2.4468 2.4439 2.4414 2.4320 2.4214
81 2.4693 2.4613 2.4539 2.4473 2.4302 2.4269 2.4269
91 2.4773 2.4606 2.4469 2.4391 2.4321 2.3607 2.3651

101 2.4695 2.4397 2.4165 2.3596 2.3587 2.3587 2.3579
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Table 3. The estimated multi-spectral fractal dimension (MFD) of multi-spectral fractal image with
medium generated complexity (H = 0.5).

δmax
σth 10−4 10−5 10−6 10−7 10−8 10−9 10−10

21 3.5975 3.8173 3.8173 3.9665 3.9665 3.9665 3.9665
31 4.1713 4.1713 4.2113 4.2113 4.2229 4.2229 4.2229
41 4.1952 4.2133 4.2133 4.2133 4.1150 4.1150 4.1150
51 4.1619 4.1619 4.1334 4.1157 3.9118 3.9118 3.9118
61 4.1040 4.1175 4.0941 3.9299 3.9299 3.6920 3.6920
71 4.0611 4.0737 4.0531 4.0342 3.5104 3.5104 3.5104
81 4.0154 4.0333 3.9957 3.9744 3.3457 3.3457 3.3287
91 3.9682 3.9682 3.9462 3.2035 3.1677 3.1677 3.1523

101 3.8944 3.9172 3.8935 3.0930 3.0742 3.0652 3.0572

Table 4. The estimated multi-spectral fractal dimension (MFD) of multi-spectral fractal image with
high generated complexity (H = 0.1).

δmax
σth 10−4 10−5 10−6 10−7 10−8 10−9 10−10

41 0.7523 1.1958 4.5693 5.1281 5.1281 5.1281 5.1281
51 5.4481 5.8568 5.9662 5.9662 5.9662 5.9662 5.9662
61 5.7691 6.0965 6.4867 6.4867 6.4867 6.4867 6.4867
71 6.1941 6.5484 6.6172 6.6555 6.6555 6.6555 6.6555
81 6.5319 6.5319 6.5089 6.3486 6.3486 6.1297 6.1297
91 6.4054 6.4419 6.4574 6.4574 6.6636 6.6636 6.6636

101 6.3180 5.7551 5.2170 5.2170 5.0599 5.0599 5.0599

In order to graphically observe the evolution of the estimated multi-spectral fractal
dimension, we present the corresponding plots in Figures 10–12 (the evolution as a function
of δmax) and Figures 13–15 (the evolution as a function of σth) for the low, medium and high
complexities, respectively, for the common interval of parameter values (δmax from 41 to
101 and σth from 10−4 to 10−10). As a general observation, for the low- and mid-complexity
images, the tendency of the estimated multi-spectral fractal dimension was to decrease
with the increase in the maximum analysis window and the increase in precision for the
agreement of regression line estimators (decrease in the standard deviation). However, this
behavior was observed outside the most pertinent interval of values for δmax. A possible
explanation for the low performance of the estimator for large values of the maximum
analysis box size is the less statistically significant data deployed in the regression line
estimation as a consequence of the smaller effective image area for which the fractal analysis
was performed (for δmax = 101, approximately 37% of the pixels of the generated images
were disregarded). If the image’s spatial resolution (i.e., the image size) allows it, increas-
ing the size of the maximum analysis box makes sense, given that the current estimator
disregards the small boxes and allocates more weight to the larger boxes, especially for the
high generated complexity fractal images, where the variations of the signals can be very
important and thus need to adapt the maximum analysis window. For the high generated
complexity image in our experiments, the variation of the analysis box size δmax showed
that the middle range of values was the most pertinent one for the estimation. For the
appropriate values of δmax, increasing the precision of the slope agreement in the regression
line estimators (thus diminishing the standard deviation) clearly improved the estimation,
as the estimated multi-spectral fractal dimension increased.
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Figure 10. The estimated multi-spectral fractal dimension as a function of δmax for the low generated
complexity (H = 0.9) multi-spectral fractal image.

Figure 11. The estimated multi-spectral fractal dimension as a function of δmax for the medium
generated complexity (H = 0.5) multi-spectral fractal image.
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Figure 12. The estimated multi-spectral fractal dimension as a function of δmax for the high generated
complexity (H = 0.1) multi-spectral fractal image.

Figure 13. The estimated multi-spectral fractal dimension as a function of σth for the low generated
complexity (H = 0.9) multi-spectral fractal image.
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Figure 14. The estimated multi-spectral fractal dimension as a function of σth for the medium
generated complexity (H = 0.5) multi-spectral fractal image.

Figure 15. The estimated multi-spectral fractal dimension as a function of σth for the high generated
complexity (H = 0.1) multi-spectral fractal image.

4. Experimental Results

The multi-spectral images used in our experiments were two crops (left upper corner
and right lower corner) of a Pavia University hyper-spectral image downsampled in
the spectral domain to only seven spectral bands. The Pavia University data set is a
610 × 340 image with a spectral resolution of 4 nm and a spatial resolution of 1.3 m.
The image has 103 bands in the 430–860 nm range. The scene in the image contains a total
of nine materials according to the provided ground truth, both natural and man-made.
We selected 7 spectral bands from the hyper-spectral data: 1, 14, 26, 39, 51, 64, and 76,



Fractal Fract. 2023, 7, 238 15 of 19

corresponding to the 430, 482, 530, 582, 630, 682, and 730 nm wavelengths, respectively. We
cropped the left upper corner and the right lower corner of the image so that the spatial
resolution was 256× 256 pixels, similar to the one of the synthetic fractal images used
for validation (see Figures 16 and 17). The estimated multi-spectral fractal dimensions of
the seven spectral bands in the Pavia University multi-spectral image crops are presented
in Tables 5 and 6 for δmax varying between 31 and 71 in steps of 10 and σth varying from
10−4 to 10−8 in steps of 10−1 (i.e., the settings for the most confident estimation results,
considering a parameter setting of the estimation tool for low-to-mid-complexity images,
as for the considered Pavia University multi-spectral images).

Figure 16. The seven spectral bands of the Pavia University MSI and the correponding band selection
(10, 31, and 46) color RGB image for the Pavia University hyperspectral data set (left upper corner).

Figure 17. The seven spectral bands of the Pavia University MSI and the correponding band selection
(10, 31, and 46) color RGB image for the Pavia University hyperspectral data set (right lower corner).
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For the left upper corner crop of the Pavia University image, the maximum estimated
multi-spectral fractal dimension was 3.5072, while for the right lower corner crop, it was
3.0456. The relative difference in complexity was obvious due to the image content; the
more complex image contained more colors and variations with more objects present in the
scene, while the less complex image contained less colors, less objects, and a larger area of
small signal variations. Consequently, the estimator clearly indicates the relative ranking of
images as a function of their complexity. However, both images, through their assessed
complexities, were in the mid-to-low complexity range.

Table 5. The estimated multi-spectral fractal dimension (MFD) of the Pavia University multi-spectral
image (left upper corner).

δmax
σth 10−4 10−5 10−6 10−7 10−8

31 3.2891 3.3425 3.4251 3.4876 3.5405
41 3.4330 3.5144 3.4140 3.4140 3.4140
51 3.4891 3.5072 3.5072 3.2730 3.2730
61 3.3639 3.3863 3.3595 3.3595 3.0681
71 3.2634 3.2879 3.2879 2.4161 2.4161

Table 6. The estimated multi-spectral fractal dimension (MFD) of the Pavia University multi-spectral
image (right lower corner).

δmax
σth 10−4 10−5 10−6 10−7 10−8

11 0.9443 1.4164 1.4164 1.4164 1.7307
21 2.7358 2.9679 2.9679 3.0386 3.0386
31 3.0320 3.0320 3.0456 3.0456 2.9699
41 2.9221 2.9221 2.7059 2.6599 2.6599
51 2.8264 2.8264 2.8324 2.5104 2.5464

5. Conclusions

We proposed both a fractal generator and a fractal dimension estimator for multi-
spectral images. The proposed estimator allows for fully vector-based fractal analysis
of multi-spectral images with fractal properties, compared with all the other existing
methods which work only as marginal approaches for each spectral band, considered
independently or on color images, thus limiting the application domain and disregarding
the rich information in a multi-spectral image. The proposed generator allows for the
generation of multi-spectral fractal images with known generated complexity, thus enabling
the calibration of the fractal dimension estimator before using it on real-life images in
practical use cases.

The generator is based on the midpoint displacement algorithm used for generating
fractional Brownian motion, and the estimator is based on the classical probabilistic box-
counting approach. The model for the generated multi-spectral fractal images was proven
mathematically and illustrated for the case of seven statistically independent spectral
bands. The model can be extended theoretically to an arbitrary number of spectral bands,
as long as the hypothesis of statistical independence between bands holds (which may
not be the case for high spectral resolution images, such as hyper-spectral images). For a
qualitative evaluation, the resulting synthetic multi-spectral data sets were visualized as
color RGB composites using three different approaches: the widely used band selection,
using a linear model for the color formation, and deploying an artificial neural network
which was previously trained to learn the correspondences between the multi-spectral pixel
signatures and colors specified in the RGB color space. The fractal dimension estimator was
adapted to work on nine-dimensional fractal objects, and we estimated the multi-spectral
fractal dimension of the generated synthetic multi-spectral fractal images. The estimation
requires setting the values for the parameters δmax and σth, as they should be adapted to
the envisaged complexity range of the analyzed images. We presented and interpreted the
numerical results obtained in the process of fine-tuning the estimator. However, for the
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highest generated complexity image, the desirable multi-spectral dimension of 8.3 has not
yet been achieved.

Furthermore, we used the proposed multi-spectral fractal dimension estimator for
the fractal complexity assessment of real images. We chose for the experiments the widely
known Pavia University hyper-spectral data set, which was first downsampled in the
spectral domain from 103 spectral bands to only 7 spectral bands in order to fit to the
spectral capabilities of the designed estimator. Secondly, the image was cropped so that
the spatial resolution of the resulting images would be identical to one of the generated
synthetic multi-spectral fractal images (256× 256). The dynamic range was also scaled to the
[0–255] interval in order to have the same variation of values on all seven bands and in
the same range as the spatial domain. The obtained results are in accordance with the
perceived complexity of the two scenes. The usefulness of the proposed multi-spectral
fractal dimension estimator can be proven in two types of applications: image classification
and image segmentation, where the multi-spectral fractal dimension can be used as a global
or local feature, respectively, for multi-spectral texture characterization. The proposed
model and estimator can be applied on remotely sensed data, such as the multi-spectral
images from the Sentinel 2 satellites of the Copernicus Earth Observation program.

6. Future Work

For future work, we identified several questions and possible directions in both
fundamental and applied research. One is how to extend the fractal generation model and
the fractal dimension estimator to the case of hyper-spectral images, taking into account
that the increased spectral resolution imposes considering and modeling the correlation
between the spectral bands. Consequently, the assumption made in this article (of statistical
independence between spectral bands) does not hold anymore for higher-dimensional cases
(with M in the order of hundreds). The second direction is to investigate the possibility
of using the fractal dimension estimator for image segmentation and anomaly detection
in remotely sensed multi-spectral images. Last but not least, we plan to use the fractal
dimension as a local feature for image classification in order to produce an atlas of land
cover classes in an Earth observation scenario for agriculture.
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