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Abstract: In the search for causes and cures of cancer diseases, many mathematical models developed
have resulted in systems of nonlinear stiff ordinary differential equations. With these models, many
numerical estimates of biological knowledge of the parameters have been obtained, a number of
phenomena interpreted, and predictions were made in order to gain further knowledge of cancer de-
velopment and possible treatment. In this study, numerical simulations of the models were performed
using continuous block implicit hybrid methods and the results obtained support the theoretical and
clinical findings. We analyzed the interactions among the various tumor cell populations and present
the results graphically. From the graphical representation of results, one can clearly see the effects of
all the tumor cell populations involved in the competition, as well as the effects of some treatments by
the applications of some therapeutic agents which have been heavily used in the clinical treatments
of breast cancer. The treatments in the past were mostly conventional chemotherapies, which were
used either singly (alone) or in combination with each other or other therapies, and all played vital
roles, except for the side effects that these therapies incur in normal tissues and organs. Thus, from
recent research works, it is now clear that in many cases they do not represent a complete cure.
Therefore, the need to address not only the preventative measures of breast cancer, but also more
successful treatment, is clear, and can be successfully achieved to increase the survival rate of breast
cancer patients.

Keywords: competition model; immune system; mathematical model; population model; differential
equation

MSC: 34A34; 49J15; 92C40; 92C50

1. Introduction

Flow of blood in the body network systems has a profound influence on the efficient
transport of nutrients and oxygen to the cells and the transport of metabolic waste products
away from the same cells. We are sometimes faced with pathological conditions in which
some specific tissues are prevented (deprived) from getting adequate blood and oxygen
supply (hypoxia) [1]. In such a situation where disagreement between oxygen supply and
its demand at the cellular level exist, which can be due to many reasons—for example,
strangulation, high intake of carbon monoxide, cardiac failure or vasculature arrest, as seen
in tumor cells [2,3]—it requires special attention. It is obvious that a tumor environment
is always characterized by an increase of specialized cells called neoplastic cells which
escape from the primary tumor very early in their development and grow rapidly, creating
poor blood supply and a deficiency in oxygen supply. Hence, cells of such regions are
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considered to be drug-resistant due to lack of adequate blood flow, oxygen supply and
delivery of drugs via the circulatory systems. Cancer, which is one of the most dangerous
killer diseases worldwide, is a class of diseases resulting from unregulated cell growth
which has great ability to spread or invade other parts of the body (see [4]). The spread of
cancer is just like that of anomalous diffusion, which is observed in porous media where
the process of flow does not follow the Fickian and Darcy law (see Atangana and Jain [5]).
They can be classified into carcinoma, sarcoma, lymphoma, leukemia, germ cell tumor,
blastema, etc., based on the origin of the tumor cells, and can rapidly metastasize [4]. There
are many causative factors of cancer diseases, some of which are known: for example,
cigarette smoking, abuse of alcohol and poor diet all cause lung cancer, radiation causes
sarcoma and leukemia, while carcinoma is a cancer of the epithelial cells that includes
breast cancer, prostate cancer, lung cancer, pancreas and colon cancers, to mention only
a few. Beside the few factors mentioned, increased estrogen also helps in the growth of
cell populations, especially in women of all ages and men of mostly sixty-seven years of
age and above [6]. Estrogen can also destroy DNA, which causes healthy epithelial cells to
convert into a malignant tumor, just like the action of a carcinogen.

Breast cancer, which is the main concern of this study, is a malignant tumor which
begins in the breast cells; that is, a cancer-cell group which can grow into surrounding
tissue [6]. When the DNA is damaged, breast cells become out of control, and then the
cancer cell keeps using the same damaged DNA to produce new abnormal cells which are
of no use to the body systems. This results into a single modified cell gradually growing
into a tumor. Several studies have determined that there are multiple types of breast
cancer, some of which are undetectable. For example, ductal carcinoma in situ (DCIS) is
non-invasive. This is the most common type of breast cancer, especially in women. DCIS
means that the cells are still inside the ducts of the breast, yet to spread to other parts of
the breast. This can grow into the fatty tissue of the breast and spread to other parts of the
body through the lymphatic system and bloodstream, and then become invasive, which
is referred to as invasive ductal carcinoma (IDC). The second type is lobular carcinoma
in situ (LCIS), which begins in the milk-producing glands of the breast. This can become
dangerous when spread to other parts of the body, which can then be referred to as invasive
lobular carcinoma (ILC) and is very difficult to detect even when using mammography
(see [6]).

Recently, some researchers have devoted their academic attention to understand the
spread and seek accurate and proper medical help to fight cancer hazards against mankind.
Therefore, for proper understanding of the development of cancer diseases by biologists
and mathematicians, mathematical modeling has been considered as a tool to design some
experimental data and clinical results which provide proper interaction among the can-
cer population dynamics (see Valle et al. [7]). The majority of the mathematical models
considered resulted in stiff nonlinear ordinary differential equations (see, for instance,
DeLisi and Rescigno [8], Kuznetsov et al. [9], Adams [10], Kirschner and Panetta [11],
Abernathy et al. [12], Solis-Perez et al. [13], Alqudah [14], and Simmons et al. [15]), which
can only be handled by methods with a region of absolute stability (RAS). Many mathemat-
ical models developed describe the interactions among cancer agents (populations), such
as tumor cells, immune cells, excess estrogen, healthy cells, and the growing cancer stem
cells. Many of them have proved beyond reasonable doubt that a combination of drugs,
such as cytokine interleukin-2 (IL-2), and a ketogenic diet can help to fight cancer tumor
cells (see Kirschner and Panetta [11] and Oke et al. [16]).

In this study, in a cooperative effort with our academic colleagues, in particular,
clinicians and research oncologists, we devoted our attention to mathematical models of
tumor growth with the objective of finding a better method of cancer treatment using
mathematical concepts and ideas. This is illustrated in the Figure 1 flow diagram, where
the various aspects of breast cancer are provided, which give useful information on its
development, inversion and metastasis.
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2. Mathematically Modeled Problems

From the various studies in the literature, it has been found both in vivo and in vitro
that the growth of a tumor cell population is exponential for small quantities of tumor
cells, but growth is slowed at large population sizes. The inhibition of growth may be
caused by the competition of cells for metabolites or growth factors. In many instances of
non-exponential tumor growth, the kinetics are well described by the logistic equation or
Gompertz equation. For example, consider a nonlinear rigid system of ordinary differential
equations [9] written as follows:

dy1(t)
dt = σ + ρy1(t)y2(t)

η+y2(t)
− µy1(t)y2(t)− δy1(t), y1(0) = D,

dy2(t)
dt = αy2(t)(1− βy2(t))− y1(t)y2(t), y2(0) = D,

(1)

where y1(t) are the effector cells, y2(t) are the tumor cells and [σ, ρ, η, µ, δ, α, β] are the
parameters of the system, with values given as [0.1181, 1.131, 20.19, 0.00311, 0.3743, 1.636,
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2.0 × 10−3], respectively. The practical solution of interest of the system in (1), that is, of
the populations denoted by y1(t), y2(t) can readily be obtained, which are assumed to be
positive. We also assume that the parameters in the system are positive and the Ds are the
initial conditions.

The second system of equations to be considered is another nonlinear stiff system [11],
which are of the form:

dy1(t)
dt = cy2(t)− µ2y1(t) +

p1y1(t)y3(t)
g1+y3(t)

+ s1, y1(0) = D,
dy2(t)

dt = r2y2(t)(1− by2(t))− ay1(t)y2(t)
g2+y2(t)

, y2(0) = D,
dy3(t)

dt = p2y1(t)y2(t)
g3+y2(t)

− µ3y3(t) + s2, y3(0) = D.

(2)

where all the parameter values are given in Table 1 and the Ds are also the initial condi-
tions. The y1(t) is the effector-cells population, and s1 is a treatment parameter, such as
lymphokine-activated killed cell (LAK) therapy or tumor-infiltrating lymphocytes (TIL)
therapy. The second equation is the tumor cells denoted by y2(t) and the third equation
is the concentration of the interleukin-cells (IL-2) y3(t). The s2 is a treatment term which
represents an external input of IL-2 into the system.

Table 1. Parameter values.

0 ≤ c ≤ 0.05 µ2 = 0.03 p1 = 0.1245 g1 = 2× 107

g2 = 1× 105 r2 = 0.18 b = 1× 10−9 a = 1
g2 = 1× 105 p2 = 5 g3 = 1× 103

The third system of stiff equations recently considered by [7,14] to improve cancer
treatment using chemotherapy and cancer stem cells is presented in (3). This has four
systems of ODEs. The dynamic of the system is located in the nonnegative orthant:

R4
+,0 = {y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0}.

dy1(t)
dt = γ1y1(t)− ksy1(t)y4(t), y1(0) = D,

dy2(t)
dt = α− µy2(t) +

p1y1(t)y2(t)
(y2(t)+1) − p2(y3(t) + y4(t))y2(t), y2(0) = D,

dy3(t)
dt = r(1− by3(t))y3(t)− (p3y2(t) + kTy4(t))y3(t), y3(0) = D,

dy4(t)
dt = −γ2y4(t) + v(t), y4(0) = D

(3)

In the model, a competition amongst the cancer populations is formulated, which
includes concentration of stem cells, effector cells, tumor cells and chemotherapy drug,
respectively. We denote y1(t) as the stem cell concentration, y2(t) to represent the effector
cells, y3(t) tumor cell concentration and lastly y4(t) as the chemotherapy drug concentra-
tion. All the constant parameters in the system are described in Table 2.

Table 2. Parameter values in different models of drug concentration.

Parameter Interpretation Value

y1(0) Initial concentration of stem cells 1
y2(0) Initial concentration of effector cells 1
y3(0) Density of free tumor 1
γ1 Decay rate of stem cells concentration −0.02825
α Rate of product of the effector cells 0.17
µ Natural death rate of the effector cells 0.03
b Carrying capacity of the tumor cells 10−9

ks Fractional stem cells killed by chemotherapy 1
p1 Maximum proliferation rate of effector cells 0.1245
r Tumor growth rate 0.18
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Table 2. Cont.

Parameter Interpretation Value

p2
Decay rate of the effector cells killed by
tumor cells and chemotherapy 1

kT Fractional tumor cells killed by chemotherapy 0.9
p3 Decay rate of tumor cells killed by the effector cells 0.9
γ2 Decay rate of chemotherapy drug 6.4

y4(0)
The time dependent external influx of
chemotherapy drug 1

The last model was studied by [12,13], where y1(t), y2(t), y3(t), y4(t) and y5(t)
are, respectively, the cancer stem cells, tumor cells, healthy cells, immune cells and
excess estrogen:

dy1(t)
dt = k1y1(t)

(
1− y1(t)

M1

)
− γ1y1(t)y4(t) +

p1y1(t)y5(t)
a1+y1(t)

, y1(0) = D

dy2(t)
dt = k2y1(t)

(
y1(t)
M1

)(
1− y2(t)

M2

)
− n1y2(t)− γ2y2(t)y4(t)

+ p2y2(t)y5(t)
(α2+y2(t))

, y2(0) = D
dy3(t)

dt = qy3(t)
(

1− y3(t)
M3

)
− δy2(t)y3(t)− p3y3(t)y5(t)

a3+y3(t)
. y3(0) = D

dy4(t)
dt = s + ρy2(t)y4(t)

ω+y2(t)
− γ3y2(t)y4(t)− n2y4(t)− uy4(t)y5(t)

v+y5(t)
, y4(0) = D

dy5(t)
dt = r−

(
µ + d1y1(t)

a1+y1(t)
+ d2y2(t)

a2+y2(t)
+ d3y3(t)

a3+y3(t)

)
y5(t), y5(0) = D

(4)

where some of the parameters in the system are described in Table 3, while others are
described as follows: {ρ} represents the immune cell response and {a1, a2, a3} represent
the number of y1(t), y2(t), y3(t) cells. The values {p1, p2, p3} help estrogen to proliferate
cancer stem cells, tumor cells and the rate at which healthy cells are lost to DNA mutation
due to the presence of estrogen. The absorption of estrogen by cancer stem cells, tumor
cells and healthy cells are denoted by the values {d1, d2, d3}, respectively.

Table 3. Parameter values in different models of drug concentration.

Parameter Interpretation Value

k1 Rate of y1 cells division 0.75 day−1

k2 Rate of y2 cells division 0.514 day−1

q Rate of y3 cells division 0.70 day−1

M1 Carrying capacity of y1 cells 2.27× 106 cells y1
M2 Carrying capacity of y2 cells 2.27× 107 cells y2
M3 Carrying capacity of y3 cells 2.5× 107 cells y3
γ1 Death rate of stem cell due to immune cell response 3× 10−7 cell−1

y4
day−1

γ2 Death rate of tumor cell due to immune cell response 3× 10−6 cell−1
y4

day−1

γ3 Death rate of tumor cell due to immune cell response 1× 10−7 cell−1
y2

day−1

r Infusion of estrogen 200 (pg/mL)−1 day−1

u Immune suppression by estrogen 0.20 day−1

ν Estrogen threshold 400 (pg/mL)−1

ω Immune cell threshold 3× 105 cellT
s Source rate of immune cells 3× 105 cellI day−1

µ Washout rate of estrogen by the body 0.97 day−1

n1 Rate of death of the tumor cells 0.01 day−1

n2 Rate of death of the immune cells 0.29 day−1

δ Death rate of healthy cells due to competition with tumor cells 6× 10−8 day−1cellT−1

Our major worry about all the mathematical models developed and studied is the
determination of the solutions. Almost all the methods used for the solution of the models,
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except in the first model (1) which is experimental or practical in nature, are of lower orders
and tend to have undesirable time-step restrictions and poor stability properties within the
domain of solution. It is of interest to have method(s) with high accuracy and the ability to
incorporate some function evaluations at some off-grid points which are widely used in
continuous applications to solve real-life problems.

3. Numerical Computational Algorithms

Ordinary differential equations play an important role in the physical sciences, en-
gineering, biological sciences, technology, etc. Some of these equations have difficulty
(stiff) in obtaining their solutions, even numerically. These type of differential equations
have arisen in several areas of interest, such as medicine, anthropology, engineering and
many other fields. However, only very few of these differential equations can be solved
analytically. In this paper, we develop continuous block implicit hybrid methods (CBHMs)
based on Chebyshev polynomial nodes that have better regions of absolute stability (RAS)
over a wide parameter range. The numerical computation of the study is called continuous
block implicit hybrid methods (CBHMs) obtained from the Chebyshev points, with the
general form as follows:

y(x) =
r

∑
j=0

νj(x)yn+j +
s

∑
j=0

υj(x) f (xn+j, y(xn+j)), j = 0, 1, 2, . . . , s. (5)

where
yn+j = y(xn + jh), (6)

y′n+j = fn+j = f (xn + jh, y(xn + jh))

We denote the number of interpolation points xn+j, j = 0, 1, 2, . . . , r− 1, by r taken
from (xn, xn+1), and denote the distinct collocation points xn+j, j = 0, 1, 2, . . . , s− 1 by s,
also chosen from the interval [xn, xn+1]. The continuous coefficients νj(x) and υj(x) in (5)
are to be determined. They are of degree p− 1(p = r + s) given by:

νj(x) =
p−1

∑
i=0

νj,i+1xi and hυj(x) = h
p−1

∑
i=0

υj,i+1xi. (7)

The coefficients νj,i+1 and υj,i+1 in (7) are to be determined explicitly.

Theorem 3.1. Collocation at the Gaussian points together with the two end points lead to order
one less than the superconvergence scheme, while collocation at only one additional end point to the
Gaussian points resulted in order two less than the upgraded scheme.

Proof . (see [17–19]). �

Case I: We shall derive one-step collocation methods as continuous block implicit hybrid
formulae of orders 3 and 4. We shall consider the zeros of the Chebychev polynomial of
degree 3, which can be normalized to give the general finite range in a ≤ x ≤ b as:

T∗n (x) = cos(narccos(t)), t =
2x− (b + a)

b− a
Hence, with n = 3, we obtain the zeros of the Chebyshev polynomial as follows:

x0 = xn+u, u = (2−
√

3)/4
x1 = xn+w, w = 1

2
x2 = xn+v, v = (2 +

√
3)/4
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In this family r = 1, s = 3, ξ = (x− xn), the continuous scheme is given as:

y(x) = ν0(x)yn + h[υ1(x) fn+u + υ2(x) fn+w + υ3(x) fn+v]. (8)

where
ν0(x) = 1

υ1(x) =
[

2(x−xn)
3−3(v+w)h(x−xn)

2+6vwh2(x−xn)
6(v−u)(w−u)h2

]
,

υ2(x) =
[

2(x−xn)
3−3(v+u)h(x−xn)

2+6vuh2(x−xn)
6(w−u)(w−v)h2

]
,

υ3(x) =
[
−2(x−xn)

3+3(u+w)h(x−xn)
2+6uwh2(x−xn)

6(v−u)(w−v)h2

]
Evaluating (8), we obtain the continuous block implicit hybrid method of order 4 with

only 3 stages written in the form:

yn+1 = yn +
h
9
[2 fn+u + 5 fn+w + 2 fn+v], order p = 4, C5 = −1.3020× 10−4 (9)

yn+u = yn +
h

144

[(
16− 3

√
3
)

fn+u +
(

40− 24
√

3
)

fn+w +
(

16− 9
√

3
)

fn+v

]
,

order p = 3, C4 = −1.6276× 10−4

yn+w = yn +
h

36

[(
4 + 3

√
3
)

fn+u + 10 fn+w +
(

4− 3
√

3
)

fn+v

]
,

order p = 3, C4 = 1.3020× 10−4

yn+v = yn +
h

144

[(
16 + 9

√
3
)

fn+u +
(

40 + 24
√

3
)

fn+w +
(

16 + 3
√

3
)

fn+v

]
,

order p = 3, C4 = −1.3020× 10−4

Note that the matrix A obtained from the derived method is not a lower triangular
matrix hence it is a fully dense matrix, that is, a fully implicit method. In addition, it has
higher order than the explicit case, which has fewer stages too. Using the maple package,
yields the stability polynomial of the block implicit hybrid method as

p(η, z) =
η(z3 + ηz3 + 18z2 − 18ηz2 + 96ηz− 192η + 96z + 192)

z3 − 18z2 + 96z− 192

The RAS of the block implicit hybrid method is plotted using the MATLAB package
as shown in Figure 2a.
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Case II: Collocating at the three interior points above and one additional end point we
obtain the continuous scheme:

y(x) = ν0(x)yn + h[υ1(x) fn+u + υ2(x) fn+w + υ3(x) fn+v + υ4(x) fn+1] (10)

where
ν0(x) = 1,

υ1(x) =
[
−(x−xn)

4+4(v+u+w)h(x−xn)
3−6(vu+vw+uw)h2(x−xn)

2+12vuwh3(x−xn)
12(v−1)(u−1)(w−1)h3

]
,

υ2(x) =
[

3(x−xn)
4−4(v+w+1)h(x−xn)

3+6(vw+v+w)h2(x−xn)
2−12vwh3(x−xn)

12(v−u)(w−u)(u−1)h3

]
,

υ3(x) =
[
−3(x−xn)

4+4(v+u+1)h(x−xn)
3−6(vu+v+u)h2(x−xn)

2+12vuh3(x−xn)
12(v−w)(w−u)(w−1)h3

]
,

υ3(x) =
[
−3(x−xn)

4+4(v+u+1)h(x−xn)
3−6(vu+v+u)h2(x−xn)

2+12vuh3(x−xn)
12(v−w)(w−u)(w−1)h3

]
,

υ4(x) =
[

3(x−xn)
4−4(u+w+1)h(x−xn)

3+6(uw+u+w)h2(x−xn)
2−12uwh3(x−xn)

12(v−u)(v−w)(v−1)h3

]
.

Evaluating (10) at the off-step points xn+u, xn+w, xn+v and at the end point xn+1, the
following continuous block implicit hybrid method is obtained as follows:

yn+1 = yn +
h
9
[2 fn+u + 5 fn+w + 2 fn+v], order p = 4, C5 = −1.3020× 10−4 (11)

yn+u = yn +
h

288

[(
38− 9

√
3
)

fn+u +
(

77− 48
√

3
)

fn+w +
(

38− 15
√

3
)

fn+v − 9 fn+1

]
order p = 4, C5 = 3.9813× 10−5

yn+w = yn +
h

36

[(
2− 6

√
3
)

fn+u + 13 fn+w −
(

2 + 6
√

3
)

fn+v + 9 fn+1

]
order p = 4, C5 = −2.2786× 10−4

yn+v = yn +
h

288

[(
38 + 15

√
3
)

fn+u +
(

77 + 48
√

3
)

fn+w +
(

38 + 9
√

3
)

fn+v − 9 fn+1

]
order p = 4, C5 = −3.9813× 10−5

The continuous block implicit hybrid method of uniform order p = 4 everywhere in
the interval of the solution is obtained for the solution of dynamics breast cancer models.
Using the MAPLE package yields the stability polynomial of the method as:

p(η, z) =
η(768η + 132ηz2 − 19ηz3 + ηz4 − 480ηz− 768− 36z2 − z4 − 288z)

z4 − 19z3 + 132z2 − 480z + 768

The RAS of the continuous block implicit hybrid method was plotted using MATLAB
package as shown in Figure 2b.

Regions of absolute stability of the continuous block implicit hybrid methods which
are A-stable and symmetric about the x-axis, since the enclosed Figures of the regions
contain the complex plane outside the domain.

From the two block implicit hybrid methods obtained, it is clear that the Chebyshev
polynomial roots are a good approximant of ordinary differential equations. Evidently,
Ibiejugba and Onumanyi [20] pointed out that the selection of the elements using the zeros
of some appropriate Chebyshev polynomials yield some interesting properties, such as the
satisfaction of the usual local support. According to the authors, the idea of selecting the
elements based on the zeros of Chebyshev polynomials as described in their paper is in line
with the principle of the “orthogonal collocation method” or “method of selected points”.

4. Results and Discussion

Many mathematical models of interactions between the immune system, chemothera-
pies (anticancer agents) and the growing tumor have been developed in the recent literature.
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Immunotherapies which are responsible for stimulating antigen-sensitized cells are becom-
ing a very significant component for treating cancer. This can easily be done by increasing
the number of effector cells, either by stem cell transformation or by using the combi-
nation of cytokine interleukin-2 together with adoptive cellular immunotherapy, which will
have the energy to fight the tumor cells by reducing their number and strength. This has
been demonstrated in the laboratory and also in clinical experiments (see, for example,
Farrar et al. [21], O’Byrne et al. [22], and de Pillis et al. [23]). Apparently, immune system
cells usually attacked and killed cancer cells and therefore kept cancer incidence very low
(see [24,25]).

From the Figures showing the graphical representation of the results in this section,
transients near the steady state show decaying oscillations in the plots. The graphical
representations of the results, for example, Figures 3 and 4, are of interest due to the fact
that they portrait stable limit cycles, showing that the tumor and the immune system
are subject to oscillations. In some cases, cyclic fluctuations in the number of leukocytes
were observed. We noticed from the given graphical representation of the results that
the system can be stable only if the given immune resistance is greater than the tumor
growth. The graphs of Figure 3 for y1(0) = 5 and y2(0) = 50 in the neighborhood are
clearly depicted (presented). The plots of Figure 3c–f for one and two months are in good
agreement with certain human leukemia found in the literature (see, for example, [9,11,23]).
In the graphs of Figure 3g–j, decaying oscillations to a dormant tumor state are also clearly
depicted. However, in the case of higher doses for a longer period of time, the system
evolves to an oscillatory state, as shown or depicted in Figure 3g–j. However, in the graphs
of Figure 3a,b, as we can see, the effect is small because of the number of days considered.
From Figure 3a,b, no oscillation is experienced in the graphs.

The parameter estimates in Table 1 are biologically reasonable because they charac-
terize tumor growth in the absence of an immune response and the data determine the
slope and asymptotes of the tumor growth curves. From the efficiency curves generated
using Equation (2) or Model II, we can make a number of biological predictions about the
interactions of the immune system with the growth tumor, as we did in Equation (1) or
Model I. Compared with some published results in scientific articles, cyclic fluctuations in
the number of leukocytes were found in several cases (see, for example [8,10]).

Practically, Equation (2) described the interaction amongst the effector cells y1(t),
tumor cells y2(t) and the cytokine interleukin-2(IL-2) y3(t). As shown in the graphical plots
of Figure 4, the initial points, even before introducing the treatment, were almost the same:
these are y1(0) = 1× 107, y2(0) = 3× 105, y3(0) = 0.25× 1010 or y1(0) = y2(0) = y3(0) = 1
or y1(0) = y2(0) = y3(0) = 0. The idea, then, is to improve the natural immune system
by using (IL-2), which is usually used together with adoptive cellular immunotherapy (ACI).
Cytokines, which are stimulating protein hormones, enhance both natural and specific
immunity (effector cells). Here, we indicate the treatment s1 in the equation as the use of
adoptive cellular immunity (ACI). Administering a large amount of the interleukin-2(IL-2),
which is denoted by s2 in the equation, yields an interesting result. It completely cleared the
tumor cells but also has the side effect of capillary leakage syndrome (or vascular leakage
syndrome) according to some eminent authors (see, for example, [26,27]). As observed in
Figure 3i,j, which are very similar, the difference in oscillations is connected or linked with
the values of the initial dose.
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Figure 4. Rate of concentration of cells along the time t in days, y1(t)[−−−] effector cells, y2(t)[· · ··]
tumor cells and y3(t)[· − · − ·] immune response.

As shown in the graphs of Figure 5, the tumor cell population reduced by using only
a small constant initial dose of chemotherapy for a short period of time. The idea of using
the continuous block implicit hybrid methods is to accurately determine solutions of the
modeled differential equations so that even a minimum initial dose of treatment, that
is, the last term of Equation (3), VM, will be able to reduce (Figure 5a,b,g,h) or eliminate
(Figure 5c,d,e,f) the tumor population described by Equation (3), that is, the term V(t)
in the equation. In the recent literature, some authors, for example, de Pillis et al. [28],
suggested the use of a high dose for a few days to eliminate the tumor. Though, if one uses
high dose for few days, we observed that the case of increase in immune cells will cause a
serious side effect of the treatment, as discussed in the case of the graphs of Figure 4 above.
As can be seen in Figure 5, our solution graphs differ from that of Figure 4 in terms of the
initial dose and the period of applications, which guaranteed complete tumor clearance
without much side effect.

In Figure 6, we solved and analyzed a model of cancer disease which considered
five populations involving y1(t), y2(t), y3(t), y4(t) and y5(t), which are cancer stem cells,
tumor cells, healthy cells, immune cells and excess estrogen, respectively [6,13]. As seen in
Figure 6a,b, which depicts the behavior of the graphs of the sub-model without estrogen
over time, with cancer stem cells, tumor cells, healthy cells and immune cells all beginning
at their carrying capacities, cancer still persists at a very high level. If observed carefully,
the natural immune cell is not sufficient to even reduce the cancer, much less completely
eradicate the tumor, as observed in [6,13,29].

Further, from the graphs of the Figure, it is clearly shown that the presence of excess
estrogen, tumor cells increase, but immune cells and healthy cells decrease. In such a
situation the normal cells are very much being affected, which makes the system unstable.
As can be seen in Figure 6c–h, with the increase in estrogen levels, the immune levels are
completely reduced, thereby weakening the body’s immune system [13]. This suggests
that, in the presence of excess estrogen, all breast tissue eventually becomes infected with
tumor cells. Here, we advise that taking extra levels of estrogen, either as hormonal birth
control or to enhance beauty, ends up practically increasing the risk of developing breast
cancer and should therefore be avoided.
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5. Conclusions

Biological systems are very close to clinical medicine. This is because experiments are
performed to test samples. This is where mathematical models are significant, especially
in biomedical science where some complex biological models are tested. In this study,
we have illustrated how mathematical techniques could be used in biology and medicine,
which are difficult to achieve through experimental work alone. These results could prove
important and useful in our efforts to effectively deliver a variety of novel and exciting
immunotherapies, particularly the cytokine interleukin-2, adoptive cellular immunother-
apy, etc. Overall, the study shows that early treatment is the best way to eliminate the
tumor. Hence, our results presented should be useful, especially for choosing the optimal
treatment strategy which does not cause great negative impact on the cancer patient as
demonstrated above graphically. It is interesting to note that in this article we provide a
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graphical representation of the results obtained from the solutions of modeled equations
where the singular control is optimal with respect to the solutions. Therefore, the simulated
results presented here show that the CBHMs are good candidates for generating results
that represent various asymptomatic behaviors that track the real data more closely than
most of the methods used in the literature. We hope that the methods used here can be
applied to other biologically complex models.
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