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Abstract: In this paper, we study g-fractional diffusion on bounded domains in Rd with absorbing
boundary conditions. A new general and explicit representation of the solution is obtained. We study
the first-passage time distribution, showing the dependence on the particular choice of the function g.
Then, we specialize the analysis to the interesting case of a rectangular domain. Finally, we briefly
discuss the connection of this general theory with the physical application to the so-called fractional
Dodson diffusion model, recently discussed in the literature.
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1. Introduction

Time-fractional diffusion processes are widely studied in the literature for their re-
lation to continuous-time random walks (see, e.g., [1]) and for pervasive applications in
various fields, from applied physics to pure mathematics and probability (see, for example,
the recent monograph [2] and references therein). More recently, g-fractional diffusive
equations based on the application of fractional derivatives with respect to another function
(also named in the mathematical literature Ψ-fractional derivatives) have gained greater
interest. In particular, in a series of interesting papers [3–5], the authors discussed the
relevance of this approach for physical models of anomalous diffusion. In the mathematical
literature, starting from the paper by Almeida [6], many papers have been devoted to the
analysis of fractional differential equations with respect to another function and this is
a developing field as it allows nontrivial generalizations of classical equations involving
Caputo derivatives.

In [7], we considered the one-dimensional g-fractional diffusion equation with ab-
sorbing boundary conditions. An interesting outcome of the analysis developed in [7]
was that the explicit solution can be found and particular choices of the g-function lead
to a finite mean first-passage time (MFPT), differently from the time-fractional diffusion
in the bounded domain involving the classical Caputo derivative (which is the special
case g(t) = t). In this paper, we consider, for the first time, the g-fractional diffusion in
d-dimensional bounded domains with absorbing boundary conditions. We obtain the
explicit representation of the solution for the Dirichlet problem in Rd, which can be applied
to several particular diffusive models in bounded domains. We emphasize that the main
difference with the more particular (and simple) one-dimensional case previously treated
in [7] lies in the broad generality of the main results presented here, which can be used
for realistic diffusive models in higher dimensions. We then study the first-passage time
distribution (FPTD), discussing the condition for a finite MFPT.

As a first application of the general results obtained here, we consider the special and
interesting case of g-fractional diffusion in rectangular domains. We recall that fractional
diffusions in multidimensional rectangular domains have been the subject of recent interest
in the mathematical literature (see, for example [8]).
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In the final section, we investigate the case of the fractional Dodson equation, recently
introduced in [9]. This is an interesting heuristic model of fractional diffusion that includes,
at the same time, memory effects and the particular exponential time-dependence of the
diffusion coefficient. The peculiarity of this model relies on the fact that the corresponding
g-function is upper bounded, resulting in the existence of stationary solutions, finite values
of the asymptotic survival probability and, therefore, undefined MFPT.

2. G-Fractional Diffusion in Bounded Domains

We consider a g-fractional diffusion process on a bounded domain Ω in Rd:(
C∂α

gu
∂tα

)
(r, t) = D∇2u(r, t), (1)

where r = {x1, ..., xd}, ∇2 = ∑d
i=1

∂2

∂x2
i

is the Laplacian in dimension d, D is the general-

ized diffusion constant and the Caputo-type g-fractional derivative of order α ∈ (0, 1) is
defined as (

C∂α
gu

∂tα

)
(r, t) :=

1
Γ(1− α)

∫ t

0
(g(t)− g(τ))−α ∂u

∂τ
(r, τ)dτ, (2)

where g(t) is a deterministic function such that g(0) = 0 and g′(t) > 0 for t > 0, where
we denote by g′ = dg/dt the first-order time derivative. We consider the generic ini-
tial condition

u(r, 0) = u0(r), (3)

and the absorbing (Dirichlet) boundary conditions

u(r, t) = 0, r ∈ ∂Ω. (4)

Solutions can be found by the method of separation of variables, i.e.,

u(r, t) = X(r)T(t).

We have to solve the two equations

Cdα
gT(t)
dtα

= −λDT(t), (5)

and
∇2X(r) = −λX(r). (6)

The solution of (5) is
T(t) = T(0) Eα(−λDg(t)α), (7)

where Eα(·) denotes the one-parameter Mittag–Leffler function [10]

Eα(x) =
∞

∑
k=0

xk

Γ(αk + 1)
. (8)

The eigenvalue problem (6) with boundary conditions (4) is solved by an infinite sequence
of pairs (λn, φn), with n ≥ 1 (λ1 < λ2 < ...) and φn(r) is a sequence of functions that form
a complete orthonormal set in L2(Ω) [11–13].

The solution of the g-fractional diffusive Equation (1) can then be expressed as

u(r, t) =
∞

∑
n=1

u0,n φn(r) Eα(−λnDg(t)α), (9)



Fractal Fract. 2023, 7, 235 3 of 8

where
u0,n =

∫
Ω

dr φn(r) u0(r). (10)

3. First-Passage Times

We study here first-passage problems. The FPTD ϕ(t) is defined by

ϕ(t) = −dP
dt

(t), (11)

where P(t) is the survival probability, i.e., the probability that a particle has not been
absorbed until time t

P(t) =
∫

Ω
dr u(r, t). (12)

We assume here that the survival probability goes to zero for t→ ∞, i.e., the particle will
surely be absorbed during the entire process. This corresponds to considering functions g(t)
such that limt→∞ g(t) = +∞. In the last section, treating the fractional Dodson diffusion,
we discuss the main consequences of relaxing such an assumption.
The MFPT τ is the first moment of (11)

τ =
∫ ∞

0
dt t ϕ(t). (13)

By using (9), (11) and (12), we can then express the FPTD for g-fractional diffusion pro-
cesses as

ϕ(t) = −
∞

∑
n=1

u0,n Φn
d
dt

Eα(−λnDg(t)α), (14)

where
Φn =

∫
Ω

dr φn(r). (15)

By using the property [10]

Eα,α(−x) = −α
d

dx
Eα(−x), (16)

where we have introduced the two-parameters Mittag–Leffler function [10]

Eα,β(x) =
∞

∑
k=0

xk

Γ(αk + β)
, (17)

we finally arrive at the expression for the FPTD

ϕ(t) = Dg′(t)g(t)α−1
∞

∑
n=1

λnu0,n Φn Eα,α(−λnDg(t)α). (18)

It is interesting to show the long time behavior of ϕ(t). By using the asymptotic expansion
of the Mittag–Leffler function for |z| → ∞ and <(z) < 0 (see [10], p. 75)

Eα,α(z) = −
z−2

Γ(−α)
+ O(|z|−3), (19)

we have that the asymptotic behavior of (18) is

ϕ(t) ∼ − g′(t)g(t)−(α+1)

DΓ(−α)

∞

∑
n=1

u0,n Φn

λn
, t→ ∞. (20)

It is worth noting that the above asymptotic form allows the MFPT (13) to be finite only
for those functions g(t) satisfying limt→∞ t2g′g−α−1 = 0, regardless of boundary shape.



Fractal Fract. 2023, 7, 235 4 of 8

In other words, finite MFPTs are obtained if g(t) grows asymptotically faster than t1/α,
similarly to the one-dimensional case [7].

4. Rectangular Domains

We focus here on the case of rectangle-like domains in Rd, Ω = [0, L1]× · · · × [0, Ld].
Variable separation allows the eigenfunctions to be written as (by using the multiple index
n = {n1, . . . , nd})

φn(r) =
d

∏
i=1

φ
(i)
ni (xi), (21)

and the eigenvalues as

λn =
d

∑
i=1

λ
(i)
ni . (22)

Considering absorbing boundary conditions (4), we have [11,13]

φ
(i)
ni (x) = (2/Li)

1/2 sin (πnix/Li), (23)

λ
(i)
ni = π2n2

i /L2
i , (24)

with i = 1, . . . , d and ni ≥ 1. Inserting in (9), we obtain the solution of the g-fractional
diffusion equation in rectangular domains with generic initial conditions

u(r, t) =
∞

∑
n=1

u0,n

[
d

∏
i=1

√
2
Li

sin
(

πnixi
Li

)]
Eα(−λnDg(t)α), (25)

where λn are given by (22). In the following, we consider δ-peaked initial conditions

u0(r) = δ(r− r0), (26)

where r0 = {x1,0, . . . , xd,0}. We have, from (10),

u0,n =
d

∏
i=1

φ
(i)
ni (xi,0) =

d

∏
i=1

√
2
Li

sin
(

πnixi,0

Li

)
, (27)

and the solution (25) reads

u(r, t) =
∞

∑
n=1

[
d

∏
i=1

2
Li

sin
(

πnixi,0

Li

)
sin
(

πnixi
Li

)]
Eα(−λnDg(t)α). (28)

We now turn to analyze the FPTD (18). We first note that the terms Φn (15) can be written as

Φn =
d

∏
i=1

Φ(i)
ni , (29)

where

Φ(i)
ni =

∫ Li

0
dx φ

(i)
ni (x) =

√
2
Li

∫ Li

0
dx sin (πnix/Li)

=
2
√

2Li
πni

, if ni is odd, (30)
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and null otherwise. We can finally express the FPTD as

ϕ(t) =
22dDg′(t)g(t)α−1

πd

∞

∑
n=0

λ2n+1

(
d

∏
i=1

sin (π(2ni + 1)xi,0/Li)

2ni + 1

)
Eα,α(−λ2n+1Dg(t)α), (31)

where λ2n+1 = ∑d
i=1 π2(2ni + 1)2/L2

i . We note that, for d = 1, the above expression reduces
to that obtained in [7] for the one-dimensional case. As an example, Figure 1 shows the
typical behavior of FPTDs at different values of the fractional order α. The curves shown are
obtained by numerical evaluation of (31) and correspond to the Erdérlyi–Kober derivative
g(t) = tβ, with β = 2, in a two-dimensional square box with absorbing boundaries. The
power-law decay at long time is evident, affecting the existence of finite MFPTs (see (20)
and the discussion at the end of the previous section).
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α = 0.4

Figure 1. Example of first-passage time distributions at different fractional derivative order α for a
particular choice of the g-function, g(t) = t2 (Erdérlyi–Kober derivative). Inset: the same as in the
main panel in logarithmic scale, in order to highlight the long time behavior t−δ. Only the cases for
which δ = 1 + 2α > 2 correspond to finite values of the MFPT (see (20) and subsequent discussion).
The curves are obtained by numerical evaluation of the expression (31), considering a square box
(d = 2) of size L = 1 and setting D = 1, x1,0 = x2,0 = L/2, and g(t) = t2.

5. The Fractional Dodson Diffusion

The Dodson diffusion equation arises in the context of cooling processes in geology [14]
and takes the form (see e.g., [15], pp. 104–105)

∂u
∂t

= D0 exp(−βt)
∂2u
∂x2 , (32)

where 1/β is the relaxation time. This is an interesting model where the diffusivity coeffi-
cient is time-dependent and, more precisely, it is an exponentially decreasing function of
time. As we will see, this slowing down of dynamics generates finite stationary solutions,
with important consequences on first-passage processes.

In a recent paper [9], a new generalization of the Dodson diffusion equation was
suggested in view of the relevance of the fractional approach for diffusive models with
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memory effects. In this paper, the fractional Dodson equation is essentially a g-fractional
diffusion with

g(t) =
1− e−βt

β
. (33)

This means that the time-fractional operator appearing in the evolution equation is given by

C
(

eβt ∂

∂t

)α

u(x, t) =
1

Γ(1− α)

∫ t

0

(
e−βτ − e−βt

β

)−α
∂u
∂τ

dτ, (34)

where we use the notation of [9] to underline that this g-fractional derivative physically
corresponds to an operator that includes the time-dependence of the diffusivity and the
memory effects. Moreover, for α = 1, we recover the classical equation. This is an
exploratory generalization of the Dodson diffusion and a concrete potential application of
the g-fractional approach to diffusive models.

We note that the g(t) (33) is a bounded function, as limt→∞ g(t) = 1/β. Having this in
mind, we can apply some of the results obtained in the previous sections to the present case
of fractional Dodson diffusion in bounded domains with absorbing boundary conditions.
We recall that, in [9], the authors derived the fundamental solution of the fractional Dodson
equation in the one-dimensional case, while the diffusive problem in a bounded domain
and in higher dimensions has not been considered before in the literature.
Let us consider the d-dimensional fractional Dodson equation

C
(

eβt ∂

∂t

)α

u(r, t) = D∇2u(r, t), (35)

under the initial condition
u(r, 0) = u0(r), (36)

and absorbing boundary conditions

u(r, t) = 0, r ∈ ∂Ω. (37)

Then, using the results obtained in the previous sections, we have that the solution can be
expressed as

u(r, t) =
∞

∑
n=1

u0,n φn(r) Eα

(
− λnD

(
1− e−βt

β

)α)
, (38)

where
u0,n =

∫
Ω

dr φn(r) u0(r). (39)

Thus, the upper bounded g(t) implies the existence of a stationary solution ust.:

ust.(r) = lim
t→∞

u(r, t) =
∞

∑
n=1

u0,n φn(r) Eα(−λnDβ−α). (40)

We then conclude that the survival probability has a finite asymptotic value

P∞ =
∫

Ω
dr ust.(r), (41)

which means that there is a finite probability that the particle will never be absorbed at
the boundaries, resulting in a divergent MFPT. This is a general result valid whenever the
g-function has a finite asymptotic limit, corresponding to slowing dynamics ending in a
“frozen” particle distribution.
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6. Conclusions

In this paper, we have considered the g-fractional diffusion in Rd with absorbing
(Dirichlet) boundary conditions. This generalizes the previous one-dimensional study [7]
to the d-dimensional case. We show that it is possible to find the explicit representation of
the solution for a generic g-function and bounded domain Ω in Rd. This is the first general
treatment of g-fractional diffusion in the generic d dimension and we obtain a general
representation that can be used in realistic models, beyond the one-dimensional analysis
developed in the previous literature. We then analyzed the FPTD and its dependence on
the particular choice of the function g, leading to a nontrivial generalization of the classical
Caputo-fractional diffusion in a bounded domain. We considered the interesting case of the
rectangular domain, obtaining the exact form of the solution. Finally, we devoted a section
to a physical application related to the Dodson diffusion equation recently considered
in [9]. In previous research on this topic, the authors obtained the fundamental solution in
the one-dimensional case, while here, we derive the solution of the Dirichlet problem in
higher dimensions. This allows us to discuss the effects of choosing a bounded g-function,
resulting in a finite asymptotic survival probability and undefined MFPT. In conclusion,
we have demonstrated the nontrivial role of the g-function on diffusive behavior in d-
dimensional domains and its influence on the shape of FPTDs and the existence of finite
MFPTs. It would be interesting to extend the analysis to domains of different shapes
(such as spherical or cylindrical) and to consider different boundary conditions, such
as, for example, partial absorption [16,17] with, possibly, time-dependent rates (see, for
example, [18] and references therein) in order to study the combined effects of fractional
diffusion and boundary properties on first-passage processes.
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