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Abstract: Vaccination against any infectious disease is considered to be an effective way of controlling
it. This paper studies a fractional order model with vaccine efficacy and waning immunity. We
present the model’s dynamics under vaccine efficacy, the impact of immunization, and the waning of
the vaccine on coronavirus infection disease. We analyze the model under their equilibrium points.
The model under the equilibrium points is discussed and proven that it is locally asymptotically
stable ifRv is lesser than unity. We present the backward bifurcation hypothesis of the model and
show that there is a parameter β2 that causes the backward bifurcation in the imperfect vaccine
model. We show certain assumptions when ψ = 1 for the imperfect vaccine case; the model is both
stable globally asymptotically at the disease-free (R0 ≤ 1) and endemic cases (R0 > 1). By using
infected cases from the recent wave throughout Pakistan, we shall estimate the model parameters
and calculate the numerical value of the basic reproductive number R0 ≈ 1.2591. We present the
comprehensive graphical results for the realistic parameter values and show many useful suggestions
regarding the elimination of the infection from society. The vaccination efficacy that provides an
important role in disease elimination is discussed in detail.

Keywords: coronavirus mathematical model; infected data; stability analysis; numerical results

1. Introduction

Coronavirus, since the beginning of March 2020 till now, has been producing new
infections, and until now, the number of recorded cases that have been documented in
Pakistan is 1,575,186 [1]. Among these infected cases, 98% have recovered, which is 98% of
the total cases, while 2% are death cases, 30,631, have been reported. Since March 2020 till
now, different waves of coronavirus infection have been observed, while the latest (sixth
wave) was recorded in May 2022–September 2022 [1]. If we can look at the data given in [1],
earlier, there were several cases of infection, and gradually, in the latest wave, the number
of infected cases significantly decreased. One of the reasons is that earlier people were not
aware of the issue of not getting vaccines in the market.

Vaccination is a useful tool to protect humans against disease. The coronavirus
infection, and its emergence in the world as a new virus, was a big challenge because there
was no treatment or control, and vaccines are available in the market. With the efforts of
researchers and biologists in the development of vaccines, coronavirus infection has been
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reduced by a significant number of cases. Some mathematical models that used the control
startles are given in [2,3]. The modeling in [2] depicts coronavirus infection with the use of
control methods. The fractional order model given in [3] has been considered in the study
of coronavirus, considering different control mechanisms.

The vaccines related to coronavirus that are available in the market are different
types, such as Moderna, Pfizer, Johnson and Johnson, chines vaccines, etc. It should be
noted that none of the vaccines developed so far is 100% effective, and still, there is a
waning vaccine rate. Therefore, in the recently developed vaccines, there is also a warning
about vaccines. In some less-developed countries of the world with poor financial health
funds, the development of vaccines against coronavirus infection is not possible. A total of
70 countries of the world with low income have a vaccination rate of 1–10 individuals [4].
International organizations are trying to provide vaccines with equal distribution to curb
coronavirus. It should be underlined that the inequitable distribution of vaccinations
cannot be resolved in a short period of time. As a result, more realistic immunization rates
must be investigated.

Vaccines are considered the most effective controls for disease elimination, but they
are limited and affected in the implementation process by various factors. Researchers
from various countries around the world regarding vaccine strategies have provided
useful published materials in the literature. For example, the authors in [5] developed
vaccination strategies for single and double-dose vaccination and studied their epidemic
disease dynamics. The authors in [6] developed a vaccination model considering the
treatment and vaccination saturating function with strategies. Vaccines containing diseases
and the role of media effects have been explored in [7]. Studying the vaccination model with
secondary infection after vaccine coverage and immunization is explored in [8]. Vaccination
and treatment impacts on coronavirus have been studied in [9]. The availability of vaccines
and the vaccine strategies’ impact on disease elimination is studied in [10–12]. A series of
mathematical models for the coronavirus epidemic, studying their bifurcation and local and
global asymptotical dynamics, have been discussed in [13,14]. The study of the vaccination
model under vaccine immunization and their efficacy have been discussed in detail in [15].

Mathematical models to understand infectious diseases and especially COVID-19 with
integer and non-integer orders are documented in the literature, see [16–18]. For example,
a model with real data has been formulated and studied in [19]. Using the distributions
of the cases with asymptomatic and symptomatic compartments are shown through a
mathematical model in [20]. The coronavirus model with treatment is discussed in [21].
The vaccine model for coronavirus and their controlling strategies is shown in [22]. The al-
gorithm for the COVID-19 is used to identify the undetected cases is discussed in [23].
A non-integer system to analyze the coronavirus using the real cases in Pakistan is explored
in [24]. The formulation of the SARS-Cov-2 in fractional derivative to understand the new
omicron variant is shown in [25]. The discussion on the second wave of the coronavirus
infection and a stability analysis has been investigated in [26]. The reported coronavirus
cases in India through a fractional order model are studied in [27]. Some more related
applications of fractional calculus can be seen in [28–31]. In [28], neural network dynamics
have been discussed. The authors in [29] used the IIR filter to obtain results for fractional
order equations for grid-tied inverters. The dynamics of the prey-predator system have
been analyzed using the fractional derivative and studied in [30]. A numerical investigation
of the Fractional Step-Down option system has been explored in [31]. The cholera dynamics
under the fractional differential equation have been analyzed in [32]. The coronavirus
dynamics spread under fractional calculus has been analyzed in [33]. The dynamics of the
monkeypox disease using arbitrary calculus is shown in [34].

The arrangement of the work is given as follows: Detailed materials regarding the
fractional operator and the formulation of the problem in both integer and non-integer
order are presented in Section 2. The analysis of the vaccination model and the backward
bifurcation is discussed in Section 3. The stability analysis of the system is given in Section 4.
Estimations of the parameters using the recent wave of COVID-19 in Pakistan have been
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considered in Section 5. Numerical results and the main achievements of the present work
are discussed in Sections 6 and 7, respectively.

2. Model Formulation and Basic Relations to Fractional Calculus

The necessary results that shall be used later in this work are given below.

Definition 1 ([35]). The definition of a Caputo derivative under a function g ∈ Cn([0,+∞),R),
(n− 1 < η ≤ n) (η is fractional order) can be written as,

Dη g(t) =
1

Γ(n− η)

∫ t

0
(t− τ)n−η−1g(n)(τ)dτ, t > 0, (1)

Definition 2 ([35]). When η > 0 then the Riemann–Liouville fractional integral of a function
g : R+ → R can be shown as,

Iη g(t) =
1

Γ(η)

∫ t

0
(t− τ)η−1g(τ)dτ, (2)

where Γ(η) is defined to be the Euler Gamma function [36].

Lemma 1. For η ∈ (0, 1], let g(t) ∈ C([u, v]) and Dη g(t) ∈ (u, v]. Then it holds

g(t) = g(u) +
1

Γ(η)
Dη g(ξ)(t− u)η ,

ξ ∈ [0, 1], ∀t ∈ (u, v].

2.1. Model Formulation

We consider the coronavirus infection with vaccine efficacy through a mathematical
modeling approach. The population of human is denoted by N(t) and divided further
into six subgroups. These groups are defined as: The vulnerable population is signified
by S(t), which has the ability to be affected by coronavirus infection. The individuals
in this group are not immunized. Vaccinated individuals against the coronavirus are
given by V(t), E(t) is the exposed individuals in an exposed period. After healthy
individuals have close contact with people who have the coronavirus infection, people who
are clinically identified to be asymptomatically infected with no clinical disease symptoms
of coronavirus infection are called asymptomatic infected, shown by A(t). Individuals
who exhibit obvious illness signs are said to be symptomatically infected. I(t). Those
who have recovered from coronavirus illness are gathered in R(t). Therefore, we shall
write N(t) = S(t) + V(t) + E(t) + A(t) + I(t) + R(t). Because of the immunological
reaction induced by vaccination, persons in vaccinated populations cannot become infected
with the virus. With the gradual decrease in the indicated vaccine antibodies with the
passage of time, a number of people may become susceptible to being infected with the
virus. With these observations, our above discussions lead to the following evolutionary
nonlinear ordinary differential equations:

dS
dt

= Π− (β1 I + β2 A)S
N

− (ω + µ)S(t) + κR + θV(t),

dV
dt

= ωS− (1− ψ)
(β1 I + β2 A)V

N
− (θ + µ)V,

dE
dt

=
(β1 I + β2 A)S

N
+ (1− ψ)

(β1 I + β2 A)V
N

− (δ + µ)E,

dA
dt

= qδE− (µ + ρ1)A,
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dI
dt

= (1− q)δE− (µ + d + ρ)I,

dR
dt

= ρI + ρ1 A− (κ + µ)R, (3)

with the initial conditions given by,

S(0) = S0 ≥ 0, V(0) = V0 ≥ 0, E(0) = E0 ≥ 0, A(0) = A0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0. (4)

The parameter Π defines the susceptible population’s birth rate, whereas µ in each
component of the system represents the natural death rate. Susceptible persons become
infected after coming into contact with infected people (asymptomatic or symptomatic)
via the transmission channel provided by β1 and β2. The contact between the healthy
and symptomatic infected is shown by route β1, while β2 is responsible for the disease
progression as a result of healthy people coming into contact with asymptomatic infected
people. The vaccination rate of healthy people is given by ω, while θ is the vaccine’s waning
immunity rate. The natural loss of immunity of the recovered individuals is given by κ. We
considered the imperfect vaccines and the fact that there is no perfect vaccine on the market
to curb coronavirus infection. Therefore, parameter ψ is the vaccine efficacy rate. If ψ = 1,
then the vaccine is perfect; otherwise it is imperfect. The exposed period of individuals
after close contact with asymptomatic or symptomatic is shown by δ. The part of people
that do not possess disease symptoms shall join the asymptomatic infected class A with
the rate given by qδ, while the individuals that have clear infection symptoms join the
symptomatic infected class I with the rate (1− q)δ. The rate of recovery of asymptomatic
infected patients is provided by ρ1, and those recovered from symptomatic infection are
given by ρ. The coronavirus infection has produced a high number of death cases around
the world, so the disease mortality rate of symptomatic infected people is given by d.

2.2. Model Positivity and Boundedness

This section investigates model (3)’s solution’s positivity and boundedness. It is
important to demonstrate that the model solution at a non-negative beginning value is
always non-negative for t > 0. The following theorem gives us the results:

Theorem 1. Let U(t) = (S(t), V(t), E(t), A(t), I(t), R(t)) for all t ≥ 0 be the positive solution
of model (3) with the initial conditions (4). Then the solution of system (3) is non-negative for each
t > 0.

Proof. Let U(t) = min{S(t), V(t), E(t), A(t), I(t), R(t)}, where S(t), V(t), E(t), A(t), I(t),
and R(t) are the associated positive solutions of system (3). We know U(0) > 0. Let us
consider that there exists t1 > 0 such that U(t1) = 0 and U(t) > 0 for any t ∈ [0, t1).
If M(t1) = S(t1), then V(t) ≥ 0, E(t) ≥ 0, A(t) ≥ 0, I(t) ≥ 0, and R(t) ≥ 0 for any
t ∈ [0, t1). Consider the first equation of system (3) for any t ∈ [0, t1),

dS(t)
dt

= Π− (β1 I + β2 A)S
N

− (ω + µ)S(t) + κR + θV(t),

≥ Π− (λ(t) + (ω + µ))S(t).

We shall write the following,

dS(t)
dt

+ (λ(t) + (ω + µ))S(t) ≥ Π.

We get after utilizing the integration method,

d
dt

[
S(t) exp

(∫ t

0
(λ(t) + ω + µ)dz

)]
≥ Π exp

(∫ t

0
(λ(t) + ω + µ)dz

)
.
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Finally, it leads to the following,

S(t1) ≥ S(0) exp
(
−
∫ t1

0
(λ(t) + ω + µ)dz

)
+ exp

(
−
∫ t1

0
(λ(t) + ω + µ)dz

)
×Π

∫ t1

0
exp

(∫ x

0
(λ(z) + ω + µ)dz

)
dx > 0,

that leads to a contradiction, and hence we can get S(t) ≥ 0 for any t ≥ 0. We can have
similar result for V(t) ≥ 0,

dV
dt

= ωS− (1− ψ)
(β1 I + β2 A)V

N
− (θ + µ)V,

dV
dt

≥ −(1− ψ)(λ(t) + θ + µ)V,

V(t) ≥ V(0)e−(λ(t)+θ+µ)t. (5)

The result for E(t) is,

dE
dt

= λ(t)S + (1− ψ)λ(t)V − (δ + µ)E,

dE
dt

≥ −(δ + µ)E,

E(t) ≥ E(0)e−(δ+µ)t. (6)

For A(t), we give the following,

dA
dt

= qδE− (µ + ρ1)A,

dA
dt

≥ −(µ + ρ1)A,

A(t) ≥ A(0)e−(ρ1+µ)t. (7)

We shall get the result for I(t) and R(t), follows the same stepping used above,

dI
dt

= (1− q)δE− (µ + d + ρ)I,

dI
dt
≥ −(µ + d + ρ)I,

I(t) ≥ I(0)e−(ρ+µ+d)t, (8)

dR
dt

= ρI + ρ1 A− (µ + κ)R,

dR
dt

≥ −(µ + κ)R,

R(t) ≥ R(0)e−(κ+µ)t. (9)
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This ends the proof of the positivity of the model variables. To show the boundedness
of model (3), we just add the model equations and receive

dN(t)
dt

= Π− µN(t)− dN(t) ≤ Π− µN.

The solution is given for t→ ∞,

lim
t−→∞

sup N(t) ≤ Π
µ

. (10)

With the help of the positivity and boundedness of the result shown in the theorem
above, now we can define the feasible region. The biologically feasible region where the
model solutions are positive invariant and bounded are given as

Γ =

{
(S, V, E, A, I, R) ∈ R6

+ : S, V, E, A, I, R ≥ 0, 0 ≤ N(t) ≤ Π
µ

}
. (11)

2.3. Caputo Fractional Order Model

The fractional system in science and engineering areas and especially in epidemiology,
has great importance in order to study heredity and memory effects, which shall not be
found in integer-order models. It should be worth mentioning that many definitions exist
in the literature regarding the fractional derivative, and everyone has their own importance;
we use the definition of Caputo derivative to model coronavirus disease with vaccinations.
Here, we apply the Caputo fractional order definition given above and obtain the fractional
version of the above system (12) given by:

Dα
t S(t) = Π− (β1 I + β2 A)S

N
− (ω + µ)S(t) + κR + θV(t),

Dα
t V(t) = ωS− (1− ψ)

(β1 I + β2 A)V
N

− (θ + µ)V,

Dα
t E(t) =

(β1 I + β2 A)S
N

+ (1− ψ)
(β1 I + β2 A)V

N
− (δ + µ)E,

Dα
t A(t) = qδE− (µ + ρ1)A,

Dα
t I(t) = (1− q)δE− (µ + d + ρ)I,

Dα
t R(t) = ρI + ρ1 A− (κ + µ)R, (12)

where the initial conditions are

S(0) = S0 ≥ 0, V(0) = V0 ≥ 0, E(0) = E0 ≥ 0, A(0) = A0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

In the next part, we show the findings for the fractional model.

3. Analysis of the Equilibrium Points

This section briefly explores the possible equilibrium points of model (12) and stud-
ies the possibilities of the backward bifurcation phenomenon. We shall begin with the
calculation of the disease-free case.
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3.1. Disease-Free Equilibrium (DFE)

The disease-free equilibrium of model (12) is shown by P0 and is given by

P0 = (S0, V0, 0, 0, 0, 0) =
( Π(θ + µ)

µ(θ + µ + ω)
,

Πω

µ(θ + µ + ω)
, 0, 0, 0, 0

)
.

Next, we calculate the basic reproductive number which has a key role in epidemic models.

3.2. Basic Reproduction Number

The reproductive number has significant advantages in disease models. One of the
important roles of this is to characterize the disease dynamics. Usually, when its numerical
value is less than unity, the disease is regarded to be a controllable whole in the case
of exceeds unity it might be spread among other community members. Also, it is very
important to mention that when its value is exactly equal to one then there may be a
backward bifurcation. We shall give the mathematical computation of the basic vaccine
reproduction number of system (12) using the approach shown in [37] and is given by:

F =

 0 V0(1−ψ)β2
S0+V0 + S0β2

S0+V0
V0(1−ψ)β1

S0+V0 + Sβ1
S0+V0

0 0 0
0 0 0

,

and V =

 (δ + µ) 0 0
−qδ (µ + ρ1) 0

−(1− q)δ 0 (d + µ + ρ)

.

Therefore, we have the results after using ρ̂[FV−1] and the required vaccine basic
reproduction numberRv,

Rv =
β1δ(1− q)(θ + µ− ψω + ω)

(δ + µ)(d + µ + ρ)(θ + µ + ω)
+

β2δq(θ + µ− ψω + ω)

(δ + µ)(µ + ρ1)(θ + µ + ω)
,

= R1
v +R2

v.

The expression of R0 describes the number of individuals that an infected person
infects. When ψ = 1 and ω = θ = 0, thenRv reduces to

R0 =
β1δ(1− q)

(δ + µ)(d + µ + ρ)
+

β2δq
(δ + µ)(µ + ρ1)

,

is the basic reproduction number in the absence of vaccination. For disease elimination, it
can be useful ifR0 < 1.

3.3. Endemic Equilibria

Here, we shall determine the existence of endemic equilibria and determine that there
may be possibilities of the backward bifurcation. It should be noted that the perfect vaccine
model does not possess the backward bifurcation that the imperfect vaccines causes. The
endemic equilibria of system (12) is denoted by P1, and P1 = (S∗, V∗, E∗, A∗, I∗, R∗) which
shall be obtained as given by,

Dα
t S(t) = 0,

Dα
t V(t) = 0,

Dα
t E(t) = 0,

Dα
t A(t) = 0,
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Dα
t I(t) = 0,

Dα
t R(t) = 0. (13)

Solving (13) at the steady-state, we have the result below,

S∗ = Π+κR∗+θV∗
λ∗+µ+ω ,

V∗ = ωS∗
θ+λ∗(1−ψ)+µ

,

E∗ = λ∗S∗+λ∗V∗(1−ψ)
δ+µ ,

A∗ = δqE∗
ρ1+µ ,

I∗ = δ(1−q)E∗
d+µ+ρ ,

R∗ = ρ1 A∗+ρI∗
κ+µ .

(14)

We consider the expression in (14) and insert it into,

λ∗ =
β2 A∗ + β1 I∗

N∗
,

where N∗ = S∗ + V∗ + E∗ + A∗ + I∗ + R∗, we obtain,

b1λ∗2 + b2λ∗ + b3 = 0, (15)

where

b1 = (1− ψ)(ρ1 + µ)((κ + µ)(d + µ + δ(1− q) + ρ) + δ(1− q)ρ)

+δq(1− ψ)(d + µ + ρ)(ρ1 + κ + µ),

b2 = (1− ψ)(d + µ + ρ){(κ + µ)[(ρ1 + µ)(δ + µ + ω) + δq(ω− β2)] + δρ1qω}

+δ(1− q)(1− ψ)(ρ1 + µ)[(ω− β1)(κ + µ) + ρω] + (θ + µ)(d + µ + ρ)

×((κ + µ)(ρ1 + µ + δq) + δρ1q) + δ(1− q)(ρ1 + µ)(θ + µ)(κ + µ + ρ),

b3 = (δ + µ)(ρ1 + µ)(κ + µ)(d + µ + ρ)(θ + µ + ω)(θ + µ + (1− ψ)ω)(1−Rv).

We can see that b1 > 0, and b3 can be positive ifRv < 1 while it is negative forRv > 1.
We cannot say about the positive value of b2, so there should be some conditions where the
quadratic Equation (15) can show the positive and unique endemic equilibrium of model
(12). We shall provide the statement below:

Theorem 2. Model (12) has:

(i) a unique endemic equilibrium exists if b3 < 0⇐⇒ Rv > 1,
(ii) a unique endemic equilibrium exists if b2 < 0 and b3 = 0→ Rv = 1,
(iii) two endemic equilibria exist if b3 > 0 → Rv < 1, b2 < 0 and its related discriminant

is positive
(iv) there is no possible equilibria other than the above cases.
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When Rv > 1, the first portion of Theorem 2 clearly indicates the presence of a
unique positive endemic equilibrium. Furthermore, we can see from the third part of
Theorem 2 that there is a backward bifurcation in the coronavirus vaccination model (12).
The presence of backward bifurcation in disease models indicates that the stable disease-
free equilibrium coexists with the endemic equilibrium, and hence there is no chance of
the model achieving global asymptotical stability in the disease-free scenario. In such a
circumstance, the disease will be present in the community for an extended period of time,
and immunizations, preventive, and other required control measures can be utilised to
eradicate the infection. For mathematical results of the backward bifurcation and simulation
results, we shall use the discriminant set as follows, b2

2 − 4b1b3 = 0. Further solving the
discriminant to get the critical values ofRv can be shown byRc, which is shown by

Rc =

√
1−

b2
2

4b1(δ + µ)(κ + µ)(d + µ + ρ)(θ + µ + ω)
. (16)

We can see that there exists backward bifurcation for Rv such that Rc < Rv < 1.
The backward bifurcation occurs for β2 = 0.4827, while the rest of the values are the
same as shown in Table 1. The bifurcation result is shown in Figure 1, where β2 is the
bifurcation parameter causing backward bifurcation in the vaccination model with the
imperfect vaccine. Because of the the imperfect vaccine, the disease-free equilibrium
coexists alongside the stable endemic equilibrium. In models where backward bifurcation
exists, then it needs to reduce the threshold quantity to less than unity in order to control
the disease spread via vaccination, prevention, educating individuals against the disease,
etc. It should be noted that when ψ = 1 (perfect vaccine), then the presence of backward
bifurcation is ruled out.

R
c
        R

00 0.5 1 1.5 2 2.5

 β
2
  

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 1. Backward bifurcation plot for model (3).
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Table 1. Parameter details.

Symbol Definitions Numeric Value Ref

Π Birth rate µ× N(0) Estimated
µ Natural mortality rate 1

67.7×365 [38]
β1 Contact between healthy and sick people 0.8983 Fitted
β2 Contact between healthy and asymptomatic people 0.3827 Fitted
κ Natural immunity loss 0.3129 Fitted
δ Incubation time period 0.9982 Fitted
q The proportion joins class A 0.9931 Fitted
1− q The proportion joins class I 0.0069 Fitted
ρ1 Recovery rate of asymptomatic people 0.3028 Fitted
ρ Recovery of symptomatic people 0.7926 Fitted
d Disease death rate of symptomatic people 0.6784 Fitted

4. Stability Analysis

This section discusses the asymptotical stability of model (12).

Theorem 3. When η ∈ (0, 1], andR0 < 1, then model (12) is locally asymptotically stable if all
the eigenvalues λk, for k = 1, . . . , 6 satisfy

|arg(λk)| >
ηπ

2
. (17)

Proof. We have the Jacobian matrix at P0,

J =



−(µ + ω) θ 0 − β2S0

S0+V0 − β1S0

S0+V0 κ

ω −(θ + µ) 0 − (1−ψ)β2V0

S0+V0 − (1−ψ)β1V0

S0+V0 0

0 0 −(δ + µ) (1−ψ)β2V0

S0+V0 + β2S0

S0+V0
(1−ψ)β1V0

S0+V0 + β1S0

S0+V0 0
0 0 qδ −(ρ1 + µ) 0 0
0 0 (1− q)δ 0 −(d + µ + ρ) 0
0 0 0 g ρ −(κ + µ)


.

We have the characteristic equation for J, given by

λ6 + c1λ5 + c2λ4 + c3λ3 + c4λ2 + c5λ + c6 = 0,

where

c1 = d + δ + ρ1 + θ + κ + 6µ + ρ + ω,

c2 = (θ + µ)(d + δ + g + κ + 4µ + ρ) + (µ + ω)(d + δ + ρ1 + κ + 4µ + ρ)

+(κ + µ)(d + δ + g + 3µ + ρ) + (ρ1 + µ)(d + µ + ρ) + µ(θ + µ + ω)

+(δ + µ)(d + µ + ρ)(1−R1
v) + (δ + µ)(ρ1 + µ)(1−R2

v),

c3 = (κ + µ)((d + µ + ρ)(ρ1 + θ + 3µ + ω) + (δ + ρ1 + 2µ)(θ + 2µ + ω))

+(ρ1 + µ)(d + µ + ρ)(θ + 2µ + ω) + µ(θ + µ + ω)(d + δ + ρ1 + κ + 4µ + ρ)

+(δ + µ)(d + µ + ρ)(θ + κ + 3µ + ω)(1−R1
v) + (δ + µ)(ρ1 + µ)(d + µ + ρ)(1−Rv)

+(δ + µ)(ρ1 + µ)(θ + κ + 3µ + ω)(1−R2
v),
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c4 = µ(θ + µ + ω)((κ + µ)(d + δ + ρ1 + 3µ + ρ) + (ρ1 + µ)(d + µ + ρ))

+(ρ1 + µ)(κ + µ)(d + µ + ρ)(θ + 2µ + ω) + (δ + µ)(g + µ)(d + µ + ρ)

×(θ + κ + 3µ + ω)(1−Rv) + (θ + µ)(κ + µ) + µ(θ + µ + ω)

+(κ + µ)(µ + ω)
(

1−R1
v

)
+ (δ + µ)(g + µ)((κ + µ)(θ + 2µ + ω)

+µ(θ + µ + ω))(1−R2
v),

c5 = µ(δ + µ)(κ + µ)(θ + µ + ω)((1−R1
v)(d + µ + ρ) + (1−R2

v)(ρ1 + µ))

+(δ + µ)(g + µ)(d + µ + ρ)((κ + µ)(θ + 2µ + ω) + µ(θ + µ + ω))(1−Rv)

+µ(ρ1 + µ)(κ + µ)(d + µ + ρ)(θ + µ + ω),

c6 = µ(κ + µ)(θ + µ + ω)(1−Rv).

The coefficients c1 > 0 and ck, for k = 2, . . . , 6 are positive whenRv < 1. Further, it is
easy to satisfy the Routh–Hurtwiz criteria using any algebraic computation software. We
conclude that the disease-free equilibrium of system (12) is locally asymptotically stable
whenRv < 1.

4.1. Global Stability

We can consider the vaccination model to show their global asymptomatic stability.
We consider a special case when ψ = 1, to show that the vaccination model is globally
asymptotically stable.

Theorem 4. Vaccination model (3) when ψ = 1 for η ∈ (0, 1] is globally asymptotically stable if
R0 ≤ 1.

Proof. Consider the below Lyapunov function

L = g1E + g2 A + g3 I, (18)

where

g1 = (µ + ρ1), g2 = β2, g3 =
β1(µ + ρ1)

d + µ + ρ
.

Taking the time derivative of L and using the equations from (3), we have

Dα
t L = g1[

(β1 I + β2 A)S
N

− (δ + µ)E]

+g2[qδE− (µ + ρ1)A] + g3[(1− q)δE− (µ + d + ρ)I].

This leads to the result below,

Dα
t L = [g1β1

S
N
− g3(µ + dρ)]I + [g1β2

S
N
− g2(µ + ρ1)]A

+[g2δq + g3(1− q)δ− g1(δ + µ)]E.

We using the fact that (S(t) ≤ N(t)), and receive

Dα
t L ≤

[ β1δ(1− q)
(δ + µ)(d + µ + ρ1)

+
δqβ2

(δ + µ)(µ + ρ1)
− 1
]
(δ + µ)(µ + ρ1)E,
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≤ (δ + µ)(µ + ρ1)(R0 − 1)E.

Thus, if R0 ≤ 1, then Dα
t L ≤ 0, and if E(t) = 0, then Dα

t L = 0. Using E(t) = 0 in
system (3), it can be seen that model (3) approaches the disease-free equilibrium. Therefore,
LaSalleâ€™s Invariance Principle ensures that the vaccination model (3) when ψ = 1 is
globally asymptotically stable.

4.2. Global Stability of Endemic Equilibrium for Special Case (ψ = 1, κ = 0)

We use the following results in the proof of endemic equilibrium P1:

Π = (β1 I∗ + β2 A∗)S∗ + (ω + µ)S∗ − θV∗,

ω = (θ+µ)V∗
S∗ ,

(δ + µ) = (β1 I∗+β2 A∗)S∗
E∗ ,

(µ+ρ1)
qδ = E∗

A∗ ,

(µ+d+ρ)
(1−q)δ = E∗

I∗ ,

(19)

Proposition 1. When R0 > 1, then model (12) for special case (ψ = 1, κ = 0) is globally
asymptotically stable.

Proof. Let us define the Lyapunov function given by

L(t) = S− S∗ − S∗ ln
( S

S∗
)
+ θ(θ + µ)

[
V −V∗ −V∗ ln

( V
V∗
)]

+E− E∗ − E∗ ln
( E

E∗
)
+

β2S∗A∗

qδE∗
[

A− A∗ − A∗ log
( A

A∗
)]

+
β1S∗ I∗

(1− q)δE∗
[

I − I∗ − I∗ ln
( I

I∗
)]

. (20)

Then differentiating (20) with time, we receive

Dα
t L(t) =

(
1− S∗

S

)
Dα

t S + θ(θ + µ)
(

1− V∗

V

)
Dα

t V +
(

1− E∗

E

)
Dα

t E

+
β2S∗A∗

qδE∗
(

1− A∗

A

)
Dα

t A +
β1S∗ I∗

(1− q)δE∗
(

1− I∗

I

)
Dα

t I. (21)

We compute,(
1− S∗

S

)
Dα

t S =
(

1− S∗

S

)
[Π− (β1 I + β2 A)S

N
− (ω + µ)S(t) + θV(t)],

≤
(

1− S∗

S

)
[Π− (β1 I + β2 A)S− (ω + µ)S(t) + θV(t)],

≤ (µ + ω)S∗
(

2− S∗

S
− S

S∗
)
− θV∗

(
1− S∗

S
− V

V∗
+

VS∗

SV∗
)

+β1S∗ I∗
(

1− SI
S∗ I∗

− S∗

S
+

I
I∗
)

+β2S∗A∗
(

1− SA
S∗A∗

− S∗

S
+

A
A∗
)

, (22)
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θ(θ + µ)
(

1− V∗

V

)
Dα

t V ≤ (θ + µ)θ
(

1− V∗

V

)
[ωS− (θ + µ)V],

≤ θ
(

1− V∗

V

)[V∗S
S∗
−V

]
,

≤ θV∗
(

1 +
S
S∗
− V

V∗
− SV∗

VS∗
)

(23)

(
1− E∗

E

)
Dα

t E ≤
(

1− E∗

E

)[
(β1 I + β2 A)S− (δ + µ)E

]
,

≤ β1S∗ I∗
(

1− E
E∗

+
SI

I∗S∗
− SIE∗

EI∗S∗
)

+β2S∗A∗
(

1− E
E∗

+
SA

A∗S∗
− SAE∗

EA∗S∗
)

, (24)

β2S∗A∗

qδE∗
(

1− A∗

A

)
Dα

t A =
β2S∗A∗

qδE∗
(

1− A∗

A

)
[qδE− (µ + ρ1)A],

≤ β2S∗A∗
(

1 +
E
E∗
− EA∗

AE∗
− A

A∗
)

, (25)

β1S∗ I∗

(1− q)δE∗
(

1− I∗

I

)
Dα

t I =
β1S∗ I∗

(1− q)δE∗
(

1− I∗

I

)
[(1− q)δE− (µ + d + ρ)I],

≤ β1S∗ I∗
(

1 +
E
E∗
− EI∗

IE∗
− I

I∗
)

, (26)

Using Equations (22)–(26) into (21), we get

Dα
t L(t) ≤ (ω + µ)S∗

(
2− S∗

S
− S

S∗
)

+β1S∗ I∗
(

3− S∗

S
− EI∗

IE∗
− SIE∗

S∗ I∗E

)
+β2S∗A∗

(
3− S∗

S
− EA∗

AE∗
− SAE∗

S∗ I∗E

)
+θV∗

(S∗

S
+

S
S∗
− VS∗

SV∗
− SV∗

VS∗
)

.

Dα
t L(t) ≤ 0, so model (12) is globally asymptotically stable ifR0 > 1.

5. Parameter Estimations

We shall present the estimations of the parameters in the present section. The infected
cases of coronavirus in Pakistan have been taken from a website [1] for the given period,
12 May 2022–30 September 2022. The data obtained have been arranged in cumulative
form. The time unit considered in the model versus data fitting is a unit per day. To acquire
the data fitting results and the needed numerical values of the model parameters in this
simulation, we employed the nonlinear square curve fitting approach. It should be noted
that the model with no vaccination is considered to fit the data. A total of 10 parameters are
used in the estimations of parameters; among these parameters, the natural death and the
birth rate have been computed from model equations while the remaining have been fitted
to the data.

The initial conditions and the total population of Pakistan in 2022 have been consid-
ered to be N(0) = 230,557,367 [39]. The initial conditions have been arranged as follows:
S(0) = 230,255,033, E(0) = 300,000, A(0) = 2000, I(0) = 334, and R(0) = 0. The specifics

of the parameter values acquired during model fitting are shown in Table 1. The numerical
values used in Table 1 and the computed basic reproduction number are obtained to be
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R0 ≈ 1.2591. The result of fitting the data to the model is depicted in Figure 2. The result
in Figure 2 shows that the model is well-matched with the data, and hence the parameters
obtained are useful in further simulations of the model regarding disease eliminations.
It should be noted that we will consider the vaccination model and obtain the graphical
results regarding the disease eliminations. In the vaccination model, ω is defined to be
the vaccination of healthy people, and its numerical value is considered to be ω = 0.001.
The parameter ψ that measures the vaccine efficacy rate and its numerical value is given
by ψ = 0.6. The immunity loss due to vaccination is given by the parameter θ = 0.01. It
should be noted that no vaccine is 100% effective, and there is a waning of vaccination.

Time(May,13, 2022--Sep,30,2022 )

0 20 40 60 80 100 120 140 160

M
o
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e

l v
e

rs
u

s 
d

a
ta

×104
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1.5

2

2.5

3

Cases

Model simulation

Figure 2. Data fitting to the model using the parameters given in Table 1.

6. Numerical Results
6.1. Numerical scheme

Here, we we shall present the numerical procedure to solve the vaccination fractional
order model (12) with the fractional order η ∈ (0, 1]. We shall use the predictor corrector
method of Adams–Moulton type that has already been used in the literature for applications;
see [40,41]. System (12) can be rewritten in the form given by:{

CDη
t w(t) = H

(
t, w(t)

)
,

w(0) = w0, 0 < T < ∞,
(27)

where w = (S, V, E, A, I, R) ∈ R6,H
(

t, w(t)
)

is a continuous real-valued vector function
that satisfies the Lipschitz condition, while w0 defines the initial state vector. We have the
following when applying the Caputo integral on both sides of Equation (27),

w(t) = w0 +
1

Γ(η)

∫ t

0
(t−v)ηH

(
v, w(v)

)
dv. (28)
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We shall explain, in detail, the algorithm by using a uniform grid on [0, T ] with the
step-size h = T −0

m and m ∈ N. Therefore, the equation given in (28) can follow the following
structure when considering the Euler method [42]:

wn+1 = g0 +
hη

Γ(η+1) ∑n
j=0((n− j + 1)η − (n− j)η)H

(
tj, w(tj)

)
,

n = 0, 1, 2, · · · , m.

(29)

Therefore, we shall use scheme (29) and present the following iterative formulae for
our considered system (12):

Sn+1 = S0 +
hη

Γ(η + 1)

η

∑
j=0

Bn,j

(
Π−

(β1 Ij + β2 Aj)Sj

Nj
− (ω + µ)Sj + κRj + θVj

)
,

Vn+1 = V0 +
hη

Γ(η + 1)

η

∑
j=0

Bn,j

(
ωSj − (1− ψ)

(β1 Ij + β2 Aj)Vj

Nj
− (θ + µ)Vj

)
,

En+1 = E0 +
hη

Γ(η + 1)

η

∑
j=0

Bn,j

(
(β1 Ij + β2 Aj)Sj

Nj
+ (1− ψ)

(β1 Ij + β2 Aj)Vj

Nj
− (δ + µ)Ej

)
,

An+1 = A0 +
hη

Γ(η + 1)

η

∑
j=0

Bn,j

(
qδEj − (µ + ρ1)Aj

)
,

In+1 = I0 +
hη

Γ(η + 1)

η

∑
j=0

Bn,j

(
(1− q)δEj − (µ + d + ρ)I),

Rn+1 = R0 +
hη

Γ(η + 1)

η

∑
j=0

Bn,j

(
ρIj + ρ1 Aj − (κ + µ)Rj

)
, (30)

where Bn,j =
(
(n− j + 1)η − (n− j)η

)
. The above scheme shall be considered in the below

subsection to present the numerical results graphically.

6.2. Results

We discuss the numerical results of system (3) using the scheme in (30) with the
parameter values given in Table 1 and the given initial conditions S(0) = 230,225,033,
V(0) = 30,000, E(0) = 300,000, A(0) = 2000, I(0) = 334, and R(0) = 0. We first give
a numerical result of model (12) for various values of η in order to demonstrate the
effectiveness of the scheme used. It can be observed from Figure 3 that varying η the
simulation results converge to their equilibrium point. Hence the solutions regarding the
model with the scheme are fine.

Figure 4 represents the impact of the parameter β2 on the vaccinations and the infected
compartments. It can be observed that if contact between asymptomatic people and healthy
is minimized, then the number of future cases shall be minimized. It should be noted that
asymptomatic individuals do not have clear symptoms, which makes them difficult to
identify. If we need to minimize disease spread, then we shall use lockdown, maintain
social distancing, and follow other suggestions of the World Health Organization (WHO).
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Figure 3. Simulation of model (3) under various values of the fractional order η. Subfigures (a–f) de-
scribes the dynamics of susceptible, vaccinated, exposed, asymptomatic, symptomatic, and recovered
individuals respectively.

Figures 5–7 represent the numerical results of vaccine efficacy. In Figure 5, we consider
less efficacy of vaccine ψ = 0.6 and for various values of ω. It can be observed that with
vaccination, the cases are decreases. Similarly, improving the vaccine efficacy by using
ψ = 0.7, 0.9, the number of infected cases decreases, and it can be considered useful.
The vaccination efficacy of any vaccine regarding any disease is important to control
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the infection spread. Regarding the coronavirus vaccine, researchers and scientists are
improving the vaccine efficacy rate against the coronavirus infection.
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Figure 4. Simulation of the model components for different values of δ and η = 0.95. Subfigures
(a–d) describe the dynamics of vaccinated, exposed, asymptomatic, and symptomatic individuals
respectively.
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Figure 5. Impact of the vaccination rate on the components of the system for different values of ω and
less efficacy, ψ = 0.6 and η = 0.95. Subfigures (a–d) describe the dynamics of vaccinated, exposed,
asymptomatic, and symptomatic individuals respectively.
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Figure 6. Impact of the vaccination rate on the components of the system for different values of ω and
efficacy, ψ = 0.7 and η = 0.95. Subfigures (a–c) describes the dynamics of exposed, asymptomatic,
and symptomatic individuals respectively.
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Figure 7. Impact of the vaccination rate on the model components for different values of ω and
more effective efficacy, ψ = 0.9 and η = 0.95. Subfigures (a–c) describe the dynamics of exposed,
asymptomatic, and symptomatic individuals respectively.
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Figure 8 shows the vaccination efficacy rate on the infected populations. It can be
noted from the result in Figure 8 that the number of future cases is decreasing with the
improvement in the efficacy rate.
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Figure 8. Vaccination efficacy rate on infected compartment ψ with η = 0.95. Subfigures (a–c)
describes the dynamics of exposed, asymptomatic, and symptomatic individuals respectively.

Figure 9 represents the natural immunity loss impact on the infected compartments.
With less natural loss of immunity of the individuals, the number of infected people decreases.
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Figure 9. Impact of the natural loss of immunity on infected compartments, θ with η = 0.95.
Subfigures (a–c) describes the dynamics of exposed, asymptomatic, and symptomatic individuals
respectively.
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It is well-known that vaccination has great advantages in regard to minimizing the
disease spread. The vaccine’s basic reproductive number also what we can call the effective
reproductive number minimizes the secondary infection further. We shall compare the
result for the case of vaccine and without vaccine reproductive number in Figure 10. It is
obvious from the result shown in Figure 10 that the vaccine decreases the basic reproduction
number. Further, the vaccine with good efficacy, low waning rate, and expedited vaccination
rate can also decrease better the basic reproductive number.
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Figure 10. Comparison of the basic reproduction for various values of ω, ψ, and θ for with and
without vaccine cases. Subfigures (a,b) describe the comparison of the basic reproduction numbers
for various values of ω = 0.01, ψ = 0.6, θ = 0.01 and ω = 0.1, ψ = 0.8, θ = 0.01, respectively.

7. Conclusions

In the present paper, we analyzed the dynamics of the coronavirus infection under
vaccination impact and immunity decline. We studied the model and presented their
local asymptotical stability under the conditions of Rv

0 < 1. We also presented that the
vaccination model, under certain conditions, is globally asymptotically stable if Rv

0 ≤ 1.
The global asymptotical stability of the model is shown for Rv

0 > 1 as a special case. We
also considered the endemic equilibria and their existence and found that there may be a
backward bifurcation under certain conditions. We discussed and added related results for
the occurrence of backward bifurcation.

We considered the infected cases of coronavirus infection of the recent wave in the
country of Pakistan for the period May–September 2022. We used the nonlinear least
square curve fitting method and obtained the realistic values of the model parameters.
The numerical value of the basic reproduction number computed for the obtained numerical
values in the absence of vaccination isR0 ≈ 1.2591, and with vaccination, the numerical
value of the basic reproduction number isRv

0 ≈ 1.1907 with less efficacy ψ = 0.6. Increasing
the vaccine efficacy rate up to ψ = 0.8 80% with vaccination rate ω = 0.01, we have
Rv

0 ≈ 1.1907. This indicates that our model’s results are reliable and shall be considered for
the elimination of infection in the country. The vaccination rate and the efficacy with less
immunity decline shall provide reasonable results for the decrease in future cases.

Further, we considered the obtained numerical values of the model parameters and
presented the numerical results with a numerical scheme for the Caputo differential equa-
tions. Initially, we tested the schemes for various values of the fractional order η on the
model equations and found that the model converges to its equilibrium point when varying
the value of η. The impact of the model’s parameters that have a great impact on the elimi-
nation of infection, in the long run, are plotted graphically. The asymptomatic individuals
have been identified to be crucial for the increase in cases. We have obtained the results
that the number of cases is increasing rapidly when the asymptomatic rate of infection is
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increased. One of the reasons is that asymptomatic people greatly contribute to the infected
cases due to their lack of visible symptoms, and hence people think they are healthy unless
they get tested. Vaccine efficacy has a great role in disease elimination. If the vaccination
has a high efficacy rate, then the number of cases shall be minimized, and the further
disease cases shall be less. In our numerical results, we found that by increasing the efficacy
and vaccine rate, the number of future infected cases decrease. The natural immunity loss
also causes an increase in future cases. If there is less natural loss in immunity, then the
number of future cases will be decreased. In the future, this work can be extended using
new numerical approaches with newly defined fractional operators and a comparison with
other numerical methods shall be drawn.
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