
Citation: Chang, H.; Wang, E.; Liu, J.

Research on Image Encryption Based

on Fractional Seed Chaos Generator

and Fractal Theory. Fractal Fract. 2023,

7, 221. https://doi.org/10.3390/

fractalfract7030221

Received: 29 January 2023

Revised: 12 February 2023

Accepted: 22 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Research on Image Encryption Based on Fractional Seed Chaos
Generator and Fractal Theory
Haiping Chang, Erfu Wang * and Jia Liu

School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
* Correspondence: wangerfu@hlju.edu.cn

Abstract: In this paper, a new fractional-order seed chaotic generator is designed to solve the problem
of the complex operations of single low-dimensional systems and simple high-dimensional systems.
The fractional-order chaotic system generated is proven to have better chaotic performance using
Lyapunov exponential differential calculus, approximate entropy, 0–1 test and other indicators. On
this basis, the “multiple squares nested body scrambling (MSNBS)” model is extended from fractal
theory to complete the image scrambling process, and a new algorithm is proposed to be applied to
the encryption field in combination with the fractional-order coupled chaotic system. Experimental
simulations show that the algorithm can resist common differential attacks and noise attacks and
improve the security of the algorithm.

Keywords: chaos; image encryption; fractional-order

1. Introduction

With the popularity of 5G technology and the rise of 6G technology, people are
increasingly inclined to use intuitive transmission methods such as pictures and videos
for information interaction on the network, rather than text. Image encryption technology
is the main means to protect information security and personal privacy from external
threats. However, traditional image encryption algorithms are not suitable for images with
miscellaneous data. The introduction of chaos theory provides a new idea and method
for image encryption. For various beginning values, a chaotic system can produce unique
pseudo-random sequences. The sequences traverse uniformly in the interval. Good key
sensitivity can be obtained when encrypting images using the characteristics of chaos
theory. However, a chaotic system is not uniformly chaotic in the whole parameter plane
and will be controlled by the range of system parameters. This drawback has a negative
impact on the subsequent ciphertext images to resist phase space attacks and powerful
attacks. At present, most image encryption algorithms use a combination of chaotic
systems and the “scrambling diffusion” framework. In response to the drawbacks of simple
chaotic performance, insufficient scrambling and weak diffusion randomness of a single
low-dimensional system, the three parts mentioned above are improved to enhance the
encryption algorithm’s ability to resist external attacks.

At present, many scholars are studying how to improve the disadvantages of low-
dimensional chaotic systems, such as improving the existing one-dimensional chaotic
systems and using linear methods to couple different systems. The magnitude of variables
is dynamically set in [1], and the Logistic map and Sine map are cascaded to generate an
I1DS chaotic sequence to expand the value range of parameters. However, this chaotic
system still has the problem of blank window. Mohamed Amine Midoun performed
fractional operation on cosine function and sine function, and 1DLSE [2] system generated
is complex and difficult to predict. Considering the nonlinearity and high complexity of the
fractional operation, the system still needs to be improved to enhance the efficiency of the
algorithm. In reference [3], the 1DLSE chaotic system obtained by nesting the Logistic map

Fractal Fract. 2023, 7, 221. https://doi.org/10.3390/fractalfract7030221 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7030221
https://doi.org/10.3390/fractalfract7030221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-3161-7225
https://doi.org/10.3390/fractalfract7030221
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7030221?type=check_update&version=1

Fractal Fract. 2023, 7, 221 2 of 24

and Sine map in the way of multiplication traverses the entire parameter plane uniformly.
At the same time, the introduction of control parameters expands the key space of the
encryption algorithm. However, only a single 1DLSE system is used to complete the entire
encryption process, making it easy for intruders to crack the original image. In the process
of image encryption, it is sometimes necessary for multiple chaotic systems to generate
different chaotic sequences. From the above analysis, we need to couple a wide range of
chaotic systems with good chaos randomness, and we need to couple at least two new
chaotic systems to realize the encryption process. Therefore, many scholars summarize
the coupling methods of various literatures, take one-dimensional chaotic maps as the
seed, build a general internal structure of integrated chaotic systems, create a seed chaotic
generator and output multiple chaotic systems with a wide range of parameters. Zhou
proposed a one-dimensional chaotic system seed generator for the first time. The integrated
system is constructed by summation, and three chaotic sequences uniformly distributed in
[0,1] are obtained. The Lyapunov exponent [4] of the integrated chaotic system is greater
than the Lyapunov value of the seed mapping. Reference [5] proposed a coupled chaotic
system based on unit transformation. As a novel chaotic model, UT-CCS has stronger seed
universality than Zhou’s integrated system, but the unit change function needs to be set
manually. Hu proposed an ICS-I system [6] integrating three chaotic seed maps. In order to
improve the unpredictability of this model, a circuit switch was designed to build the ICS-II
system on its basis, which improved its chaotic performance to a certain extent. However,
the output of the chaotic integrated system still does not have a continuous chaotic range.
The problem of blank window also makes the output chaotic system unable to achieve
the desired effect, and the structure of the system is complex. It is inconsistent with the
original intention of constructing a seed generator to address the complex operation of a
high-dimensional chaotic system. Based on this, this paper proposes a method based on
cascading, modular and exponential operation to build the model of seed chaotic generator
and completes the derivation of the Lyapunov exponent concerning reference [6] (see
Section 2.2 for details). The model proposed in this paper takes the classical Logistic map,
Sine map and Tent map as the seeds and arbitrarily selects two seeds as the input of the
generator. Under the control parameters, the sensitivity of the output chaotic system
is enhanced, and the key space is increased, which can play an important role in the
subsequent encryption algorithms.

The correlation between plaintext images may become a breakthrough for criminals
to attack ciphertext images. Therefore, we need to use scrambling methods to break the
relationship between images and improve the security of ciphertext images. Scrambling
achieves the best effect by changing the position of pixels and reducing the correlation
between adjacent pixels. Existing scrambling algorithms include DNA scrambling [7,8],
bit scrambling [9,10], pixel scrambling [11–13] and chaotic mapping scrambling [14,15].
Reference [16] proposed a spiral scanning scrambling method based on chaotic sub-blocks
to overcome the shortcoming that the general spiral scanning algorithm cannot change
the position of each pixel. Although the improved algorithm changes the position of
each pixel, the relative position of the elements in the block matrix has not changed. In
order to further hide plaintext information, reference [17] generates scrambled ciphertext
through two rounds of dynamic L-type scrambling and Arnold scrambling. Although the
ciphertext changes the position of plaintext pixels, the correlation between adjacent pixels
of the ciphertext image has not been broken, and the algorithm requires two rounds of
the scrambling process to achieve the desired scrambling effect, which not only increases
the complexity of the algorithm but also reduces the encryption efficiency. For human
organ images, medical images and military images containing sensitive information, it is
necessary to completely hide the size and position of plaintext pixels. In order to prevent
attackers from stealing and attacking images from ciphertext image lines, it is necessary
to ensure that the pixels are fully scrambled in the scrambling process. Therefore, this
paper proposes a scrambling method based on the fractal theory of multi-square nested
volume (MSNBS). The algorithm applies the improved Josephus scrambling to the MSNBS

Fractal Fract. 2023, 7, 221 3 of 24

algorithm, realizes the complete and sufficient scrambling of plaintext images and improves
the security of the encryption algorithm.

The structure and contents of this paper are as follows: Section 2 introduces the internal
architectures of the seed chaotic generator in detail. Section 3 explains the principle of the
MSNBS algorithm. Section 4 presents the algorithm flow of the entire image encryption.
Section 5 analyzes the security performance of the algorithm. Finally, Section 6 summarizes
the contents of this paper.

2. New Fractional-Order Seed Chaotic Generator
2.1. Internal Integration Structure of Seed Generator

In this paper, the Logistic map, Sine map and Tent map are used as the inputs of the
seed generator. Any two of them are used as the system inputs to build an internal integra-
tion framework of the seed generator. The characteristics of the seed chaotic mapping are
as follows:

1. Logistic map:

xn+1 = 4µxn(1− xn), (1)

2. Sine map:

xn+1 = µ sin(πxn), (2)

3. Tent map:

xn+1 =

{
2µxn, xn < 0.5
2µ(1− xn), xn ≥ 0.5

, (3)

where µ ∈ [0, 1]. For Logistic system, the system enters into chaos when µ ∈ [0.9, 1];
Sine map has good chaotic behavior when µ ∈ [0.87, 1]; The chaotic range of Tent map is
µ ∈ [0.5, 1]. One noteworthy point about the Tent mapping is that it can fall into periodic
behavior due to floating-point operations. In order to avoid this problem, we should select
an appropriate initial value, such as 0.4999 instead of 0.5, to avoid the occurrence of periodic
behavior. In this paper, the Tent map is used to combination with other chaotic maps, and
the problems caused by rounding errors can also be solved. In conclusion, the above three
classical chaotic maps are controlled by a single parameter, and the parameters must be
within a certain range for the system to enter the chaotic state.

In this paper, the chaotic systems mentioned above are used as inputs to the fractional-
order seed generator to complete the coupling and then the output. The internal integration
structure of the fractional-order seed chaos generator is shown in Figure 1, and the formulae
for the digitization of this model are defined as shown in Equation (4).

xn+1 = Γ(xn) =
(

eλ(R(r,x)+S(1−r,x)) + R(r, S(1− r, x))
)

mod1, (4)

where xn+1 is the output of the seed chaos generator, R(r, x) and S(1− r, x) represent the
seed chaotic map with parameters r and 1− r, respectively. λ is a constant parameter
for controlling a chaotic system. To ensure good chaotic behavior, the value range of
λ is [5,+∞).

Fractal Fract. 2023, 7, 221 4 of 24

Fractal Fract. 2023, 7, x FOR PEER REVIEW 4 of 26

chaotic map) and SCLCM (Sine cascade Logistic chaotic map). Similarly, when Logistic
and Tent map, Sine and Tent map are used as inputs, the following chaotic systems can
be generated: LCTCM (Logistic cascade Tent chaotic map), SCTCM (Sine cascade Tent
chaotic map) and TCSCM (Tent cascade Sine chaotic map), respectively. The expressions
of seed mapping types and generated chaotic systems are shown in Table 1. See Table 2
for the corresponding seed mapping types of the output chaotic system.

nxe
 , nR r x

 1 , nS r x

nx  mod 1nx 

  , 1 , nR r S r x

Figure 1. Internal integration structure block diagram of seed generator.

Table 1. The output of seed chaos generator.

Name New Chaotic Systems Excited by Seed Generator

LCSCM               4 1 1 sin
1 4 1 sin 1 1 sin mod1n n nx x x

n n nx e x x        
    


      
 

SCLCM           4 1 1 sin
1 sin 4 1 1 mod1n n nx x x

n n nx e x x      
    


     
 

LCTCM

       
            

4 1 2 1

1 4 1 2 1 1

8 1 1 2 mod1, 0.5

8 1 1 1 2 1 1 mod1, 0.5

n n n

n n n

x x x
n n n

n x x x
n n n

e x x x
x

e x x x

  

  

 

  

    

      

       
          

TCLCM

       
          

2 4 1 1

1 2 1 4 1 1

8 1 1 mod1, 0.5

2 1 4 1 1 mod1, 0.5

n n n

n n n

x x x
n n n

n x x x
n n n

e x x x
x

e x x x

  

  

 

 

    

      

       
        

SCTCM

      
         

sin 2 1

1 sin 2 1 1

sin 2 1 mod1, 0.5

sin 2 1 1 mod1, 0.5

n n

n n

x x
n n

n x x
n n

e x x
x

e x x

   

   

  

  

   

     

      
       

TCSCM

       
          

1 sin 2

1 1 sin 2 1

2 1 sin mod1, 0.5

2 1 1 sin mod1, 0.5

n n

n n

x x
n n

n x x
n n

e x x
x

e x x

   

   

  

  

   

     

      
       

nxe
 , nR r x

 1 , nS r x

nx  mod 1nx 

 n nx S x
 , nR r x

Figure 1. Internal integration structure block diagram of seed generator.

Based on the pairwise combination of three seed maps, six new chaotic systems can be
generated. Using Logistic and Sine map as inputs can generate two new chaotic systems
due to different cascade positions and parameters: LCSCM (Logistic cascade Sine chaotic
map) and SCLCM (Sine cascade Logistic chaotic map). Similarly, when Logistic and Tent
map, Sine and Tent map are used as inputs, the following chaotic systems can be generated:
LCTCM (Logistic cascade Tent chaotic map), SCTCM (Sine cascade Tent chaotic map) and
TCSCM (Tent cascade Sine chaotic map), respectively. The expressions of seed mapping
types and generated chaotic systems are shown in Table 1. See Table 2 for the corresponding
seed mapping types of the output chaotic system.

Table 1. The output of seed chaos generator.

Name New Chaotic Systems Excited by Seed Generator

LCSCM xn+1 =
(

eλ[4µxn(1−xn)+(1−µ) sin (πxn)] + 4µ(1− µ) sin(πxn)(1− (1− µ) sin(πxn))
)

mod1

SCLCM xn+1 =
(

eλ[4(1−µ)xn(1−xn)+µ sin (πxn)] + µ sin(4π(1− µ)xn(1− xn))
)

mod1

LCTCM xn+1 =


(

eλ[4µxn(1−xn)+2(1−µ)xn] + 8µ(1− µ)xn(1− 2xn)
)

mod1, xn < 0.5(
eλ[4µxn(1−xn)+2(1−µ)(1−xn)] + 8µ(1− µ)(1− xn)(1− 2(1− µ)(1− xn))

)
mod1, xn ≥ 0.5

TCLCM xn+1 =


(

eλ[2µxn+4(1−µ)xn(1−xn)] + 8µ(1− µ)xn(1− xn)
)

mod1, xn < 0.5(
eλ[2µ(1−xn)+4(1−µ)xn(1−xn)] + 2µ(1− 4(1− µ)xn(1− xn))

)
mod1, xn ≥ 0.5

SCTCM xn+1 =


(

eλ[µ sin (πxn)+2(1−µ)xn] + µ sin(2π(1− µ)xn)
)

mod1, xn < 0.5(
eλ[µ sin (πxn)+2(1−µ)(1−xn)] + µ sin(2π(1− µ)(1− xn))

)
mod1, xn ≥ 0.5

TCSCM xn+1 =


(

eλ[(1−µ) sin (πxn)+2µxn] + 2µ(1− µ) sin(πxn)
)

mod1, xn < 0.5(
eλ[(1−µ) sin (πxn)+2µ(1−xn)] + 2µ(1− (1− µ) sin(πxn))

)
mod1, xn ≥ 0.5

Fractal Fract. 2023, 7, 221 5 of 24

Table 2. Corresponding seed mapping type of output chaotic system.

Name R(x) S(x)

LCSCM Logistic Sine
SCLCM Sine Logistic
LCTCM Logistic Tent
TCLCM Tent Logistic
SCTCM Sine Tent
TCSCM Tent Sine

2.2. Theoretical Derivation and Analysis of Lyapunov Exponent

LE (Lyapunov exponent) is a measure of the average convergence or divergence of
similar orbits in phase space, and it is also an important indicator to determine whether
there is dynamic chaos in the system [18]. The system enters a chaotic state when LE is
greater than 0, and the larger the LE, the more sensitive the chaotic system is to the initial
value [19]. The formula for the Lyapunov exponent is shown in Equation (5):

ε = lim
n→∞

1
n

n−1

∑
i=0

ln
∣∣ f ′(xi)

∣∣, (5)

In the following section, the definition of the Lyapunov exponent will be combined
with the principle of differential derivatives and the newly generated fractional-order seed
chaos generator Lyapunov exponent values will be compared with those reported in the
literature [6]. It is worth mentioning that the control parameters added can adjust the
LE value of the generated chaotic system. However, the effect of these parameters is not
considered in the inference process. First, two very close initial values are taken, and one
iteration is performed using Equation (4). Then, the difference between the two values after
iterating is calculated using the following formula:

|x1 − y1| =
∣∣∣eλ(R(x0)+S(x0)) − eλ(R(y0)+S(y0)) + R(S(x0))− R(S(y0))

∣∣∣, (6)

After arranging Formula (6), we obtain:

|x1 − y1| =

∣∣∣∣∣∣∣∣
eλ(R(x0)+S(x0))−eλ(R(y0)+S(y0))

λ(R(x0)+S(x0)−R(y0)−S(y0))
×

λ(R(x0)+S(x0)−R(y0)−S(y0))
x0−y0

+
R(S(x0))−R(S(y0))

S(x0)−S(y0)
× S(x0)−S(y0)

x0−y0

∣∣∣∣∣∣∣∣|x0 − y0|, (7)

Since x0 → y0 , then correspondingly R(x0)→ R(y0) and R(x0) + S(x0)→ R(y0) + S(y0) .
According to the definition of derivative, Formulas (8)–(10) can be obtained:

∣∣∣∣deλx

dx
|R(x0)+S(x0)

∣∣∣∣ ≈ lim
R(x0)+S(x0)→R(y0)+S(y0)

 ∣∣∣ eλ(R(x0)+S(x0))−eλ(R(y0)+S(y0))

λ(R(x0)+S(x0)−R(y0)−S(y0))

∣∣∣× |λ|
×
(∣∣∣ R(x0)−R(y0)

x0−y0
+ S(x0)−S(y0)

x0−y0

∣∣∣)
 (8)

∣∣∣∣dR
dx
|S(x0)

∣∣∣∣ ≈ lim
S(x0)→S(y0)

∣∣∣∣R(S(x0))− R(S(y0))

S(x0)− S(y0)
× S(x0)− S(y0)

x0 − y0

∣∣∣∣ (9)∣∣∣∣dS
dx
|x0

∣∣∣∣ ≈ lim
x0→y0

∣∣∣∣S(x0)− S(y0)

x0 − y0

∣∣∣∣ (10)

Therefore, Formula (7) can be expressed:

|x1 − y1| ≈
(∣∣∣∣deλx

dx
|R(x0)+S(x0)

∣∣∣∣+(∣∣∣∣dR
dx
|S(x0)

∣∣∣∣× ∣∣∣∣dS
dx
|x0

∣∣∣∣))|x0 − y0| (11)

Fractal Fract. 2023, 7, 221 6 of 24

The difference of absolute values generated after n iterations of initial values x0 and
y0 is shown in Formula (12):

|xn − yn| ≈
(

n

∏
i=0

∣∣∣∣deλx

dx
|R(xi)+S(xi)

∣∣∣∣+ n

∏
i=0

∣∣∣∣dR
dx
|S(xi)

∣∣∣∣× n

∏
i=0

∣∣∣∣dS
dx
|xi

∣∣∣∣
)
|x0 − y0| (12)

We denote the rate of change of Γ(x) at the position xn and yn as ∆Γ(x):

∆Γ(x) ≈
(

n

∏
i=0

∣∣∣∣deλx

dx
|R(xi)+S(xi)

∣∣∣∣+ n

∏
i=0

∣∣∣∣dR
dx
|S(xi)

∣∣∣∣× n

∏
i=0

∣∣∣∣dS
dx
|xi

∣∣∣∣
) 1

n

(13)

The Lyapunov expression obtained from the definition in Formula (5) is:

ε = lim
n→∞

1
n

n−1

∑
i=0

ln
(∣∣∣∣deλx

dx
|R(xi)+S(xi)

∣∣∣∣+ ∣∣∣∣dR
dx
|S(xi)

∣∣∣∣× ∣∣∣∣dS
dx
|xi

∣∣∣∣) (14)

The LE of ICS model in literature [6] is shown in Formula (15):

ε = lim
n→∞

1
n

n−1

∑
i=0

ln
(∣∣∣∣dH

dx
|xi

∣∣∣∣+ ∣∣∣∣dF
dx
|xi

∣∣∣∣× ∣∣∣∣dG
dx
|xi

∣∣∣∣), (15)

The
∣∣∣ dR

dx |S(xi)

∣∣∣× ∣∣∣ dS
dx |xi

∣∣∣ part from Lyapunov exponent of the chaotic system generated
in this paper represents two chaotic systems in cascade, which has the same mathemat-
ical meaning as

∣∣∣ dF
dx |xi

∣∣∣ × ∣∣∣ dG
dx |xi

∣∣∣ in Formula (15). Therefore, the results of the compari-

son between the LE of [6] and this paper depend on
∣∣∣ dH

dx |xi

∣∣∣ and
∣∣∣ deλx

dx |R(x0)+S(x0)

∣∣∣, where∣∣∣ deλx

dx |R(x0)+S(x0)

∣∣∣ is the derivative of two chaotic systems at eλx.
For the convenience of comparison, x in formula 14 represents a function of x. In other

words, it represents xn+1 in Formula (4), so we use H(x) to express x. We set the derivation
object of both as H(x), then the value of reference [6] is

∣∣∣ dH
dx |xi

∣∣∣, and the value of this paper

is |λ| ·
∣∣∣eλH(x)

∣∣∣ · ∣∣∣ dH
dx |xi

∣∣∣. According to the monotonicity of the exponential function with
e as the base, when x ∈ [0,+∞), and then ex ∈ [1,+∞). Therefore, we can conclude that∣∣∣eλH(x)

∣∣∣ ≥ 1. The value range of λ mentioned earlier is [5,+∞). To sum up, the value of

|λ| ·
∣∣∣eλH(x)

∣∣∣ · ∣∣∣ dH
dx |xi

∣∣∣ is greater than
∣∣∣ dH

dx |xi

∣∣∣. Finally, it is proved that the LE of this paper is
greater than that of the ICs model. Therefore, the chaos generated in this paper has better
characteristics and is more sensitive to the initial value.

As can be seen from Figure 2, except for the LCSCM chaotic system that is greater
than 0 in the range of (0.191, 1], The remaining chaotic systems are greater than 0 in the
whole range. Compared with the original single chaotic map, the range of parameters is
expanded. When the minimum value of λ is taken as 5, the maximum Lyapunov exponent
generated is greater than the value in reference [6], and the value of other systems is in
the range of [1, 2]. However, the maximum LE value of the generated six chaotic systems
can almost reach about 5. Therefore, the chaotic performance and sensitivity to the initial
value of the seed generator of the chaotic system in this paper are better than the output of
the ICS model. The generator in this paper only needs to complete “two out of three” to
generate an output better than that in the literature [6], which reduces the computational
complexity, simplifies the generator model, and obtains a more chaotic integrated system.

Fractal Fract. 2023, 7, 221 7 of 24

Fractal Fract. 2023, 7, x FOR PEER REVIEW 7 of 26

that   1H xe  . The value range of  mentioned earlier is  5, . To sum up, the

value of   |  
i

H x
x

dHe
dx

 is greater than |
ix

dH
dx

. Finally, it is proved that the LE of

this paper is greater than that of the ICs model. Therefore, the chaos generated in this
paper has better characteristics and is more sensitive to the initial value.

As can be seen from Figure 2, except for the LCSCM chaotic system that is greater
than 0 in the range of  0.191,1 , The remaining chaotic systems are greater than 0 in the
whole range. Compared with the original single chaotic map, the range of parameters is
expanded. When the minimum value of  is taken as 5, the maximum Lyapunov expo-
nent generated is greater than the value in reference [6], and the value of other systems is
in the range of  1,2 . However, the maximum LE value of the generated six chaotic sys-
tems can almost reach about 5. Therefore, the chaotic performance and sensitivity to the
initial value of the seed generator of the chaotic system in this paper are better than the
output of the ICS model. The generator in this paper only needs to complete “two out of
three” to generate an output better than that in the literature [6], which reduces the com-
putational complexity, simplifies the generator model, and obtains a more chaotic inte-
grated system.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. Lyapunov exponent graph of (a) LCSCM, (b) SCLCM, (c) LCTCM, (d) TCLCM, (e) TCSCM
and (f) SCTCM.

Figure 2. Lyapunov exponent graph of (a) LCSCM, (b) SCLCM, (c) LCTCM, (d) TCLCM, (e) TCSCM
and (f) SCTCM.

2.3. Bifurcation Diagram

The bifurcation diagram is used to depict how the dynamic system’s trajectory changes
as a result of the control parameters. A more uniform traversal of the bifurcation diagram
indicates better chaotic performance of the chaotic system. The distribution of the system
within the parameter range is visually shown in the bifurcation diagram. Figure 3 describes
the bifurcation diagrams of the six created chaotic systems. The system moves consistently
over the parameter range, as can be observed. The ideal chaotic effect can be attained,
except for a narrow blank window issue in Figure 3a, provided the other chaotic system
parameters are arbitrarily chosen to fall between [0,1].

Fractal Fract. 2023, 7, x FOR PEER REVIEW 8 of 27

2.3. Bifurcation Diagram
The bifurcation diagram is used to depict how the dynamic system’s trajectory

changes as a result of the control parameters. A more uniform traversal of the bifurcation
diagram indicates better chaotic performance of the chaotic system. The distribution of
the system within the parameter range is visually shown in the bifurcation diagram. Fig-
ure 3 describes the bifurcation diagrams of the six created chaotic systems. The system
moves consistently over the parameter range, as can be observed. The ideal chaotic effect
can be attained, except for a narrow blank window issue in Figure 3a, provided the other
chaotic system parameters are arbitrarily chosen to fall between [0,1].

(a) (b) (c)

(d) (e) (f)

Figure 3. Bifurcation diagram of (a) LCSCM, (b) SCLCM, (c) LCTCM, (d) TCLCM, (e) TCSCM and
(f) SCTCM.

2.4. 0−1 Test
The 0–1 test is an algorithm to test whether the system has chaotic characteristics

according to the output. For the output sequence ()φ n , where 1,2,...,=n N , the calcula-
tion formula is shown in Equation (16):

() ()
() ()

cov ,
,

var var
ξ

ξ
ξ

Δ
= Δ =

Δ
K corr , (16)

where 1,2,...,ξ = n , () () ()1 , 2 ,...,Δ =M M M n . ()M n is the mean square displacement
and their calculation expressions are as follows:

Figure 3. Bifurcation diagram of (a) LCSCM, (b) SCLCM, (c) LCTCM, (d) TCLCM, (e) TCSCM and
(f) SCTCM.

Fractal Fract. 2023, 7, 221 8 of 24

2.4. 0–1 Test

The 0–1 test is an algorithm to test whether the system has chaotic characteristics ac-
cording to the output. For the output sequence φ(n), where n = 1, 2, . . . , N, the calculation
formula is shown in Equation (16):

K = corr(ξ, ∆) =
cov(ξ, ∆)√

var(ξ)var(∆)
, (16)

where ξ = 1, 2, . . . , n, ∆ = M(1), M(2), . . . , M(n). M(n) is the mean square displacement
and their calculation expressions are as follows:

cov(x, y) =
1
q

q

∑
i=1

(x(i)− x)(y(i)− y), var(x) = cov(x, x) (17)

M(n) = lim
N→∞

1
N

N

∑
i−1

(
[p(i + n)− p(i)]2 + [q(i + n)− q(i)]2

)
− (Eφ)2 1− cos(nr)

1− cos r
(18)

p(n) =
n

∑
i=1

φ(i) cos(ir), q(n) =
n

∑
i=1

φ(i) sin(ir), Eφ = lim
N→∞

1
N

N

∑
i=1

φ(i) (19)

When the value of K is close to one, it indicates that the system is chaotic. We test the
six chaotic systems generated by the chaotic seed generator for the 0–1 test. As observed in
Figure 4, the value of the new chaotic system is close to one, indicating that it performs
more chaotic behavior than the previous chaotic systems.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 9 of 26

     
1

cos



n

i

p n i ir ,      
1

sin



n

i

q n i ir ,  
1

1lim 




 
N

N
i

E i
N

 (19)

When the value of K is close to one, it indicates that the system is chaotic. We test
the six chaotic systems generated by the chaotic seed generator for the 0–1 test. As ob-
served in Figure 4, the value of the new chaotic system is close to one, indicating that it
performs more chaotic behavior than the previous chaotic systems.

Figure 4. The 0–1 Test.

2.5. Approximate Entropy
Approximate entropy (ApEn) is an important parameter used to characterize the

complexity and irregularity of chaotic systems. The larger the value of ApEn, the higher
the complexity of the system and the better its chaotic characteristics. Figure 5 shows a
comparison of ApEn values for six newly generated chaotic systems and seed chaotic
maps. From the figure, it can be observed that the approximate entropy of the new chaotic
system is greater than the value of seed chaos, indicating that the chaotic characteristics
of the new systems generated by the seed chaotic generator are better than those of a single
seed chaotic map.

Figure 5. Approximate entropy.

Figure 4. The 0–1 Test.

2.5. Approximate Entropy

Approximate entropy (ApEn) is an important parameter used to characterize the
complexity and irregularity of chaotic systems. The larger the value of ApEn, the higher
the complexity of the system and the better its chaotic characteristics. Figure 5 shows a
comparison of ApEn values for six newly generated chaotic systems and seed chaotic maps.
From the figure, it can be observed that the approximate entropy of the new chaotic system
is greater than the value of seed chaos, indicating that the chaotic characteristics of the
new systems generated by the seed chaotic generator are better than those of a single seed
chaotic map.

Fractal Fract. 2023, 7, 221 9 of 24

Fractal Fract. 2023, 7, x FOR PEER REVIEW 9 of 26

     
1

cos



n

i

p n i ir ,      
1

sin



n

i

q n i ir ,  
1

1lim 




 
N

N
i

E i
N

 (19)

When the value of K is close to one, it indicates that the system is chaotic. We test
the six chaotic systems generated by the chaotic seed generator for the 0–1 test. As ob-
served in Figure 4, the value of the new chaotic system is close to one, indicating that it
performs more chaotic behavior than the previous chaotic systems.

Figure 4. The 0–1 Test.

2.5. Approximate Entropy
Approximate entropy (ApEn) is an important parameter used to characterize the

complexity and irregularity of chaotic systems. The larger the value of ApEn, the higher
the complexity of the system and the better its chaotic characteristics. Figure 5 shows a
comparison of ApEn values for six newly generated chaotic systems and seed chaotic
maps. From the figure, it can be observed that the approximate entropy of the new chaotic
system is greater than the value of seed chaos, indicating that the chaotic characteristics
of the new systems generated by the seed chaotic generator are better than those of a single
seed chaotic map.

Figure 5. Approximate entropy.

Figure 5. Approximate entropy.

3. MSNBS Scrambling Algorithm
3.1. Improved Josephus Loop

The Josephus problem is summarized into a mathematical model where individu-
als are numbered in turn to form a circle. Each person counts off in sequence, and the
person who counts to l leaves the circle. Then the counting resumes from the next per-
son who leaves until everyone leaves. The output is the position number of the person
who leaves, generating the Josephus sequence [14]. The Josephus function expression,
defined in reference [20], is f (S, l, r). S is the number of elements, l is the cycle step and
r is the starting position. If the input sequence is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the Josephus
traversal is completed under the premise of l = 5 and r = 3, and the output sequence is
{7, 2, 8, 4, 1, 10, 3, 6, 9, 5}. The specific internal process is shown in Figure 6. The elements
marked in orange indicate that the input and output sequences have the same elements at
the same position.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 10 of 26

3. MSNBS Scrambling Algorithm
3.1. Improved Josephus Loop

The Josephus problem is summarized into a mathematical model where individuals
are numbered in turn to form a circle. Each person counts off in sequence, and the person
who counts to l leaves the circle. Then the counting resumes from the next person who
leaves until everyone leaves. The output is the position number of the person who leaves,
generating the Josephus sequence [14]. The Josephus function expression, defined in ref-
erence [20], is  , ,f S l r . S is the number of elements, l is the cycle step and r is the
starting position. If the input sequence is  1,2,3,4,5,6,7,8,9,10 , the Josephus traversal is
completed under the premise of 5l and 3r , and the output sequence is
{7, 2,8, 4,1,10,3,6,9,5} . The specific internal process is shown in Figure 6. The elements
marked in orange indicate that the input and output sequences have the same elements at
the same position.

Figure 6. Josephus loop.

Wang applied the Josephus loop to image encryption. However, to enhance the con-
nection between Josephus scrambling and plaintext, he changed the step size from a fixed
value to the mean value of plaintext pixels, but the improved Josephus scrambling could
not achieve sufficient scrambling [21]. To ensure that the position of each pixel changes
when the image is dislocated, we improve the Josephus loop. Once an element completes
the Josephus loop, it is determined whether the input elements at the corresponding po-
sitions of the output elements are the same. If they are the same, the element is skipped,
and the output starts at the next position until all elements have completed the Josephus
loop.

3.2. Multi Square Nested Body Based on Fractal Theory
Similarity is a linear transformation that contracts or expands geometry at the same

rate in all directions, whereas affine is a linear transformation that contracts or expands at
different rates in different directions. Affine is a non-uniform linear transformation, while
similarity is a uniform linear transformation and is a special case of affine. Fractals under
the action of self-similarity are called linear fractals and are classified as strictly linear
fractals, statistical linear fractals, and random linear fractals. The strict linear fractal is
strictly self-similar, i.e., there is infinite nesting in mathematics. Therefore, based on the
strict linear fractal theory, this paper divides the image matrix into multiple square nested
bodies of different specifications, named MSNB-Ⅰ and MSNB-Ⅱ. As shown in Figure 7,
different square nested bodies are identified in red in the two models, which contain four

Figure 6. Josephus loop.

Wang applied the Josephus loop to image encryption. However, to enhance the con-
nection between Josephus scrambling and plaintext, he changed the step size from a fixed
value to the mean value of plaintext pixels, but the improved Josephus scrambling could not
achieve sufficient scrambling [21]. To ensure that the position of each pixel changes when
the image is dislocated, we improve the Josephus loop. Once an element completes the

Fractal Fract. 2023, 7, 221 10 of 24

Josephus loop, it is determined whether the input elements at the corresponding positions
of the output elements are the same. If they are the same, the element is skipped, and the
output starts at the next position until all elements have completed the Josephus loop.

3.2. Multi Square Nested Body Based on Fractal Theory

Similarity is a linear transformation that contracts or expands geometry at the same
rate in all directions, whereas affine is a linear transformation that contracts or expands
at different rates in different directions. Affine is a non-uniform linear transformation,
while similarity is a uniform linear transformation and is a special case of affine. Fractals
under the action of self-similarity are called linear fractals and are classified as strictly
linear fractals, statistical linear fractals, and random linear fractals. The strict linear fractal
is strictly self-similar, i.e., there is infinite nesting in mathematics. Therefore, based on the
strict linear fractal theory, this paper divides the image matrix into multiple square nested
bodies of different specifications, named MSNB-I and MSNB-II. As shown in Figure 7,
different square nested bodies are identified in red in the two models, which contain four
layers of squares with different side lengths. The pixels on the square layer participate in
the process of intra-block scrambling and inter-block scrambling.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 11 of 26

layers of squares with different side lengths. The pixels on the square layer participate in
the process of intra-block scrambling and inter-block scrambling.

(a) (b)

Figure 7. Multi square nested body model. (a) MSNBS-I; (b) MSNB-II.

3.3. Description of Intra-Block Scrambling and Inter-Block Scrambling
In this paper, the processes of intra-block scrambling and inter-block scrambling are

collectively referred to as the MSNBS algorithm. Firstly, intra-block scrambling is com-
pleted using the MSNB-I model and a modified Josephus loop to achieve a change in the
position of each pixel in the plaintext. Secondly, inter-block scrambling is completed using
the MSNB-II model and the index matrix to achieve full scrambling of the plaintext pixel
correlation. The following is a detailed explanation of intra-block scrambling and inter-
block scrambling.

Block-internal scrambling: Taking the following 8 × 8 square matrix as an example,
when as many elements as possible are on the “square layer”, more and wider position
choices are obtained when scrambling. Therefore, for an 8 × 8 matrix, according to Section
2.2, the MSNB-I model generates a nested body containing four levels of squares. Each
layer can form a Josephus ring. In order to ensure that the position of each element in the
8 × 8 square matrix changes, we nest the square elements outside the body and reconstruct
them into a new Josephus ring, as shown in Figure 8. The operation steps are as follows:

Step 1: Set the initial position r and Josephus distance l of the Josephus ring.
Step 2: Pass the input sequence through the improved Josephus cycle, and the result-

ing output sequence is shown in Table 3.
Step 3: Put the output sequence of Step 2 into the scrambled matrix according to the

position index of the Josephus ring.

Table 3. Input and output sequence of Josephus ring.

Parameter Input Sequence Output Sequence

r = 6
l = 4

B =
33→42→51→60→61→54→47→40→32

→23→14→5→4→11→18→25

B =
32→4→33→61→23→18→60→14→4

2→40→51→11→5→25→47→54
O =

34→43→52→53→46→39→31→22→13
→12→19→26

O =
13→34→46→12→52→22→53→26→

19→43→31→39

G = 35→44→45→38→30→21→20→27 G =
44→21→38→35→27→45→30→20

r = 2
l = 3

Y = 36→37→29→28 Y = 28→29→36→37
R = 1→9→17→10→3→2 R = 10→1→3→17→2→9

P = 41→49→57→58→59→50 P = 58→41→59→57→50→49
H = 6→7→8→16→24→15 H = 16→6→24→8→15→7

Figure 7. Multi square nested body model. (a) MSNBS-I; (b) MSNB-II.

3.3. Description of Intra-Block Scrambling and Inter-Block Scrambling

In this paper, the processes of intra-block scrambling and inter-block scrambling
are collectively referred to as the MSNBS algorithm. Firstly, intra-block scrambling is
completed using the MSNB-I model and a modified Josephus loop to achieve a change in
the position of each pixel in the plaintext. Secondly, inter-block scrambling is completed
using the MSNB-II model and the index matrix to achieve full scrambling of the plaintext
pixel correlation. The following is a detailed explanation of intra-block scrambling and
inter-block scrambling.

Block-internal scrambling: Taking the following 8 × 8 square matrix as an example,
when as many elements as possible are on the “square layer”, more and wider position
choices are obtained when scrambling. Therefore, for an 8 × 8 matrix, according to
Section 2.2, the MSNB-I model generates a nested body containing four levels of squares.
Each layer can form a Josephus ring. In order to ensure that the position of each element
in the 8 × 8 square matrix changes, we nest the square elements outside the body and
reconstruct them into a new Josephus ring, as shown in Figure 8. The operation steps are
as follows:

Fractal Fract. 2023, 7, 221 11 of 24

Fractal Fract. 2023, 7, x FOR PEER REVIEW 12 of 26

F = 48→56→64→63→62→55 F = 63→48→62→64→55→56

(a) (b)

Figure 8. Pixels before and after scrambling.

Inter-block scrambling: The scrambled intermediate ciphertext in the completed
block is re-divided into multiple square nested bodies according to the MSNB-II model.
The square nested body is divided into four layers from the inside to the outside. First, set

a position index matrix 1
1 3
2 4
 

  
 

A for the innermost square. To break the correlation

of adjacent elements between each layer of the square nested body, the index matrix with
four layers scrambled should ensure that there are no duplicate elements at the same po-
sition. Therefore, this paper uses the method of matrix element rotation to generate index
matrices with different elements at the same position. Rotate the elements 90° clockwise

to generate the position index matrix 2
2 1
4 3
 

  
 

A of the second inner layer, and simi-

larly, generate the position index matrices 3
4 2
3 1
 

  
 

A and 4
3 4
1 2
 

  
 

A of the other

two layers. It can be seen from Figure 9 that the elements of the same level of the four sub-
blocks complete the inter-block scrambling of each layer under the control of different
index matrices.

Figure 9. Inter block scrambling.

4. MSNBS Image Encryption Algorithm Based on LCSCM and SCLCM
This study offers an MSNBS image encryption algorithm based on the LCSCM and

SCLCM chaotic systems formed by the new seed chaotic generator in Section 1 and the
multi-square nested body model in Section 2. Image preprocessing and blocking, key cre-
ation, multi-square scrambling, and random diffusion are the primary stages of the pro-
cedure. Figure 10 shows the flowchart of the encryption algorithm in this paper. This work
uses symmetric encryption, which reverses the encryption and decryption processes. This

Figure 8. Pixels before and after scrambling.

Step 1: Set the initial position r and Josephus distance l of the Josephus ring.
Step 2: Pass the input sequence through the improved Josephus cycle, and the resulting

output sequence is shown in Table 3.

Table 3. Input and output sequence of Josephus ring.

Parameter Input Sequence Output Sequence

r = 6
l = 4

B = 33→42→51→60→61→54→47→
40→32→23→14→5→4→11→18→25

B = 32→4→33→61→23→18→60→
14→42→40→51→11→5→25→47→54

O = 34→43→52→53→46→39→31→
22→13→12→19→26

O = 13→34→46→12→52→22→53→
26→19→43→31→39

G = 35→44→45→38→30→21→20→27 G = 44→21→38→35→27→45→30→20

r = 2
l = 3

Y = 36→37→29→28 Y = 28→29→36→37
R = 1→9→17→10→3→2 R = 10→1→3→17→2→9

P = 41→49→57→58→59→50 P = 58→41→59→57→50→49
H = 6→7→8→16→24→15 H = 16→6→24→8→15→7

F = 48→56→64→63→62→55 F = 63→48→62→64→55→56

Step 3: Put the output sequence of Step 2 into the scrambled matrix according to the
position index of the Josephus ring.

Inter-block scrambling: The scrambled intermediate ciphertext in the completed block
is re-divided into multiple square nested bodies according to the MSNB-II model. The
square nested body is divided into four layers from the inside to the outside. First, set a

position index matrix A1 =

(
1 3
2 4

)
for the innermost square. To break the correlation of

adjacent elements between each layer of the square nested body, the index matrix with four
layers scrambled should ensure that there are no duplicate elements at the same position.
Therefore, this paper uses the method of matrix element rotation to generate index matrices
with different elements at the same position. Rotate the elements 90◦ clockwise to generate

the position index matrix A2 =

(
2 1
4 3

)
of the second inner layer, and similarly, generate

the position index matrices A3 =

(
4 2
3 1

)
and A4 =

(
3 4
1 2

)
of the other two layers. It can

be seen from Figure 9 that the elements of the same level of the four sub-blocks complete
the inter-block scrambling of each layer under the control of different index matrices.

Fractal Fract. 2023, 7, 221 12 of 24

Fractal Fract. 2023, 7, x FOR PEER REVIEW 12 of 26

F = 48→56→64→63→62→55 F = 63→48→62→64→55→56

(a) (b)

Figure 8. Pixels before and after scrambling.

Inter-block scrambling: The scrambled intermediate ciphertext in the completed
block is re-divided into multiple square nested bodies according to the MSNB-II model.
The square nested body is divided into four layers from the inside to the outside. First, set

a position index matrix 1
1 3
2 4
 

  
 

A for the innermost square. To break the correlation

of adjacent elements between each layer of the square nested body, the index matrix with
four layers scrambled should ensure that there are no duplicate elements at the same po-
sition. Therefore, this paper uses the method of matrix element rotation to generate index
matrices with different elements at the same position. Rotate the elements 90° clockwise

to generate the position index matrix 2
2 1
4 3
 

  
 

A of the second inner layer, and simi-

larly, generate the position index matrices 3
4 2
3 1
 

  
 

A and 4
3 4
1 2
 

  
 

A of the other

two layers. It can be seen from Figure 9 that the elements of the same level of the four sub-
blocks complete the inter-block scrambling of each layer under the control of different
index matrices.

Figure 9. Inter block scrambling.

4. MSNBS Image Encryption Algorithm Based on LCSCM and SCLCM
This study offers an MSNBS image encryption algorithm based on the LCSCM and

SCLCM chaotic systems formed by the new seed chaotic generator in Section 1 and the
multi-square nested body model in Section 2. Image preprocessing and blocking, key cre-
ation, multi-square scrambling, and random diffusion are the primary stages of the pro-
cedure. Figure 10 shows the flowchart of the encryption algorithm in this paper. This work
uses symmetric encryption, which reverses the encryption and decryption processes. This

Figure 9. Inter block scrambling.

4. MSNBS Image Encryption Algorithm Based on LCSCM and SCLCM

This study offers an MSNBS image encryption algorithm based on the LCSCM and
SCLCM chaotic systems formed by the new seed chaotic generator in Section 1 and the
multi-square nested body model in Section 2. Image preprocessing and blocking, key
creation, multi-square scrambling, and random diffusion are the primary stages of the
procedure. Figure 10 shows the flowchart of the encryption algorithm in this paper. This
work uses symmetric encryption, which reverses the encryption and decryption pro-
cesses. This paper will not provide extensive details about the decryption method due to
space constraints.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 13 of 26

paper will not provide extensive details about the decryption method due to space con-
straints.

Figure 10. Algorithm encryption flowchart.

4.1. Image Preprocessing and Blocking
Step 1: In order to ensure the smooth implementation of the subsequent encryption

algorithm, we use the zero filling method to preprocess the plaintext image with the size
of M N , and convert the original image into an image with a size of ' 'M N , where

'M and 'N are multiples of 16, respectively.
Step 2: Block the image matrix. This article uses a 256 × 256 gray-scale image as an

example to illustrate the blocking process. First, the plaintext image is divided into 256
sub-blocks with a size of 16 × 16. Using the definition of the cell() function in MATLAB,
the sub-blocks are stored in 1 × 256 cell arrays. The 16 × 16 sub-blocks in the cell array are
further divided to obtain four 8 × 8 image matrices. Therefore, a 1 × 4 cell array is nested
in each cell array, and an 8 × 8 matrix is stored in the array.

4.2. Key Generation
The hash function can generate a binary output sequence based on the plaintext im-

age. In this paper, the SHA-256 algorithm and plaintext pixel mean are used to generate
the key. The sensitivity of the hash function to the initial image and the correlation be-
tween the key and plaintext improve the ability of the algorithm to resist plaintext attacks
[22]. We set 256 × 256 images as the input of the SHA-256 function to generate a 256-bit
sequence. The sequence is divided into groups every 16 bits to generate 16 groups, which
are recorded as:

1 2 3 16K K K K K  , (20)

The sum of the pixels of the plaintext image is recorded as sum , and the average
value of the pixels is:

Figure 10. Algorithm encryption flowchart.

4.1. Image Preprocessing and Blocking

Step 1: In order to ensure the smooth implementation of the subsequent encryption
algorithm, we use the zero filling method to preprocess the plaintext image with the size
of M× N, and convert the original image into an image with a size of M′ × N′, where M′

and N′ are multiples of 16, respectively.

Fractal Fract. 2023, 7, 221 13 of 24

Step 2: Block the image matrix. This article uses a 256 × 256 gray-scale image as an
example to illustrate the blocking process. First, the plaintext image is divided into 256
sub-blocks with a size of 16 × 16. Using the definition of the cell() function in MATLAB,
the sub-blocks are stored in 1 × 256 cell arrays. The 16 × 16 sub-blocks in the cell array are
further divided to obtain four 8 × 8 image matrices. Therefore, a 1 × 4 cell array is nested
in each cell array, and an 8 × 8 matrix is stored in the array.

4.2. Key Generation

The hash function can generate a binary output sequence based on the plaintext image.
In this paper, the SHA-256 algorithm and plaintext pixel mean are used to generate the key.
The sensitivity of the hash function to the initial image and the correlation between the key
and plaintext improve the ability of the algorithm to resist plaintext attacks [22]. We set
256 × 256 images as the input of the SHA-256 function to generate a 256-bit sequence. The
sequence is divided into groups every 16 bits to generate 16 groups, which are recorded as:

K = K1K2K3 · · · K16, (20)

The sum of the pixels of the plaintext image is recorded as sum, and the average value
of the pixels is:

avg =
sum

256× 256
, (21)

Formula (22) is used to generate the initial value and control parameters of the chaotic
system, as well as the starting position and cycle distance of the Josephus cycle:

µ1 = mod
(
(avg + bin2dec(K1 ⊕ K3 ⊕ K5))/216, 1

)
µ2 = mod

(
(avg + bin2dec(K2 ⊕ K4 ⊕ K6))/216, 1

)
x1 = (bin2dec(K7) + avg + M′ × N′ × 16)/sum
x2 = (bin2dec(K8) + avg + M′ × N′ × 16)/sum
r1 = mod(bin2dec(K9 ⊕ K10), 8) + 1
r2 = mod(bin2dec(K11 ⊕ K12), 8) + 1
l1 = mod(bin2dec(K13 ⊕ K14), 4) + 1
l2 = mod(bin2dec(K15 ⊕ K16), 4) + 1

, (22)

4.3. Image Scrambling

In the second section of this paper, the MSNBS algorithm is explained. The scrambling
process changes all the positions of the pixels of the plaintext image and breaks the correla-
tion of the plaintext image to generate the intermediate ciphertext image, which paves the
way for the subsequent image diffusion to generate the ciphertext image. The main steps
of applying MSNBS to the image encryption algorithm are as follows:

Step 1: LCSCM chaotic system uses µ1 and x1 generated in Section 3.2 to iterate
500 times to eliminate the transient effect, and then generates a one-dimensional chaotic
sequence Q containing 1024 elements. After sorting Q from small to large, it generates a
position sequence W.

Step 2: Inter-block scrambling. The inter-block scrambling is performed in four
matrices under the same cell array. First, the matrix elements corresponding to the MSNBS-

II model are extracted. The position matrix of the innermost layer is
(

1 3
2 4

)
. The rotation

of the matrix elements is completed by using circshift() to generate the derived position
matrix of the other three layers. The pixel values of the same level are scrambled between
blocks according to the position sequence to generate the intermediate ciphertext. This
process is described in detail in Section 2.3.

4.4. Random Diffusion

Diffusion is a method of dispersing plaintext redundancy into ciphertext. A good
diffusion mechanism extends the change of a single pixel in the image to the whole. That

Fractal Fract. 2023, 7, 221 14 of 24

is, the influence of a single plaintext or key bit is expanded to more ciphertext as much as
possible, which not only hides the statistical relationship but also makes it more difficult
for attackers to seek plaintext redundancy. At present, the diffusion algorithm often adopts
a combination of forward diffusion and reverse diffusion. However, this method first
arranges the image matrix to be diffused in order, and then XOR the adjacent position
elements and random values to change the pixel size. Therefore, this diffusion method
using sequential positions has low security and is easy to be cracked by attackers. Based
on the disadvantages of the above methods, previous studies [23–25] have improved this
problem. Reference [26] proposed a random diffusion algorithm for the first time, using
the LDMLNCML system to generate two index chains, and the diffusion process is carried
out randomly according to the value of the index chain. Based on this, this paper proposes
a new random diffusion strategy that divides the plaintext image into two parts. The two
parts are mutually diffused through the SCLCM chaotic system and position matrix. The
diffused pixels are determined by two non-adjacent pixels. This random diffusion method
improves the security of diffusion. The diffusion process is shown in Figure 11, using
2 × 8 images as an example to illustrate the diffusion process:

Fractal Fract. 2023, 7, x FOR PEER REVIEW 15 of 26

a new random diffusion strategy that divides the plaintext image into two parts. The two
parts are mutually diffused through the SCLCM chaotic system and position matrix. The
diffused pixels are determined by two non-adjacent pixels. This random diffusion method
improves the security of diffusion. The diffusion process is shown in Figure 11, using 2 ×
8 images as an example to illustrate the diffusion process:

(96) (197)

(212) (43)

2 3

4 1
(184) (232)

(27) (155)
2

3 4

1

(96) (197)

(212) (43)

2 3

4 1

K=[9,44,70,92,100,163,186]
 K=[9,44,70,92,100,163,186]

K=[9,44,70,92,100,163,186]

K=[9,44,70,92,100,163,186]

K=[9,44,70,92,100,163,186]

K=[9,44,70,92,100,163,186]

(184) (232)

(27) (155)
2

3 4

1

RGLG

Random diffusion between the left and right parts of the image

(152) (84)

(99) (0)

2 3

4 1
(136) (205)

(161) (10)
2

3 4

1

Output pixel matrix

Figure 11. Random diffusion process.

Step 1: We divide the image matrix into two parts: LG and RG . The two parts are
sorted from small to large to generate their respective position matrices. We record the
position matrix obtained after completing the sorting of the matrix as F . The numbers in
the brackets represent the pixel values, and the numbers above the brackets are the ele-
ments in the corresponding position matrix. LG and RG represent the same position
matrix elements with the same color.

Step 2: We bring the keys 2x and 2 into the SCLCM system and iterate 500 times
to eliminate the transient reaction to obtain the chaotic sequence

9,44,70,92,100,163,186K     . Each element in the chaotic sequence K will participate in
the diffusion process in order, and we will mark the chaotic elements used in each round
of diffusion with red.

Step 3: We explain the elements involved in the two directions of diffusion. When
diffusing from LG to RG , the elements involved in diffusion come from the pixel values
and chaotic sequence values with the same color on the left and right; while when diffus-
ing from RG to LG , the value obtained from the previous round of diffusion is different
from the next element of G1 and the random value in the chaotic sequence K, or the diffu-
sion is completed. We take Figure 11 as an example to illustrate the diffusion process,
using    ' 81 mod 2LG sum avg  to generate the diffusion value of the first element of

LG and record it as  ' 1LG . Then  ' 1LG XOR with the element with the same color in

RG which is 155, and continue XOR with the first element in K. The result of the operation
is 10. The value 99 after diffusion is obtained by XOR 10 with the second element 212 of
LG and  2K . The output pixel matrix can be obtained by successively diffusing accord-

ing to the above law. Formula (23) is the expression of two-way diffusion.

Figure 11. Random diffusion process.

Step 1: We divide the image matrix into two parts: GL and GR. The two parts are
sorted from small to large to generate their respective position matrices. We record the
position matrix obtained after completing the sorting of the matrix as F. The numbers in the
brackets represent the pixel values, and the numbers above the brackets are the elements in
the corresponding position matrix. GL and GR represent the same position matrix elements
with the same color.

Step 2: We bring the keys x2 and µ2 into the SCLCM system and iterate 500 times to
eliminate the transient reaction to obtain the chaotic sequence K = [9, 44, 70, 92, 100, 163, 186].
Each element in the chaotic sequence K will participate in the diffusion process in order,
and we will mark the chaotic elements used in each round of diffusion with red.

Step 3: We explain the elements involved in the two directions of diffusion. When
diffusing from GL to GR, the elements involved in diffusion come from the pixel values and

Fractal Fract. 2023, 7, 221 15 of 24

chaotic sequence values with the same color on the left and right; while when diffusing
from GR to GL, the value obtained from the previous round of diffusion is different from
the next element of G1 and the random value in the chaotic sequence K, or the diffusion
is completed. We take Figure 11 as an example to illustrate the diffusion process, using
GL
′(1) = (sum + avg)mod28 to generate the diffusion value of the first element of GL and

record it as GL
′(1). Then GL

′(1) XOR with the element with the same color in GR which is
155, and continue XOR with the first element in K. The result of the operation is 10. The
value 99 after diffusion is obtained by XOR 10 with the second element 212 of GL and K(2).
The output pixel matrix can be obtained by successively diffusing according to the above
law. Formula (23) is the expression of two-way diffusion.

4.5. Decryption Process

This paper uses a symmetric encryption algorithm, where decryption is the reverse
process of encryption. During decryption, input the same key as the encryption process,
and then complete the diffusion, inter-block scrambling, and inter-block scrambling in
order to obtain the initial plaintext image. The specific decryption steps are as follows:

Step 1: Enter the ciphertext image and the key.
Step 2: Use the key to generate the chaotic system parameters and the chaotic sequence

of SCLCM map after the iteration. The ciphertext image is obtained by XOR operation
according to the following formula.{

GR(F(i)) = GR
′(i)⊕ K(i)⊕ GL(i)

GL(i + 1) = GR
′(i)⊕ GL

′(i + 1)
i ≥ 2

Step 3: Extract the corresponding position elements of each layer according to the
known MSNBS-II model and complete the inverse process of inter-block scrambling with

the index matrix A1 =

[
3 4
1 2

]
→ A2 =

[
4 2
3 1

]
→ A3 =

[
2 1
4 3

]
→ A4 =

[
1 3
2 4

]
.

Step 4: According to the MSNBS-I model mentioned above and the inverse process of
Joseph cycle, complete the corresponding position inverse scrambling process.

Step 5: Use the key to generate the LCSCM chaotic system parameters, generate the
corresponding position matrix, and complete the final scrambling process to obtain the
final plaintext image.

5. Security Analysis

In this paper, the simulation test is carried out on the 64-bit windows 10 operating
system with Intel (R) Core (TM) i5-6200u CPU @ 2.30ghz and 4 GB memory. The algorithm
is written in the MATLAB R2019b program. On the premise that the key has been obtained,
the encrypted image and decrypted image of the plaintext image obtained by the encryption
algorithm are shown in Figure 12. The encrypted image is a disorganized snowflake image,
as shown by the simulation results, and the plaintext image contour and other information
cannot be extracted from it. The information from the plaintext image can be recovered by
the decoded image. The plaintext image and the decrypted image are visually identical.

5.1. Histogram

The distribution of image pixels is shown in the histogram. The attacker of the
image can gain the necessary data about the plaintext image by statistically analyzing
the histogram of the ciphertext image. To ensure the unity and consistency of the pixel
distribution, it should be ensured that the histogram of the ciphertext image is as flat and
uniform as possible. Histograms of the “Lena,” “plane,” “boat,” “cameraman” and the
encrypted photos are shown in Figure 13.

Fractal Fract. 2023, 7, 221 16 of 24Fractal Fract. 2023, 7, x FOR PEER REVIEW 17 of 26

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 12. Encryption and decryption effect. (a–c) Encryption and decryption effect of Lena image.
(d–f) Encryption and decryption effect of Plane image. (g–i) Encryption and decryption effect of
Boat image. (j–l) Encryption and decryption effect of Cameraman image.

Figure 12. Encryption and decryption effect. (a–c) Encryption and decryption effect of Lena image.
(d–f) Encryption and decryption effect of Plane image. (g–i) Encryption and decryption effect of Boat
image. (j–l) Encryption and decryption effect of Cameraman image.

Fractal Fract. 2023, 7, 221 17 of 24

Fractal Fract. 2023, 7, x FOR PEER REVIEW 18 of 26

5.1. Histogram
The distribution of image pixels is shown in the histogram. The attacker of the image

can gain the necessary data about the plaintext image by statistically analyzing the histo-
gram of the ciphertext image. To ensure the unity and consistency of the pixel distribution,
it should be ensured that the histogram of the ciphertext image is as flat and uniform as
possible. Histograms of the “Lena,” “plane,” “boat,” “cameraman” and the encrypted
photos are shown in Figure 13.

(a) (b)

(c) (d)

(e) (f)

Fractal Fract. 2023, 7, x FOR PEER REVIEW 19 of 26

(g) (h)

Figure 13. Comparison between plaintext image and ciphertext image of (a,b) Lena image, (c,d)
plane image, (e,f) boat image and (g,h) cameraman image.

5.2. Key Space
A crucial determinant of how successfully encryption can withstand brute force is

whether or not the key space is greater than 1002 . The ciphertext image’s resistance to
exhaustive attacks increases with the size of the key space. The key space is 2562 signifi-
cantly larger than 1002 in this study since the SHA-256 technique is used to create a 256-
bit key stream. Consequently, this algorithm has the capacity to fend against violent as-
saults.

5.3. Key Sensitivity
The accurate key is crucial for decryption. Key sensitivity means that even a small

inaccuracy in the key will prevent the decryption algorithm from restoring the proper
original image. Let the correct initial key be KEY . If the calculation accuracy of the com-
puter can reach 1410 , the changed key is ' 1410KEY KEY   . The decrypted image ob-
tained by decrypting Lena’s image with different keys is shown in Figure 14.

(a) (b) (c)

Figure 14. (a) Original image. (b) Decrypted image with 'KEY . (c) Decrypted image with KEY .

5.4. Correlation of Adjacent Pixels
Strong correlations may be seen in the horizontal, vertical, and diagonal axes of the

plaintext image. The three-directional correlation should be close to zero with the en-
crypted image. The formula illustrates the correlation coefficient xy calculation process

in Equation (23).

Figure 13. Comparison between plaintext image and ciphertext image of (a,b) Lena image, (c,d) plane
image, (e,f) boat image and (g,h) cameraman image.

Fractal Fract. 2023, 7, 221 18 of 24

5.2. Key Space

A crucial determinant of how successfully encryption can withstand brute force
is whether or not the key space is greater than 2100. The ciphertext image’s resistance to
exhaustive attacks increases with the size of the key space. The key space is 2256 significantly
larger than 2100 in this study since the SHA-256 technique is used to create a 256-bit key
stream. Consequently, this algorithm has the capacity to fend against violent assaults.

5.3. Key Sensitivity

The accurate key is crucial for decryption. Key sensitivity means that even a small
inaccuracy in the key will prevent the decryption algorithm from restoring the proper
original image. Let the correct initial key be KEY. If the calculation accuracy of the
computer can reach 10−14, the changed key is KEY′ = KEY + 10−14. The decrypted image
obtained by decrypting Lena’s image with different keys is shown in Figure 14.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 19 of 26

(g) (h)

Figure 13. Comparison between plaintext image and ciphertext image of (a,b) Lena image, (c,d)
plane image, (e,f) boat image and (g,h) cameraman image.

5.2. Key Space
A crucial determinant of how successfully encryption can withstand brute force is

whether or not the key space is greater than 1002 . The ciphertext image’s resistance to
exhaustive attacks increases with the size of the key space. The key space is 2562 signifi-
cantly larger than 1002 in this study since the SHA-256 technique is used to create a 256-
bit key stream. Consequently, this algorithm has the capacity to fend against violent as-
saults.

5.3. Key Sensitivity
The accurate key is crucial for decryption. Key sensitivity means that even a small

inaccuracy in the key will prevent the decryption algorithm from restoring the proper
original image. Let the correct initial key be KEY . If the calculation accuracy of the com-
puter can reach 1410 , the changed key is ' 1410KEY KEY   . The decrypted image ob-
tained by decrypting Lena’s image with different keys is shown in Figure 14.

(a) (b) (c)

Figure 14. (a) Original image. (b) Decrypted image with 'KEY . (c) Decrypted image with KEY .

5.4. Correlation of Adjacent Pixels
Strong correlations may be seen in the horizontal, vertical, and diagonal axes of the

plaintext image. The three-directional correlation should be close to zero with the en-
crypted image. The formula illustrates the correlation coefficient xy calculation process

in Equation (23).

Figure 14. (a) Original image. (b) Decrypted image with KEY′. (c) Decrypted image with KEY.

5.4. Correlation of Adjacent Pixels

Strong correlations may be seen in the horizontal, vertical, and diagonal axes of the
plaintext image. The three-directional correlation should be close to zero with the en-
crypted image. The formula illustrates the correlation coefficient ρxy calculation process in
Equation (23).

ρxy =
cov(x, y)√

DXDY
, (23)

where cov(x, y) and DX represent the covariance and variance of pixel values, respectively:

cov(x, y) =
1
N ∑N

i=1(xi − EX)(yi − EY), (24)

DX =
1
N ∑N

i=1(xi − EX)
2
, (25)

To complete the experimental simulation in this article, 5000 pairs of pixels from
the Lena image and the ciphertext image are randomly chosen. The correlation distribu-
tion plot is shown in Figure 15. The correlation of the ciphertext image is almost zero,
as shown in Figure 15. Table 4 compares the correlation coefficients of Lena’s pictures
between this paper and previous papers, while Table 5 displays the test results for the
correlation coefficients.

Fractal Fract. 2023, 7, 221 19 of 24

Fractal Fract. 2023, 7, x FOR PEER REVIEW 20 of 26

 cov ,
xy

x y

DXDY
  , (23)

where  cov ,x y and DX represent the covariance and variance of pixel values, respectively:

    1

1cov ,
N

i ii
x y x EX y EY

N 
   , (24)

 
2

1

1 N
ii

DX x EX
N 

  , (25)

To complete the experimental simulation in this article, 5000 pairs of pixels from the
Lena image and the ciphertext image are randomly chosen. The correlation distribution
plot is shown in Figure 15. The correlation of the ciphertext image is almost zero, as shown
in Figure 15. Table 4 compares the correlation coefficients of Lena’s pictures between this
paper and previous papers, while Table 5 displays the test results for the correlation coef-
ficients.

(a) (b) (c)

(d) (e) (f)

Figure 15. Correlation distribution of plaintext image and ciphertext image. (a,d) Horizontal direc-
tion (b,e) Vertical direction (c,f) Diagonal direction.

Table 4. Comparison of Lena image correlation coefficient with other literatures.

Direction Proposed Ref. [27] Ref. [28] Ref. [29] Ref. [30] Ref. [16]
Horizontal −0.0003 0.0010 0.0104 −0.0028 0.0040 0.0080

Vertical 0.0021 0.0054 0.0062 0.0035 −0.0012 −0.0055
Diagonal −0.0030 0.0056 −0.0056 −0.0015 −0.0021 0.0040

Table 5. correlation coefficient.

Image
Horizontal Vertical Diagonal

Plaintext Ciphertext Plaintext Ciphertext Plaintext Ciphertext
Lena 0.9390 −0.0003 0.9681 0.0021 0.9135 −0.0030
Plane 0.9823 −0.0002 0.9869 −0.0043 0.9758 −0.0007
Boat 0.9172 0.0018 0.9391 0.0050 0.8708 −0.0028

Cameraman 0.9333 0.0041 0.9590 −0.0005 0.9085 −0.0009

Figure 15. Correlation distribution of plaintext image and ciphertext image. (a,d) Horizontal direction
(b,e) Vertical direction (c,f) Diagonal direction.

Table 4. Comparison of Lena image correlation coefficient with other literatures.

Direction Proposed Ref. [27] Ref. [28] Ref. [29] Ref. [30] Ref. [16]

Horizontal −0.0003 0.0010 0.0104 −0.0028 0.0040 0.0080
Vertical 0.0021 0.0054 0.0062 0.0035 −0.0012 −0.0055

Diagonal −0.0030 0.0056 −0.0056 −0.0015 −0.0021 0.0040

Table 5. Correlation coefficient.

Image
Horizontal Vertical Diagonal

Plaintext Ciphertext Plaintext Ciphertext Plaintext Ciphertext

Lena 0.9390 −0.0003 0.9681 0.0021 0.9135 −0.0030
Plane 0.9823 −0.0002 0.9869 −0.0043 0.9758 −0.0007
Boat 0.9172 0.0018 0.9391 0.0050 0.8708 −0.0028

Cameraman 0.9333 0.0041 0.9590 −0.0005 0.9085 −0.0009

5.5. Information Entropy

Information entropy measures how randomly distributed an image’s pixels are. For
256-level grayscale images, the algorithm’s capacity to fend off statistical attacks increases
when the ciphertext image’s information entropy value approaches eight. The computation
formula can be seen in Equation (26).

H(ui) =
n

∑
i=1

p(ui) log2
1

p(ui)
, (26)

where p(ui) is the probability of occurrence, and n represents the pixel level. Table 6
shows the information entropy, and Table 7 shows the comparison between Lena and
other algorithms.

Fractal Fract. 2023, 7, 221 20 of 24

Table 6. Information entropy.

Image Plaintext Ciphertext

Lena 7.4204 7.9972
Plane 7.5411 7.9973
Boat 7.1612 7.9970

Cameraman 7.0193 7.9971

Table 7. Comparison of information entropy with other algorithms.

Algorithm Proposed Ref. [12] Ref. [31] Ref. [32]

Entropy 7.9972 7.9971 7.9972 7.9961

5.6. Differential Attack

The resistance of the algorithm to differential attack is mainly reflected in that when
the plaintext information changes slightly, the ciphertext image changes greatly. The degree
of change is measured by NPCR and UACI. For 256-level gray-scale images, the ideal
values of NPCR and UACI are 99.6094% and 33.4635%, respectively. The closer the degree
of change of the algorithm is to the ideal value, the stronger its ability to resist differential
attack. The NPCR and UACI of the experimental simulation pictures in this paper are
shown in Table 8, and Table 9 is the comparison results with other literatures.

NPCR =
∑W

i=1 ∑H
j=1 D(i, j)

W × H
× 100%, (27)

UACI =
∑W

i=1 ∑N
j=1|C1(i, j)− C2(i, j)|
W × H × 255

× 100%, (28)

D(i, j) =
{

1, C1(i, j) 6= C2(i, j)
0, C1(i, j) = C2(i, j)

, (29)

Table 8. NPCR and UACI.

Parameter Lena Plane Boat Cameraman Mean

NPCR (%) 99.6079 99.6078 99.5834 99.6017 99.6002
UACI (%) 33.5046 33.5476 33.4535 33.3855 33.4728

Table 9. Comparison.

Parameter Ideal Value Proposed Ref. [33] Ref. [34] Ref. [17]

NPCR (%) 99.6094 99.6079 99.6300 99.6207 99.6058
UACI (%) 33.4635 33.5046 33.4300 33.4125 33.4580

5.7. Shearing Attack

If the encryption algorithm can resist cropping attacks in the process of image trans-
mission, the receiver can still recover the original image according to the remaining data.
We change some pixel values to 0 to simulate the ciphertext image after some pixels are
lost. Figure 16 shows the ciphertext image and the corresponding decrypted image after
cutting 1/8, 1/4 and 1/2. It can be seen from the figure that even when half of the data of
the ciphertext image are lost, the decrypted image can still reflect the information of the
original image.

Fractal Fract. 2023, 7, 221 21 of 24

Fractal Fract. 2023, 7, x FOR PEER REVIEW 22 of 26

Table 9. Comparison.

Parameter Ideal Value Proposed Ref. [33] Ref. [34] Ref. [17]
NPCR (%) 99.6094 99.6079 99.6300 99.6207 99.6058
UACI (%) 33.4635 33.5046 33.4300 33.4125 33.4580

5.7. Shearing Attack
If the encryption algorithm can resist cropping attacks in the process of image trans-

mission, the receiver can still recover the original image according to the remaining data.
We change some pixel values to 0 to simulate the ciphertext image after some pixels are
lost. Figure 16 shows the ciphertext image and the corresponding decrypted image after
cutting 1/8, 1/4 and 1/2. It can be seen from the figure that even when half of the data of
the ciphertext image are lost, the decrypted image can still reflect the information of the
original image.

(a) (b) (c)

Figure 16. Clipping attack. (a) 1/8 occlusion, (b) 1/4 occlusion, (c) 1/2 occlusion.

5.8. Noise Attack
Noise during the channel transmission procedure will have an impact on the image.

To represent external attacks, we simulate them by adding varying levels of Gaussian and
Salt-and-pepper noise to the ciphertext image. The decrypted image can be obtained while
being subjected to various levels of noise, and its peak signal-to-noise ratio (PSNR) can be
determined. The higher the peak signal-to-noise ratio is, the better the anti-noise effect of
this method.

The size of MSE has a significant role in the PSNR calculating procedure (mean
square error). The method of calculation is as follows:

25520 lgPSNR
MSE

  , (30)

Figure 16. Clipping attack. (a) 1/8 occlusion, (b) 1/4 occlusion, (c) 1/2 occlusion.

5.8. Noise Attack

Noise during the channel transmission procedure will have an impact on the image.
To represent external attacks, we simulate them by adding varying levels of Gaussian and
Salt-and-pepper noise to the ciphertext image. The decrypted image can be obtained while
being subjected to various levels of noise, and its peak signal-to-noise ratio (PSNR) can be
determined. The higher the peak signal-to-noise ratio is, the better the anti-noise effect of
this method.

The size of MSE has a significant role in the PSNR calculating procedure (mean square
error). The method of calculation is as follows:

PSNR = 20× lg
255√
MSE

, (30)

MSE =

W
∑

i=1

H
∑

j=1
(P(i, j)− C(i, j))2

W × H
, (31)

where W × H is the size of the plaintext image. P(i, j) and C(i, j) are the pixel size before
and after encryption, respectively. The test results of this algorithm against noise attack are
shown in Figure 17, and Table 10 shows the PSNR values of ciphertext images.

Fractal Fract. 2023, 7, 221 22 of 24

Fractal Fract. 2023, 7, x FOR PEER REVIEW 23 of 26

    2
1 1

, ,
W H

i j

P i j C i j

MSE
W H

 







,

(31)

where W H is the size of the plaintext image.  ,P i j and  ,C i j are the pixel size be-
fore and after encryption, respectively. The test results of this algorithm against noise at-
tack are shown in Figure 17, and Table 10 shows the PSNR values of ciphertext images.

(a) (b) (c)

(d) (e) (f)

Figure 17. Gaussian noise attack with (a) 𝜎ଶ = 0.005, (b) 𝜎ଶ = 0.05 and (c) 𝜎ଶ = 0.2; Salt-and-pep-
per noise attack with (d) 𝜎ଶ = 0.005, (e) 𝜎ଶ = 0.05 and (𝐟) 𝜎ଶ = 0.2.

Table 10. PSNR.

Type Intensity PSNR (dB)

Gaussian noise
0.005 14.0834
0.05 11.7679
0.2 10.5901

Salt-and-pepper noise
0.005 32.2771
0.05 22.4233
0.2 16.1928

5.9. Analysis of Algorithm Efficiency
When applying the encryption algorithm, we need to consider the efficiency of the

algorithm, which is mainly reflected in the encryption time and the complexity of the al-
gorithm. The algorithm in this paper is simulated by MATLAB software. The encryption
time of Lena, plane, boat and cameraman are 0.456, 0.572, 0.511 and 0.421 s, respectively.
Table 11 shows the comparison between Lena image encryption time and other algo-
rithms. The image encryption process of the algorithm can be divided into the following
three stages: chaotic sequence generation, scrambling and diffusion. Assuming that the

Figure 17. Gaussian noise attack with (a) σ2 = 0.005, (b) σ2 = 0.05 and (c) σ2 = 0.2; Salt-and-pepper
noise attack with (d) σ2 = 0.005, (e) σ2 = 0.05 and (f) σ2 = 0.2.

Table 10. PSNR.

Type Intensity PSNR (dB)

Gaussian noise
0.005 14.0834
0.05 11.7679
0.2 10.5901

Salt-and-pepper noise
0.005 32.2771
0.05 22.4233
0.2 16.1928

5.9. Analysis of Algorithm Efficiency

When applying the encryption algorithm, we need to consider the efficiency of the
algorithm, which is mainly reflected in the encryption time and the complexity of the
algorithm. The algorithm in this paper is simulated by MATLAB software. The encryption
time of Lena, plane, boat and cameraman are 0.456, 0.572, 0.511 and 0.421 s, respectively.
Table 11 shows the comparison between Lena image encryption time and other algorithms.
The image encryption process of the algorithm can be divided into the following three
stages: chaotic sequence generation, scrambling and diffusion. Assuming that the size of
the image we process is M × N, the complexity of LCSCM mapping and SCLCM mapping
generated in this paper is O(2 ×M × N). The scrambling process is divided into built-in
scrambling and inter-block scrambling, and pixel-level position scrambling is used, so the
time complexity at this stage is O(2 × M × N). In the third stage, the diffusion process
is completed by XOR with the elements in the chaotic sequence, and the complexity is
O (M × N). To sum up, the total complexity of the algorithm encryption process in this
paper is O (5 ×M × N).

Fractal Fract. 2023, 7, 221 23 of 24

Table 11. Comparison and analysis of encryption time.

Algorithm Our Ref. [35] Ref. [36] Ref. [14]

Encrypted time 0.456 0.926 0.707 0.563

6. Conclusions

In this paper, a chaotic system seed generator based on the exponential operation is
proposed to generate six composite low-dimensional chaotic systems. After simulation
analysis of LE, bifurcation, 0–1 test, and approximate entropy, it is shown that the chaotic
performance and randomness of the new system are better than those of a single seed
map. The coupled chaotic system is used to complete the MSNBS scrambling and random
diffusion process, which makes the plaintext image fully scrambled and breaks the correla-
tion of plaintext pixels. The ciphertext image undergoes relevant simulation tests, proving
that the algorithm can resist differential attack and selective plaintext attacks. Therefore,
the algorithm in this paper has a good encryption effect. Considering the application of
real-value chaos in cryptography, many scholars [37] have proposed that the consistency of
encryption and decryption should be taken into account in the application. We will explore
the floating-point compatibility in subsequent research.

Author Contributions: Conceptualization, H.C., J.L. and E.W.; methodology, H.C.; software, H.C.;
validation, J.L., E.W. and H.C.; investigation, J.L. and E.W.; writing—original draft preparation, H.C.;
writing—review and editing, H.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by Heilongjiang University Postgraduate Innovative Research
Project, grant number no. YJSCX2022-207HLJU and Natural Science Foundation of Heilongjiang
Province (LH2019F048).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, W.; Wang, X.; Wang, M.; Li, D. A new combination chaotic system and its application in a new Bit-level image encryption

scheme. Opt. Lasers Eng. 2022, 149, 106782. [CrossRef]
2. Midoun, M.A.; Wang, X.; Talhaoui, M.Z. A sensitive dynamic mutual encryption system based on a new 1D chaotic map. Opt.

Lasers Eng. 2021, 139, 106485. [CrossRef]
3. Wang, X.; Guan, N.; Yang, J. Image encryption algorithm with random scrambling based on one-dimensional logistic self-

embedding chaotic map. Chaos Solitons Fractals 2021, 150, 111117. [CrossRef]
4. Zhou, Y.; Long, B.; Chen, C. A new 1D chaotic system for image encryption. Signal Process. 2014, 97, 172–182. [CrossRef]
5. Hu, G.; Li, B. Coupling chaotic system based on unit transform and its applications in image encryption. Signal Process. 2020,

178, 107790. [CrossRef]
6. Lan, R.; He, J.; Wang, S.; Gu, T.; Luo, X. Integrated Chaotic Systems for Image Encryption. Signal Process. 2018, 147, 133–145.

[CrossRef]
7. Alghafis, A.; Firdousi, F.; Khan, M.; Batool, S.I.; Amin, M. An efficient image encryption scheme based on chaotic and Deoxyri-

bonucleic acid sequencing. Math. Comput. Simul. 2020, 177, 441–466. [CrossRef]
8. Kang, X.; Guo, Z. A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system. Signal

Process. Image Commun. 2019, 80, 115670.
9. Shahna, K.U.; Mohamed, A. A novel image encryption scheme using both pixel level and bit level permutation with chaotic map.

Appl. Soft Comput. 2020, 90, 106162.
10. Hasheminejad, A.; Rostami, M.J. A novel bit level multiphase algorithm for image encryption based on PWLCM chaotic map.

Optik 2019, 184, 205–213. [CrossRef]
11. Liu, M.; Ye, G.D. A new DNA coding and hyperchaotic system based asymmetric image encryption algorithm. Math. Biosci. Eng.

2021, 18, 3887–3906. [CrossRef] [PubMed]
12. Xw, A.; Sc, A.; Yz, B. A chaotic image encryption algorithm based on random dynamic mixing. Opt. Laser Technol. 2021,

138, 106837.

http://doi.org/10.1016/j.optlaseng.2021.106782
http://doi.org/10.1016/j.optlaseng.2020.106485
http://doi.org/10.1016/j.chaos.2021.111117
http://doi.org/10.1016/j.sigpro.2013.10.034
http://doi.org/10.1016/j.sigpro.2020.107790
http://doi.org/10.1016/j.sigpro.2018.01.026
http://doi.org/10.1016/j.matcom.2020.05.016
http://doi.org/10.1016/j.ijleo.2019.03.065
http://doi.org/10.3934/mbe.2021194
http://www.ncbi.nlm.nih.gov/pubmed/34198416

Fractal Fract. 2023, 7, 221 24 of 24

13. Wang, X.; Guan, N. Chaotic image encryption algorithm based on block theory and reversible mixed cellular automata—
ScienceDirect. Opt. Laser Technol. 2020, 132, 106501. [CrossRef]

14. Wang, R.; Deng, G.Q.; Duan, X.F. An image encryption scheme based on double chaotic cyclic shift and Josephus problem. J. Inf.
Secur. Appl. 2021, 58, 102699. [CrossRef]

15. Zhao, F.; Liu, M.; Wang, K.; Zhang, H. Color image encryption via Hénon-zigzag map and chaotic restricted Boltzmann machine
over Blockchain. Opt. Laser Technol. 2021, 135, 106610.

16. Xian, Y.; Wang, X.; Yan, X.; Li, Q.; Wang, X. Image Encryption Based on Chaotic Sub-Block Scrambling and Chaotic Digit Selection
Diffusion. Opt. Lasers Eng. 2020, 134, 106202. [CrossRef]

17. Wang, X.; Si, R. A new chaotic image encryption scheme based on dynamic L-shaped scrambling and combined map diffusion.
Opt. Int. J. Light Electron Opt. 2021, 245, 167658. [CrossRef]

18. Jain, A.; Rajpal, N. A robust image encryption algorithm resistant to attacks using DNA and chaotic logistic maps. Multimed.
Tools Appl. 2016, 75, 5455–5472. [CrossRef]

19. Boyland, P.; De Carvalho, A.; Hall, T. Itineraries for inverse limits of tent maps: A backward view. Topol. Its Appl. 2017, 232, 1–12.
[CrossRef]

20. Niu, Y.; Zhang, X.C. Image encryption algorithm based on variable step Joseph traversal and DNA dynamic coding. J. Electron.
Inf. 2020, 42, 1383–1391.

21. Xingyuanwang, X.; Zhu, X.; Zhang, Y. An image encryption algorithm based on Josephus traversing and mixed chaotic map.
IEEE Access 2018, 6, 23733–23746.

22. Tutueva, A.V.; Karimov, A.I.; Moysis, L.; Volos, C.; Butusov, D.N. Construction of one-way hash functions with increased key
space using adaptive chaotic maps. Chaos Solitons Fractals 2020, 141, 110344. [CrossRef]

23. Wang, X.; Du, X. Pixel-level and bit-level image encryption method based on Logistic-Chebyshev dynamic coupled map lattices.
Chaos Solitons Fractals 2022, 155, 111629. [CrossRef]

24. Wang, X.; Yang, J.; Guan, N. High-sensitivity image encryption algorithm with random cross diffusion based on dynamically
random coupled map lattice model. Chaos Solitons Fractals 2021, 143, 110582. [CrossRef]

25. Li, M.; Guo, Y.; Huang, J.; Li, Y. Cryptanalysis of a chaotic image encryption scheme based on permutation-diffusion structure.
Signal Process. Image Commun. 2018, 62, 164–172. [CrossRef]

26. Wang, X.; Zhao, H.; Feng, L.; Ye, X.; Zhang, H. High-sensitivity image encryption algorithm with random diffusion based on
dynamic-coupled map lattices. Opt. Lasers Eng. 2019, 122, 225–238. [CrossRef]

27. Souyah, A.; Faraoun, K.M. An image encryption scheme combining chaos-memory cellular automata and weighted histogram.
Nonlinear Dyn. 2016, 86, 1–15. [CrossRef]

28. Li, C.; Yang, X. An image encryption algorithm based on discrete fractional wavelet transform and quantum chaos. Optik 2022,
260, 169042.

29. Xu, S.; Wang, X.; Ye, X. A new fractional-order chaos system of Hopfield neural network and its application in image encryption.
Chaos Solitons Fractals 2022, 157, 111889. [CrossRef]

30. Zhang, S.; Liu, L. A novel image encryption algorithm based on SPWLCM and DNA coding. Math. Comput. Simul. 2021, 190,
723–744. [CrossRef]

31. Li, Y.; Wang, C.; Chen, H. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level
permutation. Opt. Lasers Eng. 2017, 90, 238–246. [CrossRef]

32. Belazi, A.; El-Latif, A.; Belghith, S. A novel image encryption scheme based on substitution-permutation network and chaos.
Signal Process. 2016, 128, 155–170. [CrossRef]

33. Bezerra, J.; Molter, A.; Camargo, V. A new efficient permutation-diffusion encryption algorithm based on a chaotic map. Chaos
Solitons Fractals X 2021, 151, 111235. [CrossRef]

34. Wang, X.; Li, Y. Chaotic image encryption algorithm based on hybrid multi-objective particle swarm optimization and DNA
sequence. Opt. Lasers Eng. 2021, 137, 106393. [CrossRef]

35. Zhu, H.; Zhao, Y.; Song, Y. 2D Logistic-Modulated-Sine-Coupling-Logistic Chaotic Map for Image Encryption. IEEE Access 2019,
7, 14081–14098. [CrossRef]

36. Hossam, D. An Efficient Chaotic Image Cryptosystem Based on Simultaneous Permutation and Diffusion Operations. IEEE
Access 2018, 6, 42227–42244.

37. Lopez, G.A.; Taufer, M.; Teller, P.J. Evaluation of IEEE 754 floating-point arithmetic compliance across a wide range of
heterogeneous computers. In Proceedings of the 2007 Conference on Diversity in Computing, Orlando, FL, USA, 14–17
October 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.optlastec.2020.106501
http://doi.org/10.1016/j.jisa.2020.102699
http://doi.org/10.1016/j.optlaseng.2020.106202
http://doi.org/10.1016/j.ijleo.2021.167658
http://doi.org/10.1007/s11042-015-2515-7
http://doi.org/10.1016/j.topol.2017.09.012
http://doi.org/10.1016/j.chaos.2020.110344
http://doi.org/10.1016/j.chaos.2021.111629
http://doi.org/10.1016/j.chaos.2020.110582
http://doi.org/10.1016/j.image.2018.01.002
http://doi.org/10.1016/j.optlaseng.2019.04.005
http://doi.org/10.1007/s11071-016-2912-0
http://doi.org/10.1016/j.chaos.2022.111889
http://doi.org/10.1016/j.matcom.2021.06.012
http://doi.org/10.1016/j.optlaseng.2016.10.020
http://doi.org/10.1016/j.sigpro.2016.03.021
http://doi.org/10.1016/j.chaos.2021.111235
http://doi.org/10.1016/j.optlaseng.2020.106393
http://doi.org/10.1109/ACCESS.2019.2893538

	Introduction
	New Fractional-Order Seed Chaotic Generator
	Internal Integration Structure of Seed Generator
	Theoretical Derivation and Analysis of Lyapunov Exponent
	Bifurcation Diagram
	0–1 Test
	Approximate Entropy

	MSNBS Scrambling Algorithm
	Improved Josephus Loop
	Multi Square Nested Body Based on Fractal Theory
	Description of Intra-Block Scrambling and Inter-Block Scrambling

	MSNBS Image Encryption Algorithm Based on LCSCM and SCLCM
	Image Preprocessing and Blocking
	Key Generation
	Image Scrambling
	Random Diffusion
	Decryption Process

	Security Analysis
	Histogram
	Key Space
	Key Sensitivity
	Correlation of Adjacent Pixels
	Information Entropy
	Differential Attack
	Shearing Attack
	Noise Attack
	Analysis of Algorithm Efficiency

	Conclusions
	References

