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1. Introduction

Fractional calculus is an expansion of Newton Leibniz’s integer order differential
and integral. In recent decades, a large number of definitions of fractional calculus op-
erators are generated with practical problem modeling requirements, such as the well
known Riemann-Liouville, Caputo, Erdelyi-Kober, and Hadamard versions [1–3], and
those forms play important roles in various interdisciplinary disciplines, like viscoelastic
mechanics, anomalous diffusion, control theory, bioengineering, etc. [4–6]. However,
many scholars discovered that some existing fractional operators may not well to describe
many phenomena in the real world. Hence, a whole newly general definition is proposed
recently, so-called ψ-Caputo-type fractional operator [7–9], which could combine the maxi-
mum number of definitions of fractional derivatives to a single one by depending upon
a nonsingular kernel. The kernel function can provide free arguments to better calibrate
a system [10–12]. Taking all these into account, we think that it is a promising topic for
further investigation to study fractional differential equations (FDEs for short) with the
generalized ψ-Caputo-type fractional operator.

Furthermore, the impulsive FDE can reflect the phenomenon that the state of a thing
changes suddenly after being disturbed instantaneously, which is an effective means to
depict the changing laws of objects. According to the duration of the change process,
the impulse can be divided into the instantaneous (the definition of classical one) and
non-instantaneous impulses. Most of the research on FDEs with instantaneous impulse
are studied [13–15]. In 2013, Hernádez and O’Regan first proposed the non-instantaneous
impulse concept based on pharmacokinetics [16], which refers to the behavior that the state
is disturbed at a certain time and produces sudden changes, and it maintains the active state
for a limited time interval. This work showed that the non-instantaneous impulse has more
advantages in describing the human body’s absorption, diffusion, and metabolism of drugs.
Since then, non-instantaneous impulsive FDEs received great attention [17–20]. In [18],
depending on the Weierstrass theorem, the existence of solutions was obtained for a class
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of instantaneous and non-instantaneous impulsive fractional Dirichlet boundary value
problems with perturbation. In view of the well known three critical points theorem due
to B. Ricceri, the existence of at least three solutions for the non-instantaneous impulsive
FDE was obtained in [19]. Because of the late development of non-instantaneous impulse
comparing with the instantaneous impulse, many theoretical results need to be enriched
and improved, so it has great potential research space and theoretical significance.

Motivated by above works, in this paper, we are concerned with a new class of instan-
taneous and non-instantaneous impulsive FDEs involving a ψ-Caputo fractional derivative

CDα,ψ
T− (

CDα,ψ
0+ x(t)) = λ fi(t, x(t)), t ∈ (si, ti+1], i = 0, 1, . . . , n,

∆(CDα,ψ
T− (I1−α,ψ

0+ x))(ti) = Ii(x(ti)), i = 1, 2, . . . , n,
CDα,ψ

T− (I1−α,ψ
0+ x)(t) = CDα,ψ

T− (I1−α,ψ
0+ x)(t+i ), t ∈ (ti, si], i = 1, 2, . . . , n,

CDα,ψ
T− (I1−α,ψ

0+ x)(s−i ) =
CDα,ψ

T− (I1−α,ψ
0+ x)(s+i ), i = 1, 2, . . . , n,

x(0) = x(T) = 0,

(1)

where λ > 0, 0 < α ≤ 1, CDα,ψ
T− and CDα,ψ

0+ denote the right and left ψ-Caputo fractional

derivatives, I1−α,ψ
0+ is the left ψ-Riemann-Liouville type fractional integral with order 1− α.

ψ(t) ∈ C1[0, T] is an increasing function with ψ′(t) 6= 0 for all t ∈ [0, T]. Ii ∈ C(R,R),
fi ∈ C((si, ti+1] × R,R), 0 = s0 < t1 < s1 < · · · < sn < tn+1 = T, the instantaneous
impulse begins suddenly at the point ti, and the non-instantaneous impulse continues
during a finite interval (ti, si],

∆(CDα,ψ
T− (I1−α,ψ

0+ x))(ti) =
CDα,ψ

T− (I1−α,ψ
0+ x)(t+i )−

CDα,ψ
T− (I1−α,ψ

0+ x)(t−i ),
CDα,ψ

T− (I1−α,ψ
0+ x)(t+i ) = lim

t→t+i

CDα,ψ
T− (I1−α,ψ

0+ x)(t),

CDα,ψ
T− (I1−α,ψ

0+ x)(t−i ) = lim
t→t−i

CDα,ψ
T− (I1−α,ψ

0+ x)(t).

It is a new issue that has not been touched yet. Some existing results, which focus on
the classical fractional operators, such as [19,21,22], are improved and supplemented by
choosing special kernel functions in the derivative.

2. Fractional Integrals and Derivatives

This section introduces some essential definitions of fractional integrals and deriva-
tives, as well as relevant lemmas and theorems, whose involvements assist us to establish
variational construction and multiplicity results for impulsive FDE (1) successfully.

We deal mainly with the ψ-Riemann-Liouville and ψ-Caputo fractional integrals and
derivatives in this paper, and the reader can refer to Res. [7–9] for more information. Let
α > 0, −∞ ≤ a < b ≤ +∞, f (t) is an integrable function and ψ(t) ∈ C1[0, T] is an
increasing function, with ψ′(t) 6= 0 for all t ∈ [a, b]. The left ψ-Riemann-Liouville type
fractional integral and derivative of a function f with respect to another function ψ are,
respectively, defined as:

Iα,ψ
a+ f (t) =

1
Γ(α)

∫ t

a
ψ′(ξ)(ψ(t)− ψ(ξ))α−1 f (ξ)dξ, (2)

Dα,ψ
a+ f (t) =

(
1

ψ′(t)
d
dt

)n

In−α,ψ
a+ f (t) =

1
Γ(n− α)

(
1

ψ′(t)
d
dt

)n ∫ t

a
ψ′(ξ)(ψ(t)− ψ(ξ))n−α−1 f (ξ)dξ,

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.
Similar definitions can be given for the right ψ-Riemann-Liouville fractional integral

and derivative:
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Iα,ψ
b− f (t) =

1
Γ(α)

∫ b

t
ψ′(ξ)(ψ(ξ)− ψ(t))α−1 f (ξ)dξ, (3)

Dα,ψ
b− f (t) =

(
−1

ψ′(t)
d
dt

)n

In−α,ψ
b− f (t) =

1
Γ(n− α)

(
− 1

ψ′(t)
d
dt

)n ∫ b

t
ψ′(ξ)(ψ(ξ)− ψ(t))n−α−1 f (ξ)dξ.

In particular, if 0 < α < 1, one has:

Dα,ψ
a+ f (t) =

(
1

ψ′(t)
d
dt

)
I1−α,ψ
a+ f (t) =

1
Γ(1− α)

(
1

ψ′(t)
d
dt

) ∫ t

a
ψ′(ξ)(ψ(t)− ψ(ξ))−α f (ξ)dξ, (4)

Dα,ψ
b− f (t) =

(
−1

ψ′(t)
d
dt

)
I1−α,ψ
b− f (t) =

1
Γ(1− α)

(
−1

ψ′(t)
d
dt

) ∫ b

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α f (ξ)dξ. (5)

It is worth noting that, if we choose the kernel ψ(t) = ln t or ψ(t) = t, the ψ-Riemann-
Liouville fractional integral and derivative can reduce into the well known Hadamard type
or Riemann-Liouville type fractional integral and derivative.

Definition 1 ([9]). Let n ∈ N, −∞ ≤ a < b ≤ +∞, α > 0, f (t), ψ(t) ∈ C1[0, T] are two
functions, such that ψ(t) is an increasing function with ψ′(t) 6= 0 for all t ∈ [a, b]. Then,
the left and right ψ-Caputo type fractional derivatives of f with respect to another function ψ are,
respectively, defined as:

CDα,ψ
a+ f (t) = In−α,ψ

a+

(
1

ψ′(t)
d
dt

)n

f (t) =
1

Γ(n− α)

∫ t

a
ψ′(ξ)(ψ(t)− ψ(ξ))n−α−1

(
1

ψ′(ξ)

d
dξ

)n

f (ξ)dξ,

CDα,ψ
b− f (t) = In−α,ψ

b−

(
− 1

ψ′(t)
d
dt

)n

f (t) =
(−1)n

Γ(n− α)

∫ b

t
ψ′(ξ)(ψ(ξ)− ψ(t))n−α−1

(
1

ψ′(ξ)

d
dξ

)n

f (ξ)dξ.

In particular, if 0 < α < 1, one has:

CDα,ψ
a+ f (t) = I1−α,ψ

a+

(
1

ψ′(t)
d
dt

)
f (t) =

1
Γ(1− α)

∫ t

a
(ψ(t)− ψ(ξ))−α f ′(ξ)dξ, (6)

CDα,ψ
b− f (t) = I1−α,ψ

b−

(
− 1

ψ′(t)
d
dt

)
f (t) =

−1
Γ(1− α)

∫ b

t
(ψ(ξ)− ψ(t))−α f ′(ξ)dξ. (7)

Notice that the ψ-Caputo fractional derivative can reduce to the classical Caputo fractional derivative
by choosing the kernel ψ(t) = t.

Definition 2 ([9]). If f (t) ∈ Cn[a, b], −∞ ≤ a < b ≤ +∞, α > 0, n = [α] + 1 for α /∈ N,
n = α for α ∈ N, then

CDα,ψ
a+ f (t) = Dα,ψ

a+

[
f (t)− Σn−1

k=0
1
k!
(ψ(t)− ψ(a))k

(
1

ψ′(t)
d
dt

)k

f (a)
]

,

CDα,ψ
b− f (t) = Dα,ψ

b−

[
f (t)− Σn−1

k=0
(−1)k

k!
(ψ(b)− ψ(t))k

(
1

ψ′(t)
d
dt

)k

f (b)
]

.

In what follows, we will begin the process of building an appropriate variational structure for
the impulsive FDE (1). Before that, a fractional derivative space needs to be established.

Definition 3. Define the ψ-Caputo fractional derivative space Eα,ψ
0 by the closure of C∞

0 ([0, T],R)
with weighted norm:

‖x‖α,ψ :=
( ∫ T

0
| x(t) |2 dt +

∫ T

0
ψ′(t) | CDα,ψ

0+ x(t) |2 dt
) 1

2

. (8)
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Obviously, the space Eα,ψ
0 implies that x(t) ∈ L2[0, T] with CDα,ψ

0+ x(t) ∈ L2[0, T], and x(0) =
x(T) = 0.

Lemma 1 ([11]). The space Eα,ψ
0 is a reflexive and separable Banach space.

Lemma 2. For any x(t) ∈ Eα,ψ
0 , 1

2 < α ≤ 1, we have

‖x‖∞ ≤ M
( ∫ T

0
ψ′(t) | Dα,ψ

0+ x(t) |2 dt
) 1

2

, (9)

‖x‖L2 ≤ M̂‖Dα,ψ
0+ x‖L2 , (10)

where

M =
(ψ(T)− ψ(0))α− 1

2

Γ(α)(2(α− 1) + 1)
1
2

, M̂ =
maxt∈[0,T]{ψ′(t)}(ψ(T))α

Γ(α + 1)
.

Proof. Based on Theorem 4 in [9] and the Hölder inequality, we deduce:

|x(t)| =|Iα,ψ
0+ Dα,ψ

0+ x(t)| = 1
Γ(α)

∣∣∣∣ ∫ t

0
ψ′(ξ)(ψ(t)− ψ(ξ))α−1Dα,ψ

0+ x(ξ)dξ

∣∣∣∣
≤ 1

Γ(α)

( ∫ T

0

[
(ψ′(ξ))

1
2 (ψ(t)− ψ(ξ))α−1

]2

dξ

) 1
2
( ∫ T

0

[
(ψ′(ξ))

1
2 Dα,ψ

0+ x(ξ)
]2

dξ

) 1
2

≤ (ψ(T)− ψ(0))α− 1
2

Γ(α)(2(α− 1) + 1)
1
2

( ∫ T

0
ψ′(t)|Dα,ψ

0+ x(t)|2dt
) 1

2

.

The inequality (10) is immediately available according to [11]. The proof is completed.

Lemma 3. Based on Definition 2 and x(0) = x(T) = 0, one obtains:

CDα,ψ
0+ x(t) = Dα,ψ

0+ x(t), CDα,ψ
T− x(t) = Dα,ψ

T− x(t), ∀0 < α < 1.

From (10) and Lemma 3, we confirm that the norm defined by (8) is equivalent to:

‖x‖α,ψ :=
( ∫ T

0
ψ′(t) | CDα,ψ

0+ x(t) |2 dt
) 1

2

, ∀ x(t) ∈ Eα,ψ
0 . (11)

Lemma 4 ([11]). Let 1
2 < α ≤ 1. If any sequence {xk} converges to x in Eα,ψ

0 weakly, then xk → x
in C[0, T] as k→ ∞, i.e., ‖xk − x‖∞ → 0 as k→ ∞.

Based on the relevant definitions and lemmas introduced above, the definition of the weak
solution of FDE (1) can be given as follows.

Lemma 5. We say that x(t) ∈ Eα,ψ
0 is a weak solution of FDE (1) if the following relationship holds:

∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt−

n

∑
i=1

Ii(x(ti))y(ti) = λ
n

∑
i=0

∫ ti+1

si

fi(t, x(t))ψ′(t)y(t)dt, ∀y(t) ∈ Eα,ψ
0 . (12)

Proof. In view of (6), Dirichlet’s formula and Lemma 3 yields:
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∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt =

1
Γ(1− α)

∫ T

0

∫ t

0
ψ′(t)CDα,ψ

0+ x(t)(ψ(t)− ψ(ξ))−αy′(ξ)dξdt

=
1

Γ(1− α)

∫ T

0

[ ∫ T

t
ψ′(ξ)CDα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt

=
1

Γ(1− α)

n

∑
i=0

∫ ti+1

si

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt

+
1

Γ(1− α)

n

∑
i=1

∫ si

ti

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt. (13)

Due to (4), (5) and (7) yields

1
Γ(1− α)

n

∑
i=0

∫ ti+1

si

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt (14)

=
1

Γ(1− α)

n

∑
i=0

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y(t) |t=t−i+1

t=s+i

− 1
Γ(1− α)

n

∑
i=0

∫ ti+1

si

d
dt

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
· y(t)dt

=
n

∑
i=0

1
Γ(1− α)

∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α

(
1

ψ′(ξ)

d
dξ

)
I1−α,ψ
0+ x(ξ)dξ · y(t) |t=t−i+1

t=s+i

+
n

∑
i=0

∫ ti+1

si

−1
Γ(1− α)

(
1

ψ′(t)
d
dt

)[ ∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−αDα,ψ

0+ x(ξ)dξ

]
· ψ′(t)y(t)dt

=
n

∑
i=0
−CDα,ψ

T− (I1−α,ψ
0+ x(t))y(t) |t=t−i+1

t=s+i
+

n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt,

and

1
Γ(1− α)

n

∑
i=1

∫ si

ti

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt (15)

=
1

Γ(1− α)

n

∑
i=1

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y(t) |t=s−i

t=t+i

− 1
Γ(1− α)

n

∑
i=1

∫ si

ti

d
dt

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
· y(t)dt

=
n

∑
i=1

1
Γ(1− α)

∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α

(
1

ψ′(ξ)

d
dξ

)
I1−α,ψ
0+ x(ξ)dξ · y(t) |t=s−i

t=t+i

+
n

∑
i=1

∫ si

ti

d
dt

[
−1

Γ(1− α)

∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α

(
1

ψ′(ξ)

d
dξ

)
I1−α,ψ
0+ x(ξ)dξ

]
· y(t)dt

=
n

∑
i=1
−CDα,ψ

T− (I1−α,ψ
0+ x(t))y(t) |t=s−i

t=t+i
+

n

∑
i=1

∫ si

ti

d
dt

[
CDα,ψ

T− (I1−α,ψ
0+ x(t))

]
· y(t)dt.

Consequently, combining (13), (14), (15), and the impulsive conditions in FDE (1), one has:
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∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt

=
n

∑
i=0
−CDα,ψ

T− (I1−α,ψ
0+ x(t))y(t) |t=t−i+1

t=s+i
+

n

∑
i=1
−CDα,ψ

T− (I1−α,ψ
0+ x(t))y(t) |t=s−i

t=t+i
+

n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt

=
n

∑
i=1

CDα,ψ
T− (I1−α,ψ

0+ x(t+i ))y(t+i )− CDα,ψ
T− (I1−α,ψ

0+ x(t−i ))y(t−i ) +
n

∑
i=1

CDα,ψ
T− (I1−α,ψ

0+ x(s+i ))y(s+i )− CDα,ψ
T− (I1−α,ψ

0+ x(s−i ))y(s−i ) (16)

+ CDα,ψ
T− (I1−α,ψ

0+ x(0))y(0)− CDα,ψ
T− (I1−α,ψ

0+ x(T))y(T) +
n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt

=
n

∑
i=1

Ii(x(ti))y(ti) +
n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt.

An equivalent form for FDE (1) can be derived by multiplying the first equation of (1)
with ψ′(t)y(t), and integrating on both sides from si to ti+1, then summing from i = 0 to
i = n, according to (16), one has:

∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt−

n

∑
i=1

Ii(x(ti))y(ti) = λ
n

∑
i=0

∫ ti+1

si

fi(t, x(t))ψ′(t)y(t)dt.

The proof is completed.

Definition 4. A function

x ∈
{

x ∈ AC[0, T] :
∫ ti+1

si

| x(t) |2 +ψ′(t) | CDα,ψ
0+ x(t) |2 dt < +∞, i = 1, 2, . . . , n

}
is called a classical solution of FDE (1) if x satisfies the first equation of FDE (1), the limits
CDα,ψ

T− (I1−α,ψ
0+ x)(t±i ) and CDα,ψ

T− (I1−α,ψ
0+ x)(s±i ) exist and satisfy the impulsive conditions in (1),

and boundary condition x(0) = x(T) = 0 holds.

Lemma 6 ([23]). Let E be a real reflexive Banach space, let J1 : E → R be a sequentially weakly
lower semi-continuous, coercive and continuously Gâteaux differentiable functional whose Gâteaux
derivative admits a continuous inverse on E∗, and let J2 : E→ R be a sequentially weakly upper
semi-continuous and continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact. Suppose that there exist ρ ∈ R and x1 ∈ E with 0 < ρ < J1(x1), such that
(i) supx∈J−1

1 (]−∞,ρ]) J2(x) < ρ
J2(x1)
J1(x1)

.

(ii) For all λ ∈ B :=
]

J1(x1)
J2(x1)

, ρ
sup

x∈J−1
1 (]−∞,ρ])

J2(x)

[
, the functional J1 − λJ2 is coercive.

Then, for each λ ∈ B, the functional J1 − λJ2 possesses at least three distinct critical points
on E.

3. Proof of Theorems

In this section, the multiplicity of at least three distinct classical solutions for impulsive
FDE (1) is discussed depending on Lemma 6 and Definition 4.

For any x(t) ∈ Eα,ψ
0 , define the functional Jλ := J1 − λJ2, where

J1(x) =
1
2

∫ T

0
ψ′(t)|CDα,ψ

0+ x(t)|2dt−
n

∑
i=1

∫ x(ti)

0
Ii(ξ)dξ,

J2(x) =
n

∑
i=0

∫ ti+1

si

Fi(t, x(t))ψ′(t)dt, (17)
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where Fi(t, x) =
∫ x

0 fi(t, ξ)dξ. Owing to the continuity of fi and Ii, we can obtain J1, J2 ∈
C1(Eα,ψ

0 ,R) and

J′1(x)(y) =
∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt−

n

∑
i=1

Ii(x(ti))y(ti),

J′2(x)(y) =
n

∑
i=0

∫ ti+1

si

fi(t, x(t))ψ′(t)y(t)dt. (18)

Apparently, the critical point of Jλ is the weak solution of impulsive FDE (1).

Theorem 1. Assume that
(A1) Ii(0) = 0 and there exist di, Li > 0 with max{M2 ∑n

i=1 Li, M2 ∑n
i=1 di} < 1, such that

|Ii(ξ)| ≤ di|ξ| and | Ii(ξ1)− Ii(ξ2) |≤ Li | ξ1 − ξ2 |, ∀ξ, ξ1, ξ2 ∈ R.

(A2) There exist a constant ρ > 0 and a function ς(t), such that
(

1
2 −

M2 ∑n
i=1 di

2

)
‖ς‖2

α,ψ > ρ,

and
∑n

i=0
∫ ti+1

si
supx∈Ωρ

Fi(t, x(t))ψ′(t)dt

ρ
<

2 ∑n
i=0
∫ ti+1

si
Fi(t, ς(t))ψ′(t)dt

‖ς‖2
α,ψ − 2 ∑n

i=1
∫ ς(ti)

0 Ii(ξ)dξ
, (19)

where Ωρ = {x ∈ R :
(

1
2M2 −

∑n
i=1 di

2

)
| x |2≤ ρ}.

(A3) there exist bi, ci > 0, θi ∈ [0, 1), such that | fi(t, x)| ≤ bi + ci|x|θi , ∀t ∈ [0, T], x ∈ R,
i = 0, 1, . . . , n.

Then, for each λ ∈
]
‖ς‖2

α,ψ−2 ∑n
i=1
∫ ς(ti)

0 Ii(ξ)dξ

2 ∑n
i=0
∫ ti+1

si Fi(t,ς(t))ψ′(t)dt
, ρ

∑n
i=0
∫ ti+1

si supx∈Ωρ
Fi(t,x(t))ψ′(t)dt

[
, the impulsive

FDE (1) possesses at least three distinct weak solutions on Eα,ψ
0 .

Proof. First, we are concerned with functionals J1 and J2. Let {xk}∞
k=1 be a weakly con-

vergent sequence to x in Eα,ψ
0 , then ‖x‖α,ψ ≤ lim infk→∞ ‖xk‖α,ψ. In view of Lemma 4 that

{xk} converges to x in C([0, T],R) uniformly. That is:

lim inf
k→∞

J1(xk) = lim inf
k→∞

{
1
2
‖xk‖2

α,ψ −
n

∑
i=1

∫ xk(ti)

0
Ii(ξ)dξ

}
≥ 1

2
‖x‖2

α,ψ −
n

∑
i=1

∫ x(ti)

0
Ii(ξ)dξ = J1(x),

which means that J1 is weakly lower semi-continuous. In what follows, we assert that J1

possesses a continuous inverse on (Eα,ψ
0 )∗. By means of (18), (9) and (A1) yield:

(J′1(x)− J′1(y))(x− y) =
∫ T

0
ψ′(t) | CDα,ψ

0+ (x(t)− y(t)) |2 dt−
n

∑
i=1

(Ii(x(ti))− Ii(y(ti)))(x(ti)− y(ti))

≥‖x− y‖2
α,ψ −

n

∑
i=1
| Ii(x(ti))− Ii(y(ti)) || x(ti)− y(ti) |

≥‖x− y‖2
α,ψ −

n

∑
i=1

Li | x(ti)− y(ti) |2

≥‖x− y‖2
α,ψ − ‖x− y‖2

∞

n

∑
i=1

Li

≥(1−M2
n

∑
i=1

Li)‖x− y‖2
α,ψ > 0, ∀ x 6= y,
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which shows that J′1 is strictly monotone. Based on the Theorem 26.A(d) in [24], we can
obtain that there exists an inverse of J′1 on (Eα,ψ

0 )∗, and the inverse is continuous. Obviously,
J1 is coercive. On the other hand, suppose that {xk} ⊂ Eα,ψ

0 , xk ⇀ x in Eα,ψ
0 as k→ ∞. Then,

xk → x uniformly on [0, T], and

lim sup
k→∞

J2(xk) ≤
n

∑
i=0

∫ ti+1

si

lim sup
k→∞

Fi(t, xk(t))ψ′(t)dt =
n

∑
i=0

∫ ti+1

si

Fi(t, x(t))ψ′(t)dt = J2(x),

hence, J2 is sequentially weakly upper semi-continuous. Considering Fi ∈ C1((si, ti+1]×
R,R), then Fi(t, xk(t)) → Fi(t, x(t)) as k → ∞. According to the Lebesgue control con-
vergence theorem, J′2(xk) → J′2(x), i.e., J′2 is continuous strongly on Eα,ψ

0 . So, J′2 is a
compact operator.

Take x0 = 0, x1 = ς. Due to (A1) and (A2), we have J1(x1) ≥
(

1
2 −

M2 ∑n
i=1 di

2

)
‖x1‖2

α,ψ >

ρ > 0 and J1(x0) = 0. In view of (17), (9), and (A1), we have:

J−1
1 (]−∞, ρ]) = {x ∈ Eα,ψ

0 : J1(x) ≤ ρ} = {x ∈ Eα,ψ
0 :

1
2

∫ T

0
ψ′(t)|CDα,ψ

0+ x(t)|2dt−
n

∑
i=1

∫ x(ti)

0
Ii(ξ))dξ ≤ ρ}

⊆ {x ∈ Eα,ψ
0 :

1
2
‖x‖2

α,ψ −
n

∑
i=1

∫ x(ti)

0
di|ξ|dξ ≤ ρ}

⊆ {x ∈ Eα,ψ
0 :

(
1

2M2 −
∑n

i=1 di

2

)
| x(t) |2≤ ρ, t ∈ [0, T]},

then

sup
x∈J−1

1 (]−∞,ρ])

J2(x) = sup
x∈J−1

1 (]−∞,ρ])

n

∑
i=0

∫ ti+1

si

Fi(t, x(t))ψ′(t)dt ≤
n

∑
i=0

∫ ti+1

si

sup
x∈Ωρ

Fi(t, x(t))ψ′(t)dt,

that is

supx∈J−1
1 (]−∞,ρ]) J2(x)

ρ
≤

∑n
i=0
∫ ti+1

si
supx∈Ωρ

Fi(t, x(t))ψ′(t)dt

ρ
<

2 ∑n
i=0
∫ ti+1

si
Fi(t, ς(t))ψ′(t)dt

‖ς‖2
α,ψ − 2 ∑n

i=1
∫ ς(ti)

0 Ii(ξ)dξ
=

J2(x1)

J1(x1)
,

where (27) is used. Thus, the assumption (i) of Lemma 6 is satisfied.
In addition, for any fixed λ ∈ B, by means of (17), (A1), (A3), and (9), we obtain:

J1(x)− λJ2(x) ≥1
2
‖x‖2

α,ψ −
n

∑
i=1

( ∫ x(ti)

0
di|ξ|dξ

)
− λ

n

∑
i=0

∫ ti+1

si

ψ′(t)
∫ x

0
bi + ci|s|θi dsdt

≥1
2
‖x‖2

α,ψ −
(

1
2
‖x‖2

∞

n

∑
i=1

di

)
− λ(ψ(T)− ψ(0))

( n

∑
i=0

bi‖x‖∞ +
ci

θi + 1
‖x‖θi+1

∞

)
≥
(

1
2
− M2 ∑n

i=1 di

2

)
‖x‖2

α,ψ − λ(ψ(T)− ψ(0))M‖x‖α,ψ

( n

∑
i=0

bi

)
− λ(ψ(T)− ψ(0))

n

∑
i=0

ci Mθi+1

θi + 1
‖x‖θi+1

α,ψ .

Since θi ∈ [0, 1) and M2 ∑n
i=1 di < 1, we assert that lim

‖x‖α,ψ→∞
J1(x)− λJ2(x) = +∞, which

implies that J1 − λJ2 is coercive. The condition (ii) in Lemma 6 holds. Consequently, the
impulsive FDE (1) possesses at least three distinct weak solutions on Eα,ψ

0 using Lemma
6.
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Theorem 2. x(t) is a weak solution of impulsive FDE (1), if and only if x(t) is a classical solution
of FDE (1).

Proof. If x(t) is a classical solution of impulsive FDE (1), then x(t) also is a weak solu-
tion obviously. On the other hand, if x(t) ∈ Eα,ψ

0 is a weak solution of FDE (1), then
x(0) = x(T) = 0 and the Equation (12) holds. Without loss of generality, choose a test func-
tion vi(t) ∈ C∞

0 (si, ti+1] and vi(t) ≡ 0 for t ∈ [0, si]
⋃
(ti+1, T], i = 0, 2, . . . , n. Substituting

vi(t) into (12), from (16), we have:∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)vi(t)dt =
∫ ti+1

si

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ vi(t)dt,∫ ti+1

si

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ vi(t)dt = λ
∫ ti+1

si

fi(t, x(t))ψ′(t)vi(t)dt,

which shows that

CDα,ψ
T− (

CDα,ψ
0+ x(t)) = λ fi(t, x(t)), ∀t ∈ [si, ti+1], i = 0, 1, . . . , n. (20)

Because x ∈ Eα,ψ
0 ⊂ C[0, T] and ψ(t) ∈ C1[0, T], then

∫ ti+1

si

| x(t) |2 +ψ′(t) | CDα,ψ
0+ x(t) |2 dt < +∞.

Based on Lemma 3, (4) and (7) yield:

CDα,ψ
T− (

CDα,ψ
0+ x(t)) =Dα,ψ

T− (Dα,ψ
0+ x(t)) = Dα,ψ

T−

[
1

ψ′(t)
d
dt

I1−α,ψ
0+ x(t)

]
=

−1
Γ(1− α)

(
1

ψ′(t)
d
dt

) ∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α

(
1

ψ′(ξ)

d
dξ

)
I1−α,ψ
0+ x(ξ)dξ (21)

=
1

ψ′(t)
d
dt

[
CDα,ψ

T− I1−α,ψ
0+ x(t)

]
.

Since ψ(t) ∈ C1[0, T], fi ∈ C((si, ti+1] × R,R), according to (20) and (21), one obtains
CDα,ψ

T− I1−α,ψ
0+ x(t) ∈ AC[si, ti+1], which implies that the following limits exist:

CDα,ψ
T− (I1−α,ψ

0+ x)(s+i ) = lim
t→s+i

CDα,ψ
T− (I1−α,ψ

0+ x)(t),

CDα,ψ
T− (I1−α,ψ

0+ x)(t−i+1) = lim
t→t−i+1

CDα,ψ
T− (I1−α,ψ

0+ x)(t).

Substituting (20) into (12), one obtains:

∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt−

n

∑
i=1

Ii(x(ti))y(ti)−
n

∑
i=0

∫ ti+1

si

CDα,ψ
T− (

CDα,ψ
0+ x(t))ψ′(t)y(t)dt = 0. (22)

Uniting (13) with (14), we have:
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∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt

=
n

∑
i=0

∫ ti+1

si

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ y(t)dt +
n

∑
i=1

∫ si

ti

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ y(t)dt

=
n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(s+i ))y(s
+
i )−

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(t−i+1))y(t
−
i+1) (23)

+
n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt +
n

∑
i=1

∫ si

ti

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ y(t)dt.

Then, from (22) and (23), we obtain:

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(s+i ))y(s
+
i )−

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(t−i+1))y(t
−
i+1)

+
n

∑
i=1

∫ si

ti

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ y(t)dt−
n

∑
i=1

Ii(x(ti))y(ti) = 0. (24)

Without loss of generality, assume vi(t) ∈ C∞
0 (ti, si] and vi(t) ≡ 0 for t ∈ [0, ti]

⋃
(si, T],

i = 1, 2, . . . , n. Substituting vi(t) into (24), from (15) we deduce:

n

∑
i=1

∫ si

ti

d
dt

[
CDα,ψ

T− (I1−α,ψ
0+ x(t))

]
vi(t)dt = 0,

because of the arbitrariness of vi(t), for t ∈ (ti, si], i = 1, 2, . . . , n, we can obtain
CDα,ψ

T− (I1−α,ψ
0+ x(t)) = Constant. That is:

CDα,ψ
T− (I1−α,ψ

0+ x)(t) = CDα,ψ
T− (I1−α,ψ

0+ x)(t+i ) =
CDα,ψ

T− (I1−α,ψ
0+ x)(s−i ), t ∈ (ti, si], i = 1, 2, . . . , n. (25)

Substituting (25) back into (24) yields:

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(s+i ))y(s
+
i )−

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(t−i+1))y(t
−
i+1)−

n

∑
i=1

Ii(x(ti))y(ti)

+
n

∑
i=1

CDα,ψ
T− (I1−α,ψ

0+ x(t+i ))y(ti)−
n

∑
i=1

CDα,ψ
T− (I1−α,ψ

0+ x(t+i ))y(si) = 0,

then

n

∑
i=1

[
CDα,ψ

T− (I1−α,ψ
0+ x(t+i ))−

CDα,ψ
T− (I1−α,ψ

0+ x(t−i ))− Ii(x(ti))

]
y(ti)

+
n

∑
i=1

[
CDα,ψ

T− (I1−α,ψ
0+ x(s+i ))−

CDα,ψ
T− (I1−α,ψ

0+ x(t+i ))
]

y(si) = 0,

which implies that

CDα,ψ
T− (I1−α,ψ

0+ x(t+i ))−
CDα,ψ

T− (I1−α,ψ
0+ x(t−i )) = Ii(x(ti)), CDα,ψ

T− (I1−α,ψ
0+ x(s+i )) =

CDα,ψ
T− (I1−α,ψ

0+ x(t+i )).

Combining with (25), we can obtain CDα,ψ
T− (I1−α,ψ

0+ x(s+i )) = CDα,ψ
T− (I1−α,ψ

0+ x(s−i )) for i =
1, 2, . . . , n. Consequently, boundary conditions and impulsive conditions, as well as the first
equation in FDE (1), are all satisfied by x(t), which shows that x(t) is a classical solution of
FDE (1).
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Example 1. Let α = 0.6, ψ(t) = et, t ∈ [0, 1]. Concern with the following system is as follows:

CD0.6,et

1− (CD0.6,et

0+ x(t)) = λx
1
5 (t), t ∈ (0, t1]

⋃
(s1, 1],

∆(CD0.6,et

1− (I0.4,et

0+ x))(t1) = I1(x(t1)),
CD0.6,et

1− (I0.4,et

0+ x)(t) = CD0.6,et

1− (I0.4,et

0+ x)(t+1 ), t ∈ (t1, s1],
CD0.6,et

1− (I0.4,et

0+ x)(s−1 ) =
CD0.6,et

1− (I0.4,et

0+ x)(s+1 ),
x(0) = x(1) = 0.

(26)

Put I1(x) = 1
100 x. Clearly, d1 = L1 = 1

100 . By direct calculation, we have M ≈ 1.585,
M2L1 = M2d1 ≈ 0.025, the condition (A1) in Theorem 1 holds. Choose ς(t) = Γ(1.2)et, ρ = 1

10 ,
a direct calculation yields

CD0.6,et

0+ ς(t) =
Γ(1.2)
Γ(0.4)

(−5
2
)(et − 1)0.4, ‖ς‖2

α,ψ ≈ 1.576,
(

1
2
− M2d1

2

)
‖ς‖2

α,ψ ≈ 0.8 > ρ,

then

∑n
i=0
∫ ti+1

si
supx∈Ω(ρ) Fi(t, x(t))ψ′(t)dt

ρ
=

(
∫ t1

0 +
∫ 1

s1
) 5

6 et supx∈Ω(ρ) x
6
5 (t)dt

0.1
≈ 0.55

( ∫ t1

0
+
∫ 1

s1

)
etdt < 0.9,

and

2 ∑n
i=0
∫ ti+1

si
Fi(t, ς(t))ψ′(t)dt

‖ς‖2
α,ψ − 2 ∑n

i=1
∫ ς(ti)

0 Ii(s))ds
=

5
3 (
∫ t1

0 +
∫ 1

s1
)et(Γ(1.2)et)

6
5 dt

‖ς‖2
α,ψ − 1

100 (ς(t1))2

>

5
3 (
∫ t1

0 +
∫ 1

s1
)et(Γ(1.2)et)

6
5 dt

‖ς‖2
α,ψ − 1

100 (Γ(1.2))2
≈ 1.2

( ∫ t1

0
+
∫ 1

s1

)
(et)

11
5 dt > 1.2,

which shows that the condition (A2) holds. From Theorem 1, the system (26) possesses at least three
distinct classical solutions for each λ ∈]0.8, 1.1[.

Example 2. Let α = 0.75, ψ(t) = ctσ with σ > 0 and c ≥ 1, t ∈ [0, 1]. Concern with the
following system is as follows:

CD0.75,ctσ

1− (CD0.75,ctσ

0+ x(t)) = λ f (t, x(t)), t ∈ (0, t1]
⋃
(s1, 1],

∆(CD0.75,ctσ

1− (I0.25,ctσ

0+ x))(t1) = I1(x(t1)),
CD0.75,ctσ

1− (I0.25,ctσ

0+ x)(t) = CD0.75,ctσ

1− (I0.25,ctσ

0+ x)(t+1 ), t ∈ (t1, s1],
CD0.75,ctσ

1− (I0.25,ctσ

0+ x)(s−1 ) =
CD0.75,ctσ

1− (I0.25,ctσ

0+ x)(s+1 ),
x(0) = x(1) = 0.

(27)

Obviously, if one chooses c = 1, i.e., ψ(t) = tσ, the system (27) can reduce into the well known
Caputo-Erdélyi-Kober type fractional differential system. Define f (t, x) = 5

3
11
6

c−
5
4 x

2
3 ln(t + 1),

I1(x) = 1
10 c−

1
2 x. Then d1 = L1 = 1

10c
1
2

. By direct calculation, we have M ≈ 1.15c
1
4 , M2L1 =

M2d1 ≈ 0.132 < 1. Choosing ς(t) = Γ(0.25)c
3
4 tσ, ρ = c, a direct calculation yields:

CD0.75,ctσ

0+ ς(t) = 4t
1
4 σ, ‖ς‖2

α,ψ =
32
3

c,
(

1
2
− M2d1

2

)
‖ς‖2

α,ψ ≈ 4.6c > ρ,

then
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∑n
i=0
∫ ti+1

si
supx∈Ω(ρ) Fi(t, x(t))ψ′(t)dt

ρ
=

(
∫ t1

0 +
∫ 1

s1
)cσtσ supx∈Ω(ρ) 3−

5
6 c−

5
4 x

5
3 ln(t + 1)dt

c
<

1
50σ

,

and

2 ∑n
i=0
∫ ti+1

si
Fi(t, ς(t))ψ′(t)dt

‖ς‖2
α,ψ − 2 ∑n

i=1
∫ ς(ti)

0 Ii(s))ds
=

2

3
5
6

Γ2(0.25)c(
∫ t1

0 +
∫ 1

s1
)σt2σ−1 ln(t + 1)dt

‖ς‖2
α,ψ − 1

10 c
−1
2 (ς(t1))2

>
1

10σ
,

so that the condition (A2) holds. From Theorem 1, for each λ ∈]10σ, 50σ[, the system (27) possesses
at least three distinct classical solutions.

4. Conclusions

In this paper, we have investigated a new class of instantaneous and non-instantaneous
impulsive boundary value problem involving the generalized ψ-Caputo fractional deriva-
tive. Based on properties of ψ-Caputo-type fractional operators and the three critical
points theorem, the multiplicity results have been established. This problem is novel and
hasn’t been touched yet. By choosing special kernel functions in the ψ-Caputo fractional
derivative, some existing results which focus on the classical fractional operators have been
improved and supplemented.
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