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Abstract: Consider the computation of the solution for a class of discrete-time algebraic Riccati equa-
tions (DAREs) with the low-ranked coefficient matrix G and the high-ranked constant matrix H. A
structured doubling algorithm is proposed for large-scale problems when A is of lowrank. Compared
to the existing doubling algorithm of O(2kn) flops at the k-th iteration, the newly developed version
merely needs O(n) flops for preprocessing and O((k + 1)3m3) flopsfor iterations and is more proper
for large-scale computations when m � n. The convergence and complexity of the algorithm are
subsequently analyzed. Illustrative numerical experiments indicate that the presented algorithm,
which consists of a dominant time-consuming preprocessing step and a trivially iterative step, is
capable of computing the solution efficiently for large-scale DAREs.

Keywords: discrete-time algebraic Riccati equation; doubling algorithm; low-ranked matrix;
high-ranked constant term

1. Introduction

Consider a discrete-time control system

xk+1 = Axk + Buk, k = 0, 1, 2, ...,

where A ∈ Cn×n and B ∈ Cn×l with l ≤ n. Here, Cn×m stands for sets of n × m com-
plex matrices. The linear quadratic regulator (LQR) control minimizes the energy or the
cost functional

Jc(xk, uk) ≡
∞

∑
k=0

[x∗k Hxk + u∗k Ruk]

with the Hermitian constant term H ∈ Cn×n being positive semi-definite [1]. Here, the
symbol “*” is the conjugate transpose of a vector or a matrix.

The corresponding optimal control is

uk = −Fxk

and the feedback gain matrix

F := (R + B∗XB)−1(B∗XA)

can then be expressed in terms of the unique positive semi-definite stabilizing solution X
of the discrete-time algebraic Riccati equation (DARE) [2]

D(X) = −X + A∗X(I + GX)−1 A + H = 0, (1)

where G = BR−1B∗ with R ∈ Cl×l , H ∈ Cn×n is Hermitian and positive semi-definite. In
many control problems, the matrix A ∈ Cn×n is sparse in the sense that the matrix-vector
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product Av and the inverse-vector product A−1v require O(n) flops, respectively. The
recent applications of the discrete-time control system can be found in [3] such as the
wheeled robot and the airborne pursuer. There are also some applications (e.g., the singular
Kalman filter) about the fractional Riccati equation, see [4,5] and the references therein.

The existence of the unique positive semi-definite solution X of DARE (1) has been
well studied if (A, B) is d-stabilizable and (H, A) is observable, see [6,7] and their refer-
ences for more details. The structure-preserving doubling algorithm (SDA) is one of the
most efficient methods [7] to compute the unique positive semidefinite solution X via the
following iteration 

Ak+1 = Ak(I − Gk Hk)
−1 Ak,

Hk+1 = Hk + A∗k Hk(I − Gk Hk)
−1 Ak,

Gk+1 = Gk + Ak(I − Gk Hk)
−1Gk A∗k

(2)

with A0 = A, G0 = −G, H0 = H. Regardless of the structure of coefficient matrices, the
computational complexity of each iteration is about O(n3), obviously not fitting for large-
scale problems. When the constant matrix H is low-ranked, the solution X is commonly
numerically low-ranked and can be approximated by Hk in terms of a series of decomposed
matrix factors, making the SDA feasible for large-scale DAREs [8]. If only the feedback
gain matrix F is required without outputting the solution X, an adaptive version of the
SDA in [9] still works for large-scale problems even if H is high-ranked. In that case,
the solution X is no longer numerically low-ranked but can be stored in a sequence of
matrix-vector products [9]. In both situations, the computational complexity of the SDA at
the kth iteration costs about O(2kn) flops (i.e., the exponential increase in k), resulting in
the intolerable iteration time when k is large.

In this paper, we consider DAREs with A of the low-ranked structure (which may not
be sparse)

A = C1SC∗2 (3)

with C1, C2 ∈ Cn×m and S ∈ Cm×m (m � n). The motivation behind this is that the
complexity of the SDA at the k-th iteration might be further reduced in this case and the
DAREs, with the structure (3), have several applications in circuit-controlling areas, for
example, the circuits system with C1 and C2 being the mesh inductance matrices, composed
of the product of several mesh matrices (n is the number of meshes) and S being the
resistance matrix [10]. To obtain the optimal feedback gain to control the circuit system,
one is required to find the solution of the DARE (1).

The main contribution we made under the low-ranked structure (3) is that the compu-
tational complexity of the SDA at the k-th iteration can be further reduced to O((k + 1)3m3),
far less than O(2kn) when m� n. As a result, the most time-consuming part of the SDA
lies in the preprocessing step with a fixed computational complexity O(n), and the other
part for the iterations might be accordingly insignificant. Numerical experiments are im-
plemented to validate the effectiveness of the presented algorithm, constituting a useful
complement to the solver for computing the solution of DAREs.

The rest of the paper is organized as follows. In Section 2, we develop the structured
SDA for DAREs with a low-ranked structure of A and construct its convergence. A detailed
complexity analysis as well as the design of the termination criterion are established in
Section 3. Section 4 is devoted to numerical experiments to indicate the efficiency of the
proposed algorithm, and the conclusion is drawn in the last section.

Notation. Symbols Rn×n and Cn×n in this paper stand for sets of n × n real and
complex matrices, respectively. In is the n× n identity matrix. For a matrix A ∈ Cn×n, σ(A)
and ρ(A) denote, respectively, the spectrum and spectral radius of A. A Hermitian matrix
A > 0 (≥ 0) when all its eigenvalues are positive (non-negative). Additionally, M > N
(M ≥ N) if and only if M− N > 0 (≥ 0).

We also need the concept of the numerically low-ranked matrix.
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Definition 1 ([8]). A matrix A is said to be numerically low-ranked with respect to tolerance
ε > 0 if rank(A) ≤ cε for a constant cε associated with ε but independent of the size of A.

2. Structured Doubling Algorithm

In this section, we describe the structured iteration scheme for DAREs with a high-
ranked constant term and low-ranked A in (3). To avoid the inversion of large-scale
matrices, the Sherman–Morrison–Woodbury formula (SMWF) [11,12] is first applied to the
sparse-plus-low-ranked matrices to represent the corresponding structured matrices. Then,
we aim at preserving the sparsity or the low-ranked structure of the iteration sequence
rather than forming it explicitly. As a result, the SDA is capable of being implemented only
with some small-scale matrices, referred to as kernels, and the complexity of the iteration
can be ignored more easily than that of the preprocessing step for large-scale problems .

2.1. Iteration Scheme

Given the initial matrices A0 = C1SC2, H0 = H, G0 = BR−1B∗, S0 = S, T0 = 0,
G0 = R−1, and B0 = B, the SDA will be organized according to the following format:

Ak = C1SkC∗2 ,
Hk = H + C2TkC∗2 ,
Gk = BkRkB∗k

(4)

for k ≥ 0, where Sk, Tk ∈ Cm×m, Bk ∈ Cn×(km+l), and Rk ∈ C(km+l)×(km+l). One merit of
the above scheme (4) is that the sizes of kernels Sk and Tk are always invariant (i.e., m×m)
during iterations. Although the column of Bk and the size of Rk increase linearly with
respect to k, the enhanced scale is generally small due to the fast convergence of the SDA.
Then, Gk still hopefully maintains a low-ranked structure and could be derived and stored
in an economic way.

Let Σk = R−1
k − B∗k HkBk. By applying the Sherman–Morrison–Woodbury formula

(SMWF) [11], we have

(I − Gk Hk)
−1 = I + BkΣ−1

k B∗k Hk, (I − HkGk)
−1 = I + HkBkΣ−1

k B∗k . (5)

Insertion (5) into the SDA (2) with currently available Ak, Hk and Gk yield
Ak+1 = C1Sk+1C∗2 , Hk+1 = H + C2Tk+1C∗2 , Gk+1 = Bk+1Rk+1B∗k+1 with

Sk+1 = Sk(C∗2 C1 + Φ∗k Σ−1
k Ψk)Sk,

Tk+1 = Tk + S∗k (C
∗
1 HkC1 + Ψ∗k Σ−1

k Ψk)Sk,
Bk+1 = [C1, Bk],

Rk+1 =

[
R̃k

Rk

] (6)

and
Φk = C∗2 Bk, Ψk = C∗1 HkBk, R̃k = SkΦkΣ−1

k Φ∗k S∗k .

The main computational task of (6) is the update of HkBk, B∗k HkBk in Ψk, Φk, Σk and
the solutions of two linear system associated with Σk. Regardless of the concrete structure,
the complexity of such calculations is O(2kn) [8,9]. A deeper observation made here will
show that such computations can be further down to the complexity of O((k + 1)3m3), far
less than that of the preprocessing for large-scale problems with m� n. In fact, by setting
B0 = B, it follows from (6) that

Bk = [

km︷ ︸︸ ︷
C1, C1, ..., C1,

l︷︸︸︷
B ] n
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and thus

Φk = [

km︷ ︸︸ ︷
C∗2 C1, C∗2 C1, ..., C∗2 C1,

l︷︸︸︷
C∗2 B] m . (7)

Analogously, we have

HkBk = HBk + C2TkC∗2 Bk

= [

km︷ ︸︸ ︷
HC1 + C2TkC∗2 C1 ... HC1 + C2TkC∗2 C1

l︷ ︸︸ ︷
HB + C2TkC∗2 B] n

and

Ψk = [

km︷ ︸︸ ︷
C∗1 HC1 + C∗1 C2TkC∗2 C1 ... C∗1 HC1 + C∗1 C2TkC∗2 C1

l︷ ︸︸ ︷
C∗1 HB + C∗1 C2TkC∗2 B] m .

Furthermore, as

B∗k HkBk = B∗k HBk + B∗k C2TkC∗2 Bk (8)

=


km︷ ︸︸ ︷

C∗1 HC1 + C∗1 C2TkC∗2 C1 ... C∗1 HC1 + C∗1 C2TkC∗2 C1

l︷ ︸︸ ︷
C∗1 HB + C∗1 C2TkC∗2 B

...
. . .

...
...

C∗1 HC1 + C∗1 C2TkC∗2 C1 ... C∗1 HC1 + C∗1 C2TkC∗2 C1 C∗1 HB + C∗1 C2TkC∗2 B
B∗HC1 + B∗C2TkC∗2 C1 ... B∗HC1 + B∗C2TkC∗2 C1 B∗HB + B∗C2TkC∗2 B


km}

l

,

the update of the matrix

Σk = R−1
k − B∗k HkBk =

[
R̃−1

k−1
R−1

k−1

]
− B∗k HkBk

will be of size (km+ l)× (km+ l). Now, suppose that matrices C∗1 HC1, C∗1 HB, B∗HB, C∗2 C1,
and C∗2 B are available in the preprocessing step, then Φk in (7) does not require additional
computations. Additionally, Ψk and Σk can be obtained via updating several small scale
matrix multiplications of the size m × m, i.e., (C∗2 C1)

∗Tk(C∗2 C1), (C∗2 C1)
∗Tk(C∗2 B), and

(C∗2 B)∗Tk(C∗2 B), and replicating them km + l times (here R̃−1
k−1 and R−1

k−1 are assumed to be
available in the last iteration for computing Σk). Consequently, the left computation lies
in solving two linear systems ΣkU = Φk and ΣkV = Ψk of size (km + l)× (km + l). We
summarize the whole process in Algorithm 1 as below; the concrete complexity analysis in
the next section shows that the iteration only costs about O((k + 1)3m3) flops.

Remark 1. The output matrices Bε and Rε are numerically low-ranked with respect to the toler-
ance ε. T̂ is the matrix from the convergence of Tk given in the next subsection.

Remark 2. The QR decomposition of C2 is for the derivation of the relative residual and also could
be implemented in the preprocessing step. The computational complexity of the preprocessing part is
about O(n) flops, taking the dominant CPU time compared with the iteration part.

Remark 3. The computations of the iteration part and of the relative residual in the DARE cost
about O((k + 1)3m3) and O(m3) flops, respectively, much less than O(n) of the preprocessing part
when m� n. Hence, the main computation of Algorithm 1 concentrates on the preprocessing part.

2.2. Convergence

To establish the convergence of Algorithm 1, we first review some results for iteration
format (2).
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Algorithm 1. Structured SDA for DAREs.

Input: C1, C2, S, B, R−1 = R−∗, H and tolerances τg and ε, and mmax;
Output: Bε ∈ Cn×mε , Rε ∈ Cmε×mε , Tε ∈ Cmε×mε , and normalized relative resi-

dual r̃ε;
Preprocess: Compute C∗1 HC1, C∗1 HB, B∗HB, C∗2 C1, C∗2 B and the economic QR de-

composition of C2.
Iteration: Set T0 = 0, S0 = S, R0 = −R−1, B0 = B, H0 = H, Σ0 = −(R + B∗HB),

Φ0 = C∗2 B, Ψ0 = C∗1 HB and k = 0;
For k ≥ 1, do until convergence:

Compute the relative residual r̃k as in (11).
If r̃k ≤ ε, set Bε = Bk, Rε = Rk, Tε = Tk and r̃ε = r̃k; Exit;
End If
Compute

Sk+1 = Sk(C∗2 C1 + Φ∗k Σ−1
k Ψk)Sk;

Tk+1 = Tk + S∗k (C
∗
1 HkC1 + Ψ∗k Σ−1

k Ψk)Sk;

Rk+1 =

[
SkΦkΣ−1

k Φ∗k S∗k
Rk

]
;

Obtain B∗k+1Hk+1Bk+1 in (8) with preprocessed matrices.
Σ−1

k+1 = (I − Rk+1B∗k+1Hk+1Bk+1)
−1Rk+1,

Φk+1 = [C∗2 C1, Φk],
Ψk+1 = [C∗1 HC1 + C∗1 C2Tk+1C∗2 C1, ..., C∗1 HC1 + C∗1 C2Tk+1C∗2 C1,

C∗1 HB + C∗1 C2Tk+1C∗2 B];
Set k← k + 1.

End Do

Theorem 1 ([13]). Assume that X and Y are the Hermitian and positive semi-definite solutions of
the DARE (1) and its dual equation

Dd(Y) = −Y + AY(I + HY)−1 A∗ + G = 0, (9)

respectively. Let P := (I + GX)−1 A and Q := (I + HY)−1 A∗. Then, the matrix sequences {Ak},
{Gk} and {Hk} generated by the SDA (2) satisfy

(1) Ak = (I + GkX)P2k
;

(2) H ≤ Hk ≤ Hk+1 ≤ X, X− Hk = (P∗)2k
(X + XGkX)P2k

;

(3) G ≤ Gk ≤ Gk+1 ≤ Y, Y− Gk = (Q∗)2k
(Y + YHkY)Q2k

.

(10)

It follows from (10) that

‖Ak‖ ≤ (1 + ‖X‖ · ‖Y‖)‖P2k‖,
‖Hk − X‖ ≤ ‖X‖(1 + ‖X‖ · ‖Y‖)‖P2k‖2,
‖Gk −Y‖ ≤ ‖Y‖(1 + ‖X‖ · ‖Y‖)‖Q2k‖2.

indicating that sequences {Ak}, {Hk} and {Gk} converge quadratically to zero, X, and Y,
respectively, if ρ(P) < 1 and ρ(Q) < 1. By noting the decomposition Ak = C1SkC∗2 , the se-
quence {Sk} must converge to zero. On the other hand, the decomposition
Hk = H + C2TkC∗2 implies that the sequence {Tk} converges to some matrix T̂ ∈ Cm×m

such that the solution of the DARE X = H + C2T̂C∗2 . At last, the decomposition
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Gk = BkRkB∗k

= [C1, ..., C1, B] ·


SkΦ∗k Σ−1

k ΦkS∗k
. . .

S1Φ∗1Σ−1
1 Φ1S∗1

S0Φ∗0Σ−1
0 Φ0S∗0

 ·


C∗1
...

C∗1
B∗


= BS0Φ∗0Σ−1

0 Φ0S∗0 B∗ +
k

∑
i=1

C1SkΦ∗k Σ−1
k ΦkS∗k C∗1

indicates that the solution Y of the dual DARE has a numerically low-ranked decompo-
sition Y ≈ BεRεB∗ε with respect to a sufficient small tolerance ε > 0. So, we have the
following corollary.

Corollary 1. Suppose that X and Y are the Hermitian and positive semi-definite solutions of the
DARE (1) and its dual form (9), respectively. Then, for Algorithm 1, the sequence {Sk} converges to
zero matrix quadratically, and {Tk} converges to some matrix T̂ with X = H + C2T̂C∗2 . Moreover,
for sufficiently large k, the matrix Rk is numerically low-ranked with respect to tolerance ε. That
is, the solution Y of the dual Equation (9) has the low-ranked approximation Y ≈ BεRεB∗ε , where
matrices Bε and Rε associate with ε but independently of the size of Y.

3. Computational Issues
3.1. Residual and Stop Criterion

Recalling the low-ranked structures of G and A, the residual of the DARE is

−Hk + A∗Hk(I + GHk)
−1 A + H

= C2(−Tk + S∗C∗1 Hk(I + BR−1B∗Hk)
−1C1S)C∗2

= C2(−Tk + S∗(Πk − ΞkΘ−1
k Ξ∗k )S)C

∗
2

with

Πk = C∗1 HkC1 = C∗1 HC1 + (C∗2 C1)
∗ · Tk · C∗2 C1,

Ξk = C∗1 HkB = C∗1 HB + (C∗2 C1)
∗ · Tk · C∗2 B,

Θk = R + B∗HkB = R + B∗HB + (C∗2 B)∗ · Tk · C∗2 B.

Let C2 = QC2
RC2

(QC2
∈ Cn×m, RC2

∈ Cm×m) be the economic QR decomposition of
C2, derived from the preprocessing step. The matrix norm of the residual is

rk = ‖RC2
(−Tk + S∗(Πk − ΞkΘ−1

k Ξ∗k )S)R∗
C2
‖

and Algorithm 1 can be terminated by the normalized relative residual

NRRes = rk/(tk + sk + mk) := r̃k < ε (11)

with

rk = ‖RC2
TkR∗

C2
‖, sk = ‖RC2

S∗k ΠkSkR∗
C2
‖, mk = ‖RC2

S∗k ΞkΘ−1
k Ξ∗k SkR∗

C2
‖.

Note that the calculation of NRRes only associates with several matrix operations with
the small-scale m×m, requiring O(m3) flops and far less than O(n) when m� n.

3.2. Complexity Analysis

The main flops of Algorithm 1 come from the preprocessing step of forming matrices
C∗1 HC1, C∗1 HB, B∗HB, C∗2 C1, C∗2 B and QR decomposing C2 = QC2

RC2
with the Householder
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transformation in [14,15]. Table 1 lists the details, where only the matrix RC2
∈ Cm×m stored

as QC2
∈ Cn×m is orthornormal satisfying Q∗

C2
QC2

= Im.

Table 1. Complexity and memory of the preprocessing step in Algorithm 1.

Items Flops Memory

HC1, HB 2m(m + l)n (m + l)n
C∗1 HC1, C∗1 HB, B∗HB 2(m2 + ml + l2)n m2 + ml + l2

C∗2 C1, C∗2 B 2m(m + l)n m2 + ml
C2 = QC2

RC2
(10m2 + 4ml + 4l2)n m2

Total (16m2 + 10ml + 6l2)n 3m2 + 2ml + l2 + (m + l)n

It is seen from Table 1 that the computation and the storage are both of O(n) flops
when m, l � n. We subsequently analyze the complexity of the iteration part. Assume
that the LU decomposition is employed for solving the linear system MZ = N with
M, Z, N ∈ C(km+l)×(km+l). The flops and memory of the kth iteration are summarized in
Table 2 below.

Table 2. Complexity and memory at kth iteration in Algorithm 1.

Items Flops Memory

Σ−1
k Φ∗k , Σ−1

k Ψ∗k 16(km + l)2m 2(km + l)m
Φ∗k Σ−1

k Ψ∗k , Φ∗k Σ−1
k Φ∗k ,

Ψ∗k Σ−1
k Ψ∗k

6m2(km + l) 3m2

Sk+1 4m3 m2

Tk+1 8m3 m2

Rk+1 4m3 m2

B∗k+1Hk+1Bk+1 2m(2m2 + 2ml + l2) ((k + 1)m + l)2

Σk+1 2((k + 1)m)3 ((k + 1)m)2

Φk+1 — ((k + 1)m + l)m
Ψk+1 4m2(m + l) ((k + 1)m + l)m

Total
(24 + 2(k + 1)3)m3

+2ml(4m + l)
+2m(km + l)

(8(km + l) + 3m)

(4(k + 1)2 + 2k + 6)m2

+(2k + 6)ml
+l2

Table 2 shows that the complexity of the kth iteration in Algorithm 1 is about
O((k + 1)3m3), far less than O(n) of the preprocessing step when m � n. Thus, the
dominantly calculating cost of Algorithm 1 locates at the preprocessing step; however, it is
still far less than the exponentially increasing complexity O(2kn) [8,9] when k grows large.

4. Numerical Experiments

In this section, we will show the effectiveness of Algorithm 1 to calculate the solution
X of the large-scale DARE (1). The code was programmed by Matlab 2014a [16], and all
computations were implemented in a ThinkPad notebook with 2.4 GHz Intel i5-6200 CPU
and 8G memory. The stop criterion is the NRRes in (11) with a proper tolerance ε. To show
the location of the dominant computations in Algorithm 1, we record the ratio of iteration
time and total time in the percentage

Rt =
TIME-I

TIME-P + TIME-I
× 100%, (12)

where “TIME-P” represents the pre-processing time elapsed for forming matrices associated
with n, and “TIME-I” stands for the costed CPU time for iterations.



Fractal Fract. 2023, 7, 193 8 of 12

Example 1. The first example is devised to measure the actual error between the true solution X
and the approximated solution Hk computed from Algorithm 1. Let S = 1, C1 = 1/‖1‖ ∈ Rn×1

and C2 ∈ Rn×1 be a vector such that C∗1 C2 = 0 and C∗i Ci = 1 (i = 1, 2), where 1 is a vector with
all elements 1. Set B∗ = [0, 0, ..., 0, 1] ∈ R1×n, R = 1 and H = In. Then, the solution of the
DARE is

X = In −UU∗

with
U = wC2

and

w2 =
C2

2n
− 2 +

√
(C2

2n
− 2)2 + 4C2

2n
(2− C2

1n
)

2C2
2n

being the root of the equation (1− w2)(2 + w2 ∗ C2
2n
)− C2

1n
= 0. Here, C1n and C2n represent the

n-th element of C1 and C2, respectively. The coefficient matrices are A = C1SC∗2 and G = BR−1B∗.
The principle of selecting the above vectors and matrices is for the convenient construction of the
true solution of the DARE. Then, we can evaluate the error between the computed approximated
solution and the true solution.

We consider the medium scales with n = 1000, 3000, and 5000 to test the accuracy of
Algorithm 1, which is terminated when the NRRes is less the prescribed ε = 1.0× 10−13.
Numerical experiments show that Algorithm 1 always takes three iterations to obtain the
approximate solution for all tested dimensions n. The obtained results on NRRes and
Errors are listed in Table 3.

Table 3. Residual and actual errors in Example 1.

n 1000 3000 5000

NRRes1 9.99× 10−1 9.99× 10−1 9.99× 10−1

NRRes2 2.49× 10−7 2.77× 10−7 9.99× 10−8

NRRes3 6.24× 10−17 3.62× 10−17 4.48× 10−18

‖H1 − X‖ 9.99× 10−1 9.99× 10−1 9.99× 10−1

‖H2 − X‖ 2.26× 10−7 3.33× 10−7 2.75× 10−7

‖H3 − X‖ 1.24× 10−14 1.25× 10−14 1.24× 10−14

Rt 37.5% 12.6% 6.8%

It is seen from the table that Algorithm 1 is efficient to calculate the solution of the
DARE. In fact, for different dimensions, the actual error between Hk and the solution X is
less than the prescribed accuracy after three iterations, and the derived relative residual is
down to a lower level about 10−17 to 10−18. Especially, the value of Rt gradually decreases
with the rising scale of n, indicating that the CPU time for iterations takes only a small part
of the whole for large-scale problems.

Example 2. Randomly generate matrices C1, C2, B ∈ Rn×m and define

C1 :=
C1√

2‖C1‖1/2
, C2 :=

C2√
2‖C2‖1/2

, B :=
B

‖B‖1/2 .

Set R = S = Im and consider the DARE (1) with A = C1C∗2 , G = BB∗, and
H = I − BB∗ − 1

2 C2C∗2 + C2C∗1 BB∗C1C∗2 . It is not difficult to see the solution of the DARE
is X = I − BB∗. Similarly, the principle of selecting the above matrices is for the convenience of
evaluating the error.
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We take n = 5000, 6000, 7000 to test the error between the true solution and the
computed solution. The obtained results together with the NRRes are plotted in Figures 1–3.
Still, Rt represents the ratio of the iteration time and the total time.

0 2 4 6
−20

−15

−10

−5

0

Lo
g 10

Iteration

 

 n=5000 
Rt = 3.41%

NNRes
Err

0 2 4 6
−20

−15

−10

−5

0

Lo
g 10

Iteration

 

 n=6000 
Rt = 2.68%

NNRes
Err

0 2 4 6
−20

−15

−10

−5

0

Lo
g 10

Iteration

 

 n=7000 
Rt = 1.63%

NNRes
Err

Figure 1. History of NRRes and Error for n = 5000 in Example 2.
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Figure 2. History of NRRes and Error for n = 6000 in Example 2.
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Figure 3. History of NRRes and Error for n = 7000 in Example 2.

Figures 1–3 show that as the number of iterations increases, the NRRes and errors
decrease exponentially and Algorithm 1 terminates at the 6th iteration. In all experiments,
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the preprocessing time for three cases varied from 0.1 to 0.2 s, while the iterative time only
took from 0.0032 to 0.0035 s, costing a small part of the whole CPU time. More experiments
also indicated that the ratio Rt became smaller as the scale of the problem increased.

Example 3. This example comes from a proper modification of the circuits from the magneto-
quasistatic Maxwell equations ([17,18]). The matrix S ∈ R632×632 represents the DC resistance
matrix of each current filament (see Figure 4) and C1 as well as C2 ∈ Rn×632 associated with the
mesh matrices. Let R = 1, B> = [1, 0, ..., 0] ∈ R1×n and H = In. We randomly generate the
matrix U ∈ Rn×632 and define

U =
U

‖U‖1/2 , C1 = U, C2 = U.

The tolerance ε is taken as 10−14, and the dimensions are n = i× 105 (i = 1, 2, ..., 6).

nz = 14,156
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(a) (b)Figure 4. The structure of the DC resistance matrix of each current filament.

For all cases in our experiments, Algorithm 1 was observed attaining the relative
residual level below 1.01 × 10−16 at the 4-th iteration. The elapsed CPU time and the
ratio Rt are plotted in Figure 5, where “Tpre” and “Tit” record the CPU time for the
preprocessing and for the iteration, respectively. One can see from the figure that as the
scale n rises, the preprocessing time becomes more dominant (about 112 s at n = 600, 000)
but the iteration time remains almost unchanged (about 3.5 s for all n). The gradually
reduced ratio Rt also illustrates that the main computations of Algorithm 1 when solving
the large-scale problems lie in the preprocessing step of O(n) flops, much less than the
exponentially increasing one of O(2kn) in [8,9].
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(a) (b)Figure 5. Preprocessing time (Tpre), iteration time (Tit), and Rt for different dimensions in Example 3.

5. Conclusions

We have proposed an efficient algorithm to solve the large-scale DAREs with low-
ranked matrices A and G and a high-rank matrix H. Compared with the SDA of the
complexity O(2kn) in [8,9], the newly developed algorithm only requires preprocessing
step of O(n) flops and iteration step of O((k + 1)3m3) flops. For large-scale problems with
m� n, the main computations of the whole algorithm lie in the preprocessing step with
several matrix multiplications and an economic QR decomposition, while the elapsed CPU
time for the iteration part is trivial. Some numerical experiments validate the effectiveness
of the proposed algorithm. For future work, we may investigate the possibility of the SDA
for solving large-scale DAREs with the structure of sparse-plus-low-rank in A, where the
possible difficulty might be understanding the concrete structure of the iterative matrix
and knowing how to compute and store it efficiently.
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