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Abstract: Digital twins are applied in smart manufacturing towards a smarter cyber-physical manu-
facturing system for effective analysis, fault diagnosis, and system optimization of a physical system.
In this paper, a framework applying a digital twin to industrial robots is proposed and realizes the
real-time monitoring and performance optimization of industrial robots. This framework includes
multi-domain modeling, behavioral matching, control optimization, and parameter updating. The
properties of the industrial robot are first modeled in a digital environment to realize the strong
interactive and all-around 3D visual monitoring. Then, behavioral matching is performed to map
the virtual system to the physical system in real time. Furthermore, the control performance of the
system is improved by using a fractional order controller based on the improved particle swarm opti-
mization algorithm. This framework is applied to the experimental verification of real-time control
optimization on an industrial robot. The time-domain performance is improved in the simulation
and experimental results, where the overshoot is promoted at least 42%, the peak time is promoted at
least 32%, and the settling time is promoted at least 33%. The simulation and experimental results
demonstrate the effectiveness of the proposed framework for a digital twin combined with fractional
order control (FOC).

Keywords: digital twin; industrial robots; smart manufacturing; FOC

1. Introduction

With the development and application of new information technologies, countries
have proposed different manufacturing strategies [1], and smart manufacturing is a com-
mon way to improve the level of the manufacturing industry [2]. Smart manufacturing
requires not only high quality standards but also enhanced robustness and autonomy to
achieve production targets [3]. Most of the work is related to the physical system, and the
content of the digital system only plays an auxiliary role most of the time in traditional
manufacturing [4].

Compared with smart manufacturing, the innovation cycle of the traditional industrial
field is much longer. Therefore, one of the key challenges is to achieve Cyber-Physical
Systems (CPS) [5]. CPS realizes real-time interactions and close combinations of the network
and the physical systems through computing, communication, and control [6]. To achieve
this transformation, an emerging technology is urgently needed—namely, digital twins [7].

The digital twin concept was officially proposed in NASA’s technical report in Mid-
2010 [8]. The key of a digital twin is to create a virtual model of the physical system in
a digital way and then simulate, verify, control, and predict the whole life cycle process
of the physical system with the help of the digital twin data, the virtual system, and the
connection between physical and virtual systems [9]. With the development of smart
manufacturing, the application of digital twins in the manufacturing industry has been
widely studied [10].
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Tao et al. constructed a general digital twin framework for complex equipment, which
is used for prognostics and health management to improve accuracy and efficiency [11].
Rodolfo et al. presented a digital twin-based optimization procedure for an ultra-precision
motion system [12]. Aivaliotis et al. presented a methodology to calculate the remaining
useful life (RUL) of machinery equipment using physics-based simulation models based
on the digital twin concept, and the RUL of industrial robots was predicted effectively [13].

Zhang et al. proposed an optimal state control framework based on digital twins,
which helps the synchronized production operational system maintain an optimal state
when uncertainties effect the system [14]. Viola et al. applied a digital twin to the framework
of intelligent control engineering. The framework reproduced the system behavior through
a multi-domain simulation and completed the real-time interface between physical and
virtual systems by adjusting the behavioral matching technology to the digital twin [3].

Gallala et al. proposed a digital twin approach for human–robot interactions (HRIs) in
hybrid teams; however, this approach lacked a description of performance optimization [15].
Lei et al. presented a web-based digital twin thermal power plant and discussed the
architecture, modeling, control algorithm, rule model, and physical–digital twin control,
which is beneficial to study the applications of digital twinning in other fields [16].

However, implementing digital twins to industrial motion systems still lacks a thor-
ough understanding of the concept, framework, and development methods, which hinders
the progress of real digital twin application in smart manufacturing [17]. There are two
major research questions that need to be solved: (1) how to match the virtual model with
the actual motion state in real time to ensure the accuracy of the model in the optimization
process; and (2) how to further optimize the control performance of the physical system in
the proposed digital twin framework.

The greatest challenge for the first question is how to construct real-time behavioral
matching based on an optimal algorithm to ensure the accuracy of the virtual model. The
real-time interaction is realized through the database. The digital twin data collected from
the virtual and physical system, including static and dynamic model information of the
physical system, information collected by sensors during physical system operation, and
information collected by virtual sensors during virtual system operation, are all stored in
the database.

Digital twin data can be read at any time as a database client. Then, the real-time
interaction between the physical and the virtual systems can be realized, which lays a
solid foundation for the accuracy and effectiveness of the virtual model optimization. In
order to achieve intelligent optimal control, the methods of introducing artificial intelli-
gence algorithms to optimize the performance of the control system can be divided into
two categories.

One is to use artificial intelligence algorithms directly for control [18], thereby, re-
placing the traditional controllers. The other is to combine the approach with classical
control theory and use artificial intelligence algorithms for parameter tuning [19]. As for
the second question, the proposed methodology in this paper is fractional order control
(FOC) optimization using artificial intelligence algorithms in a digital twin framework to
achieve optimal control performance.

Fractional calculus is the quantitative analysis of functions using non-integer-order
integration and differentiation [20], and this has attracted a great deal of interest in system
modeling and control fields [21]. Fractional order controllers have been found to obtain
more control options and flexibility compared with integer order controllers [22]. Among
them, the fractional order PIλDµ was proposed by I. Podlubny [23]. Due to the fact that the
fractional order PIλDµ controller achieves better tracking performance with less overshoot
and faster response [24], the fractional order PIλDµ controller has been widely used in the
control fields [22,25].

Therefore, the fractional order PIλDµ controller design and optimization method is
proposed in the industrial robot motion system digital twin framework in this paper. There
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exist some tuning methods of fractional order controllers, which can be divided into two cat-
egories: the frequency-domain-design method and time-domain optimization algorithms.

The frequency-domain-design method generally refers to the numerical solution of
the parameters of the controller by specifying the frequency specifications, combined
with the robustness criterion [26]. According to the frequency-domain-design method,
the parameters of the controller can be obtained through analytical calculation, which
can realize effective control of the system [27]. Monje et al. proposed a design scheme
of fractional order controller with given frequency-domain indexes, which is robust to
equipment uncertainty, load disturbance and high-frequency noise [28].

Chen et al. used the frequency-domain-design scheme to design the parameters of
FOPID-BICO, which ensures the robustness and anti-interference of the control system [29].
However, there exist some problems, including the parameter limitation for optimization,
the complexity of the algorithm, and a large amount of calculation for the real-time opti-
mization process. Time-domain-optimization algorithms have also been developed [30],
which overcome the uncertainty and cumbersomeness of manually adjusting parameters
by introducing intelligent optimization algorithms.

The major contributions of this paper are as follows: (1) we introduce a framework
of a digital twin for industrial motion system, which realizes real-time monitoring and
optimization of the running state with experimental verification of control optimization;
(2) digital twin behavioral matching based on real-time data analysis and dynamic mapping
between virtual system and physical systems; and (3) FOC optimization using the intelligent
algorithm in the digital twin framework to achieve optimal motion system performance.

This paper is structured as follows. Section 2 presents the framework of a digital twin
for industrial robots and introduces the four phases of implementation in detail. Section 3
shows the implementation of the proposed framework using related software. Section 4
describes the specific application example, which is how to implement the digital twin
framework on an industrial robot control system. Section 5 presents the simulation and
experimental results to demonstrate the effectiveness and advantages of the proposed
digital twin framework combined with FOC optimization. Finally, our conclusions and
future work are presented in Section 6.

2. Digital Twin Approach

The idea of a digital twin first appeared in the product lifecycle management course
taught by Grieves around 2003. In 2014, he further elaborated on digital twins in a white
paper and proposed a general standard system on digital twin, which is a three-dimensional
structure [31]. This three-dimensional architecture consists of three main objects—namely,
physical products in real space, virtual products in virtual space, and the connections of
data and information that tie the virtual and physical products together.

In order to improve the accuracy and efficiency of prognostics and health management
for complex systems, Tao proposed an extended five-dimension digital twin architecture,
which adds digital twin data and services based on the Grieves’ architecture [11]. In
addition, other digital twin architectures have been proposed by other researchers [32].
Referring to Tao’s five-dimensional model of digital twins, this paper presents a five-
dimensional architecture of digital twins applied to industrial robots as shown in Figure 1.

This framework also consists of five aspects—namely, the physical system, virtual
system, digital twin data, service applications, and the connection between the above
four aspects. The virtual system is built based on the physical system and digital twin
data first, adjusted to realize real-time synchronization to the physical system, and then
optimized according to the service applications proposed by physical systems, such as fault
detection, control optimization, and three-dimensional monitoring. Finally, the monitoring
and optimization of the physical system can be realized based on the digital twin data
stored after the virtual system optimization.

In classical control theory, it is necessary to manually adjust the parameters based on the
error signal through the control algorithm offline, which is a slow, tedious, and inefficient
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process. The framework in this paper focuses on the utilization of the digital twin concept to
automatically adjust the controller parameters when the operating state of the robot changes.
More specifically, a real-time optimization strategy for FOC is proposed in the framework,
which can achieve optimal tracking control and robustness performance.

Mutli-domain model

Behavioral matching

Control optimization

Physical system Virtual system

• Fault detection
• Control optimization
• Three-dimensional 

monitor

Service application

Digital 
twin data

Controllers

Actuators

    y
      

Virtual and real synchronization

 Data driven

Sensors

r

Figure 1. A five-dimensional framework of digital twins: applications to industrial robots.

Based on the service application of three-dimensional monitoring and control opti-
mization, the framework is composed of four steps: multi-domain modeling, behavioral
matching, control optimization, and parameter updating.

2.1. Multi-Domain Modeling

The purpose of the first step is to establish a virtual system representing the behavior
of the physical system. As a copy of the physical system, the virtual system needs to
truly reflect the state of the physical system at every moment to realize monitoring of the
physical system.

The modeling process includes two parts as depicted in Figure 2: the first part is
to model the position, geometric size, material, and dependency of the physical system;
and the second part is to model the kinematic and dynamic characteristics of the physical
system, which is also the most important part of the modeling.

• position
• geometric size
• material
• dependency

Structural 
characteristics

• kinematics
 
• dynamics

Kinematic 
characteristics

Physical system

Virtual system

• subordinate
• interactive 
• scene roaming 

3D visual monitor

• mechanical

•  electrical 

motor motion state 
tracking

Digital twin data

Figure 2. A multi-domain model as a virtual system based on a physical system.
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The first part of modeling is to represent the model of robot and its environment in 3D.
The target is to realize the strong interactive and all-around 3D visual monitoring effect of
the physical entities. The second part of modeling is to achieve motor motion state tracking.
The complete model of each motor consists of a number of elements, which represent the
dynamic behavior of each motor’s component based on the modeling of the mechanical,
electrical, and other functions.

2.2. Behavioral Matching

The purpose of this step is to find the parameters of the virtual model so that the virtual
model can adapt to its complete system dynamics and be consistent with the real state of
the physical system. The parameters of the virtual model can be divided into two parts.
The first part is all available data related to the physical system. It is worth mentioning that
most of the modeled elements can use the parameters directly from collection.

The second part of the parameters will change continuously due to the operation of
the machine and other external factors and cannot be defined directly using the collected
data. These parameters need to be optimized online in real time by using the digital twin
data to achieve the target of the behavior of the virtual system matching the behavior of
the physical system. This process is called behavioral matching [3] as depicted in Figure 3.

This process is set as an optimization cycle. Intelligent optimization algorithms are
used to optimize the parameters. The cost function will be computed continuously until
the input and output data streams of the system are consistent with a certain tolerance rate
or after a fixed number of iterations.

Physical system

Virtual system

Real time 
data

Optimized
parameters

iterative optimization

Target：

physical output

virtual output

Figure 3. Behavioral matching.

2.3. Control Optimization

The purpose of this step is to optimize the control performance of the virtual model.
After behavioral matching, the mapping and interactions between the physical system and
virtual system are deployed. Therefore, the control performance optimization of the virtual
model is of great significance to the optimization of physical system. In order to achieve
better control performance, the fractional order controller is used to control and optimize
based on the accurate virtual model.

There exist some tuning methods of fractional order controllers, which can be divided
into two categories: frequency-domain-design method and time-domain-optimization
algorithms. To overcome the uncertainty and cumbersomeness of manually adjusting
parameters, the intelligent optimization algorithm is used in this paper. Using optimal
control rules, we first calculating the error between the reference and feedback of the
closed-loop system, and then using the optimization algorithms and tools to minimize the
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cost function value representing the dynamic performance index of the system, and search
for the optimal parameters. The time-domain-optimization algorithm is applied in the
proposed digital-twin-system framework with data collection from the physical system to
the virtual system as shown in Figure 4.

Virtual  system

BEGIN

 Parameters initialize 

Evaluate 

Reach condition

Output the optimal 
parameter

END

Fractional-order
controllers

Actuators

Sensors

Digital twin
data

Physical  system

yes

no

Figure 4. Digital-twin-system framework control optimization.

2.4. Parameter Updating

The purpose of this step is to update the optimal parameters obtained by the virtual
system to the physical system to achieve the predetermined control targets. The iteratively
optimized parameters are stored in the virtual system and are updated in the physical
system through the data communication channel between the virtual and physical systems.
By optimizing the controller parameters in real time, the high performance index can be
maintained when the running state of the physical system changes.

3. Digital Twin Deployment

The previous section describes a framework of digital twins for the industrial motion
system. The implementation of multi-domain modeling with related software and behav-
ioral matching of the framework are presented in this section. Multi-domain modeling is
divided into two parts. The first part is to model the position, geometric size, material, and
dependency of the physical system, which is performed in Unity3D [33]. The 3D platform
used to build the model needs to follow three rules: 3D visualization requirement, key
function requirement, and cross-platform operation requirement.

Furthermore, as a popular virtual system development engine, Unity3D is used to
build 2D and 3D scenes, and add scripts, shaders, and physical features to scenes. Thus,
Unity3D can be used to model the virtual 3D environment. There are two modeling
methods of Unity3D. One is to build the components by users in Unity3D and build the
components hierarchically according to the principle of behavioral consistency; the other is
to import the model directly, which is actually the most general method [34].

Then, the correct subordinate relationship should be established in virtual model
based on the hierarchical structure of the physical system according to the design principles
of hierarchical consistency and behavioral consistency. Through the strong interaction and
scene roaming function of Unity3D, the omni-directional real-time visual monitoring of the
physical system can be realized.

The second part of multi-domain modeling is to model the kinematic and dynamic
characteristics of the physical system in MATLAB Simulink, which is a well-known multi-
domain simulation and model-based design tool and can provide the environment for
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modeling, simulation, and comprehensive analysis of dynamic systems as well as an
interactive graphical environment and a customizable module library for design, simulation,
execution, and testing.

Thus, the behavioral matching and control optimization process can be directly per-
formed in MATLAB. After behavioral matching, the four parameters in the electromechan-
ical model can be obtained to make the behavior of the virtual model closer to that of
the physical system. After control optimization, the parameters of the controller will be
obtained to optimize the control performance of the virtual system. These parameters are
all stored as digital twin data.

As multi-domain modeling, behavioral matching, and control optimization are all
supported by digital twin data, including sensor data, control state data in the physical
system and simulation data in the virtual system. Therefore, a database structure needs to
be built to store all digital twin data generated in real time. In this paper, Mysql as a C/S
architecture [35] is applied to build the database. A server is used to store and manage the
database, and the client is the program that issues the operation request.

Furthermore, Mysql can store data for each period of time during the running process.
After completing the behavioral matching of the virtual system, optimizing the controller
parameters based on the accurate model, and sending the optimized controller parameters
back to the physical system for control, it is achievable by monitoring the digital twin data
to verify whether the performance of the physical system has been improved.

4. A Case Study

A case study on the industrial robot has taken place to demonstrate the functionality
of the proposed framework. In order to describe the above proposed framework in more
detail, each stage is described in the case study.

4.1. Multi-Domain Modeling

The robot studied in this case study is the EFORT ER20C-C10 as a six-axes robot,
which has six rotating joints, and each axis is driven by a permanent magnet synchronous
motor (PMSM). One of the six axes on this industrial robot is focused on in this paper to
build a digital twin model.

The first part is to model the position, geometric size, material, and dependency of the
physical system. The second method is adopted in this paper to construct Unity3D model,
which is to directly import the model. Furthermore, the correct subordinate relationship is
established in the virtual model based on the hierarchical structure of the physical system.
Then, the interactive functions and scene roaming functions are added to the virtual system
scene. Furthermore, through the digital twin data collected by the data interface, the
function of running state reproduction can be realized. The model established in Unity3D
is shown in Figure 5.

The second part is to model the kinematic and dynamic characteristics of the physical
system. The PMSM model of the robot axis consists of an electromagnetic link model
and mechanical link model; the former conforms to the voltage equation, and the latter
conforms to the mechanical characteristic equation as follows:

uq − Cen = Riq + L
diq
dt

(1)

Te − TL = Bω + J
dω

dt
(2)

where, in (1), uq is the armature voltage, Ce is the back EMF coefficient, n is the motor
speed (the unit is rpm), R is the armature resistance, iq is the armature current, and L is the
armature inductance; in (2), Te is the electromagnetic torque, TL is the equivalent torque of
load, ω is the motor angular speed (the unit is rad/s), B is the damping coefficient, and J is
the moment of inertia.
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Physical system

Virtual system

• Three-dimensional monitor
• subordinate relationship
• interactive functions 
• scene roaming functions

• Running state reproduction
• digital twin data
• data interface

Service application

Figure 5. Model of six-axes robot in Unity3D.

Figure 6 shows the speed servo system of PMSM, where the electromagnetic part is
in the red dashed block, and the mechanical part is in the green dashed block. nr and
n are the reference motor speed and actual motor speed, respectively; iqr and iq are the
reference q-axis current and actual q-axis current feedback, respectively; uq is the q-axis
voltage; and E is the back EMF. Cv(s) is the speed controller to be designed, and Ci(s) is
the current controller to be designed. In order to optimize the control performance in
the physical system, a fractional order controller is designed in this control system. In
the simulation and experiment, the cascaded fractional order PIλ-PIλ controller and the
cascaded integer order PI–PI controller are designed with controller optimization for a fair
control performance comparison.

�v(�) ��(�) ���� ����
��  +

-
�

��� +

-
��

��

E
-

�� +

Figure 6. The permanent magnet synchronous motor (PMSM) speed closed−loop control system.

4.2. Behavioral Matching

In order to meet the requirements of real-time mapping of the physical system to the
virtual system, behavioral matching is performed based on the established model with
real-time adjustment of parameters. In this case, the parameters of the electromechanical
model are the most relevant for building the accurate virtual model. Therefore, the four
parameters in the electromechanical model, including the moment of inertia, damping
coefficient, resistance, and inductance—namely, J, B, R, and L are the parameters for
behavioral matching. Then, we evaluate whether the identified four parameters can match
the virtual system behavior with the physical system behavior.
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Based on the parameter identification method in [36], the transfer function model of
each part in Figure 6 can be obtained as

Fcn1(s) =
250

s + 150
(3)

Fcn2(s) =
2563.72
s + 2.06

. (4)

The data used for behavioral matching is derived from the digital twin system, in-
cluding data collected by sensors in the physical system and also simulated statutes in
the virtual system. The input data collected from the physical system sensor is taken as
the input of the virtual system model. Then, the output data collected from the physical
system sensor and the output data of the virtual model are compared as the cost function
for parameter optimization,

J =
∫ t

0
(yreal − yvirtual)

2 (5)

where yreal is the output of the physical system, yvirtual is the output of the virtual system,
and t is the time.

The optimization algorithm used in this case is an improved particle swarm opti-
mization algorithm. The concept of the standard PSO algorithm is simple, and it has a
short-term memory function, which makes particles slide in the local optimal or global op-
timal position. However, the population is prone to premature convergence, and improper
setting of inertial weight will lead to a local optimal solution [37]. In order to overcome
the tendency of falling into useless solutions and improve its convergence, some improved
particle swarm optimization algorithms were proposed [38].

The inertia weight directly affects the search speed and accuracy of the algorithm [39].
When the inertia weight is large, the global search ability of the particle is enhanced. When
the inertia weight is small, the local search ability of the particle is improved, which is
conducive to improving the search accuracy of the particle. Therefore, it is expected that
the inertia weight of the algorithm is large in the early stage but becomes smaller in the late
stage. In this paper, the method of dynamically changing the inertia weight is proposed to
improve the performance of the particle swarm optimization algorithm.

This optimization algorithm is used to perform iterative optimization of the parameters
by minimizing the cost function. The optimization cycle ends when the cost function reaches
the allowable error range or the number of iterations is reached. In this case, the number of
iterations is set as 50. The convergence process of the cost function in behavioral matching
is shown in Figure 7. After behavioral matching, the parameters can be updated in the
virtual model as shown in (6) and (7) and stored in the database as digital twin data.
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Figure 7. The convergence process of behavioral matching applying the improved particle swarm
optimization algorithm.
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Fcn1BM(s) =
100

s + 97.16
(6)

Fcn2BM(s) =
2436.87

s + 1
. (7)

4.3. Control Optimization

After the behavioral matching phase is done, the virtual system is called the twin of
the physical system. This step is based on the accurate virtual model to optimize the control
performance. The parameters of the controllers are also optimized by the improved particle
swarm optimization algorithm. The optimization procedures are as follows:

4.3.1. Define the Parameter Search Scope

The four parameters of the cascaded integer order PI–PI controller and the six pa-
rameters of the cascaded fractional order PIλ-PIλ controller are considered as the solution
set. Then, we initialize the parameters of the particle swarm optimization algorithm by
randomly initializing the position and initial velocity of the particle. The size of the particle
swarm is set as 100, and the maximum number of iterations is set as 50. A linearly decreas-
ing inertia weight is used, which starts with ωstart set as 0.9 and ends with ωend set as 0.4.
The learning factors c1 and c2 are set as 0.9.

4.3.2. Choose a Fitness Function

The commonly used comprehensive performance evaluation standards are mainly
based on the relationship between the deviation of the system w.r.t the time t. Generally,
the performance index functions of the control system can be the error absolute value
integral (IAE), the error square integral (ISE), the integral of timed square error (ITSE) or
the absolute value of the error multiplied by the time integral (ITAE). IAE and ISE are not
restricted by time, which is easy to cause the contradiction of reducing the overshoot and
reducing time.

Furthermore, ITSE focuses on the error that occurs in the later stage of the transient
response but seldom considers the large initial error in the response. For fast, stable, and
small overshoot systems, ITAE is one of the commonly used performance indicators. The
fitness function chosen in this paper is ITAE. The initialization process of the algorithm is
as follows: the fitness of each particle is calculated according to the fitness function, and
then the optimal individual is found in the initialized particle swarm, which is initialized
to the optimal population, and the optimal fitness of the particle itself to a single particle
is initialized.

4.3.3. The Iterative Optimization

At the time t + 1, as shown in Figure 8, the inertia weight decreases linearly during
the iteration, and the particle position is updated as follows:

ωt = ωstart − (ωstart − ωend)
t
K

(8)

vt+1
id = ωtvt

id + c1r1(pt
id − xt

id) + c2r2(pt
gd − xt

id) (9)

xt+1
id = xt

id + vt+1
id (10)

where ωt is the weight of the inertia at time t, which balances the global search and local
search; K is the maximum number of iterations; r1 and r2 are random numbers in the
interval (0,1); vt

id and vt+1
id are the velocity of the particle at time t and t + 1, respectively; xt

id
and xt+1

id are the positions of the particle at time t and t + 1, respectively; pt
id is the personal

best position at time t; and pt
gd is the global best position at time t.
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Then, the updated particle fitness is calculated and compared. Furthermore, the
particle’s own optimal fitness and the global optimal fitness are updated.
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Figure 8. Iterative graph of the particle swarm optimization.

4.3.4. End Condition Judgment

Judge whether the maximum number of iterations is reached or the fitness function
reaches the error tolerance range, if not, jump to (3), else, jump out of the loop. The
convergence process of ITAE value in control optimization is shown in Figure 9.
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Figure 9. The convergence process of controller parameter optimization applying the improved
particle swarm optimization algorithm.

4.3.5. Output Optimized Parameters

The output global optimal particles are the four parameters of the cascaded integer order
PI–PI controller or the six parameters of the cascaded fractional order PIλ-PIλ controller.

4.4. Parameter Updating

The data transmission flow chart of the process is shown in Figure 10. First, the
operating data of the industrial robot is collected by sensors and stored in MySQL as digital
twin data. Then, the virtual system is modeled and optimized based on the digital twin
data. The controller parameters obtained by iterative optimization in the virtual system
need to be updated in the physical system to realize the control optimization of the physical
system. Thus, the optimized parameters are stored in the database as the Mysql client, and
Unity3D reads the digital twin data stored in the Mysql server and transmits the parameters
to the controller through Socket communication.

The controller uses EtherCAT to transmit data to the driver with a transmission
frequency of 500 Hz and then updates the controller parameters. After the controller
parameters are updated, the running state data of the physical system operation process is
collected again to verify whether the parameters obtained through virtual model simulation
optimization have an optimal effect on the behavior of the physical system.
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Figure 10. The data transmission flow chart of parameter updating.

4.5. Summary

According to the above case study, the whole six-axes industrial robot is modeled in
unity3D, and then the PMSM of the single axis is modeled in Simulink to realize the virtual
mapping of the fourth axis running state. It means that the running action of the robot can
be clearly observed through unity3D, while the running state of the single axis can be well
observed through Simulink. The real-time data obtained from the sensor of the physical
system and the simulation of the virtual model are collected to identify the behavior of
components and adjust their virtual model accordingly.

The four parameters with the greatest influence on the PMSM model (namely, J, B,
R, and L) are evaluated. Based on the iterative algorithms and real-time digital twin data,
the four parameters are adjusted in real time. The virtual model after behavioral matching
can better match the real running state of the physical system compared with the initially
identified model and can truly realize the real-time mapping between the physical system
and the virtual system.

Then, the controller parameters can be optimized based on this accurate virtual model.
The optimized parameters are transmitted back to the controllers of the physical system
reliably in real time to achieve better performance. Finally, simulations and experiments
are conducted in the next section to show the feasibility and effectiveness of the pro-
posed framework.

5. Simulation and Experiment

The motor step-response operation reference value is 400 rpm. Figure 11 shows the
results of behavioral matching, in which the blue line is the speed–output data curve
collected during motor operation, the green line is the speed–output data curve obtained
by simulation based on the identified model, and the red line is the speed–output data
curve obtained by simulation based on the model after behavioral matching. In Figure 11a,
both the physical system and the virtual system adopt the controller parameters originally
set in the physical system.

In Figure 11b, both the physical system and virtual system adopt the integer order
controller parameters optimized based on the accurate model after behavioral matching.
In Figure 11c, both the physical system and the virtual system adopt fractional order
controller parameters optimized based on the accurate model after behavioral matching.
The differences in Figure 11a–c are in the different controller parameters. The simulation
results show that when the controller parameters and even the controller form change,
behavioral matching still plays an important role, making the virtual model much closer to
the behavior of the physical system.
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Figure 11. Verify the effectiveness of behavioral matching before and after the controller parameter
optimization. (a) Step response comparison with the initial integer order controller parameters of
physical system. (b) Step response comparison with the optimized integer order controller parameters
in the virtual system. (c) Step response comparison with the optimized fractional order controller
parameters in the virtual system.

Figure 12 shows the simulation results of the control parameter optimization based on
the accurate model after behavioral matching, in which the blue line is the simulation curve
using the cascaded integer order controller parameters in the initial physical system, the
green line is the simulation curve using the cascaded integer order controller parameters
after optimization, and the red line is the simulation curve using the cascaded fractional
order controller parameters after optimization. From the comparison of simulation results,
it can be seen that the controller optimization based on the accurate model after behavioral
matching improved the performance of the system, including the rise time and overshoot.
The fractional order controller performed better than the integer order controller.
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Figure 12. Simulation result comparison between the optimized fractional order controller and
optimized integer order controller based on the accurate model after behavioral matching.

Figure 13 shows the experimental results of control parameter optimization, in which
the blue line is the experimental curve using the cascaded integer order controller parame-
ters in the initial physical system, the green line is the experimental curve using the cascaded
integer order controller parameters after optimization, and the red line is the experimental
curve using the cascaded fractional order controller parameters after optimization.
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From the comparison of experimental results in Table 1, we also see the effectiveness
of real-time optimization based on the proposed digital twin framework for improving
physical system performance, including the rise time and overshoot. This also demonstrates
that the fractional order controller outperformed the integer order controller.
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Figure 13. Experimental result comparison between the optimized fractional order controller and
optimized integer order controller based on the accurate model after behavioral matching.

Table 1. Step response performances of simulation and experimental results.

Simulation Results Experimental Results

Overshoot Peak Time Settling Time Overshoot Peak Time Settling Time

init-IOPI 13.8% 0.157 s 0.337 s 15% 0.151 s 0.296 s
opt-IOPI 12.3% 0.131 s 0.301 s 12.7% 0.132 s 0.262 s
opt-FOPI 8.0% 0.108 s 0.229 s 8.2% 0.098 s 0.198 s

6. Conclusions and Future Work

In this paper, we proposed a framework of a digital twin applied to industrial robots
and applied it to a specific case. This framework employs four phases: establishing the
virtual model of the physical system to reflect the characteristics of the physical system,
mapping the physical system behavior in real time by using behavioral matching, optimiz-
ing the behavior of the virtual model by using the time-domain-optimization algorithm
and fractional order controller, and finishing with the optimized parameters being updated
in the physical system.

Using this framework, the mapping and interaction between the virtual system and the
physical system can be realized, and the real-time optimization of the physical system based
on a digital twin can be achieved. Moreover, by introducing the concept of fractional order
into the proposed framework to design the fractional order controller, the optimization
effect of the physical system can be improved. The simulation and experimental results
show the feasibility and effectiveness of the proposed digital twin framework applied to
industrial robots.

As a future activity, further investigation will be conducted for overall virtual modeling
and real-time control of the six-axes industrial robot based on a digital twin in order to
integrate the proposed framework into more general aspects. Furthermore, the algorithm
used in the behavioral matching process and the control optimization process will be
optimized to achieve better results.
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