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Abstract: For k-Riemann-Liouville fractional integral operators, the Hermite—-Hadamard inequality
is already well-known in the literature. In this regard, this paper presents the Hermite-Hadamard
inequalities for k—Riemann-Liouville fractional integral operators by using a novel method based
on Green’s function. Additionally, applying these identities to the convex and monotone functions,
new Hermite-Hadamard type inequalities are established. Furthermore, a different form of the
Hermite-Hadamard inequality is also obtained by using this novel approach. In conclusion, we
believe that the approach presented in this paper will inspire more research in this area.
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1. Introduction

Convex functions are different from other function classes in that they have many
applications in the fields of mathematics, statistics, optimization theory, and applied
sciences; and their definition has a geometric interpretation. Additionally, it is one of the
fundamental components of inequality theory and has evolved into the main motivating
element behind several inequalities. Although there are many areas of mathematical
analysis and statistics where convex functions can be applied, the inequality theory has
shown to be the most significant one. In this regard, a number of traditional and analytical
inequalities, particularly Hermite-Hadamard-, Ostrowski-, Simpson-, Fejér-, and Hardy-
type inequalities, have been established [1-3].

The definition of the convex function is:

Definition 1. A function ¢ : I C R — R is said to be convex if

Y(&m + (1= 8)sm) < GPp(ea) + (1 -8)y(2)

holds for all 321, 3¢y € Iand & € [0,1].

The Hermite-Hadamard inequality, which is the main result of convex functions’
widespread application and excellent geometrical interpretation, has received a lot of at-
tention in fundamental mathematics. Recent years have seen a rapid development in the
theory of inequality [4—6]. Important inequalities, such as the Hermite-Hadamard inequal-
ity, are one of the most important reasons for this development. It is worth reflecting on the
fact that the theories of inequality and convexity are closely related to one another. In recent
years, several new extensions, generalizations, and definitions of novel convexity have
been given, and parallel developments in the theory of convexity inequality, particularly
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integral inequalities theory, have been emphasized. The Hermite-Hadamard inequality is
formally expressed as follows:

Lety : I C R — R be a convex function of the interval I of real numbers and s, 502 € |
with 71 < 0.

o(252) < 2 [T < T EC) <1>

2 My — A I 2

The inequality in (1) will hold in reverse directions if 1 is a concave function. The
Hermite-Hadamard inequality, which is based on geometry, gives an upper and lower
estimate for the integral mean of any convex function defined in a closed and limited
domain, which includes the endpoints and midpoint of the domain of the function. Due to
the significance of this inequality, several variations of the Hermite-Hadamard inequality
have been examined in the literature for various classes of convexity, including harmonically
convex, exponentially convex, s-convex, h-convex, and co-ordinate convex functions [7-10].

Inequalities involving fractional integrals are a special focus of the calculus of non-
integer order, widely known as fractional calculus. This subject deals with the generaliza-
tion of integrals and derivative operators. Several definitions are used for fractional integral
operators, such as Hadamard integral, the k-Riemann-Liouville fractional integral, Caputo—
Fabrizio fractional integral, Riemann-Liouville fractional integral, and conformable frac-
tional integral [11-14]. By adding new parameters to such fractional integral operators, one
can generalize the fractional operators, yielding to the following inequalities: Ostrowski,
Griiss, Minkowski, Hermite-Hadamard, and others [15-17]. Such generalizations inspire
future research to present more novel ideas with unified fractional operators and obtain
inequalities involving such generalized fractional operators. In many different branches
of research, inequalities relating to fractional integral operators have many practical ap-
plications. The theory of fractional calculus is also essential in the solution of many other
special function problems, including those involving the solution of integral-differentiable
equations, differential equations, and integral equations.

To obtain some remarks and corollaries, it is important for us to remember the pre-
liminary formulae and notations of some well-known Riemann-Liouville and k-Riemann—
Liouville fractional integral operators.

Several varieties of fractional integrals have been described in the literature; the most
traditional are the Riemann-Liouville fractional integrals, which are defined as follows:

Definition 2 ([18]). Let ¢ € L[5, 3]. The Riemann—Liouville integrals | .y and ] 1 of
1 2
order « > 0 with sr; > 0 are defined by

Beb0) = s [ @ - 0" @, 9>

and

1) =1 @0 @ 9 <

14

respectively, where T (a) = [° e "“u®~'du. Here is ]?{g/J(LP) = ]g,¢(¢) =9(¢).

In the case of « = 1, the fractional integral reduces to the classical integral.
In [6], Sarikaya et al. proved the following Hadamard-type inequalities for fractional
integrals as follows:

Theorem 1. Let ¢ : [511, 0] — R be a positive function with 0 < 321 < 35 and ¢ € Lq[s11, 22].
If i is a convex function on [, 3¢], then the following inequalities for fractional integrals hold:

w(%1+%2> < 2F(0{+1)

2 (300 — 3

) (o) + T w(oa)| < w
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with a > 0.

In [19], the k-Gamma function and its properties were introduced by Diaz et al. as
follows:

Definition 3. For k > 0, the k-Gamma function I'y is given by

n 1
r g nlk" (nk)*
KO = )

Definition 4. Let ¢ € C, Re(¢p) > 0. Then, the k-Gamma function is defined by the following
integral form:

, ¢ € C\kZ".

Tilg) = [ erle e,

Proposition 1. The k-Gamma function Ty (¢p) satisfies the following properties:

L Tu(@+k) = ¢Ti(e).
20 (P)ap = L.
3. Tpk) =1.

Theorem 2 ([14]). The k-Riemann—Liouville integrals Iﬁf,klp and 1 ig,klp of order A > 0 with
21 > 0 are defined by

A 1 ¢ A1
I;,T,;JP@P) e /%1(4’— SFY(8)de, ¢ > m

and
1 o) A
L@ = gy €9 0@ ¢ <

The following Hadamard-type inequalities for k-fractional integrals were established
by Farid et al. in [20].

Theorem 3. Let i : [511, 225] — R be a positive function with 0 < 31 < 35 and ¢ € Lq[s11, 52].
If ¥ is a convex function of 51, s, then the following inequalities for k-fractional integrals hold:

¢<%1 —|—%2> < Tr(A+k)

2 2(50 — 51)

[ pa) + T (o] < PALE L)

with A,k > 0.
A different form of Hadamard’s inequality is given in the following theorem:

Theorem 4 ([21,22]). Let ¢ : [31,502] — R be positive mapping with 0 < e < 31 and
Y € Li[sn1, 500]. If ¢ is a convex function of [, 5], then

1’0(%1-;%2)

2810 (A + k)
A
(500 — 51) %

¥(a) +9(a)
2

I/\@)+’k1/’(%2) + I?@)*/klp(%l)

(

IN

with A,k > 0.
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The fact that k—fractional integrals generalize certain varieties of fractional integrals,
such as the Riemann-Liouville fractional integral, is their most important component.
One may check contemporary publications and books for further information [17,23-28].
As aresult, in recent years, these fractional operators have been investigated and utilized
to expand inequalities of the Hadamard, Griiss, Minkowski, Chebychev, and Pélya-
Szego kinds.

This article aims to present a novel approach to obtain the Hermite-Hadamard in-
equalities using the k-Riemann-Liouville fractional operator. By using the Green function
in this approach, we are able to get several identities involving the k-Riemann-Liouville
fractional integral operators. Additionally, we get new Hermite-Hadamard-type inequali-
ties by applying these identities to the convex and monotone functions. Finally, using this
novel approach, a different form of the Hermite-Hadamard inequality is obtained.

2. Main Results

In [29], Mehmood et al. established the following Lemma, which will be used to prove
our main results:

Lemma 1. Let 51y < 30 and G be the Green function defined on [s11, 30| X [3¢1, 302] by
Then, any ¥ € C? |32, 5] can be expressed as

Es)
P(6) = () + (€ —>a)y'Ga) + |~ G(E my" (w)dp. ©)
1
Proof. The above equation can be easily obtained by employing the methods of integration
by parts in f;? G(¢, u)y" (u)du. So, the details of the proof are left to interested readers. [

The following theorem gives the Hermite-Hadamard inequality for k-fractional op-
erators. The Hermite-Hadamard inequality has been proved by many researchers for
different operators and many new inequalities have thus been obtained. Additionally,
many important inequalities have also been established in the theory of inequality using
Green'’s functions (see [25,26,30-33]).

Theorem 5. Let ) € C?[3¢1, 555]. If i is a convex function of [521, 3], then we have the following
inequalities:

1+ Te(A+k) 1.4 \ $0a) + $(0)
w( 2 ) < Y. [I%T’kt/f(%z) “%2—,15/’(%1)} e

which is the well-known Hermite—-Hadamard inequality for k-fractional operators with A,k > 0.

Proof. Substituting ¢ = 1772 in identity (2), we have

(222 s (252 (225 ) 0

2l
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Also, using identity (2), the following calculations are performed:
I}A,]Jr,klp(%ﬁ
1 »2 Aq
- — &)k
o L a0t e

1

= kr:w /;:2(%2—5)2_1{1#(%1)-I-((f—%l)lp’(%z)+/J:2G(§,y)1,b”(y)dy}d§
1 ) 0 A
- krk(A){lP(%l)/ (2= 0)F 1d‘3+‘/’(%2)/ (22 = )& — sm)dE
[P - 0F G (e .
Hence,
Vowe) = e )t G =)
Lk (2) krk(}\){l‘b( 1) 7 + ¢/ (30) %(%Jrl) )
77 oa -0 o my (e .
Similarly,
I hGa) = krkl(A) /}: (&= s0)F Lp()dE
= kl“kl(/\) /}:2(6—%1%1{¢(%1)+(€—m)tp’(m)+ ZZG(cf,y)lp”(y)dy}dC
1 ) A . 0 .
= WO >{"’<”1>/ (E =) ey ) [ (€= ) P )i
[ =)t G m e .
Therefore,
n —x 5 ) — $+1
Loada) = krkl() {¢(”1)(2A1)+‘/”<%2>(2A+11) ®)
k k

et G () .

Now, adding (4) and (5), and multiplying the result b M, we have the follow-
g plymg y 9 ¥
My —1
ing result:

(A +k

LD T pa) + 1 mm} ©
2030 — 31) ¥

My — 3
= Y(a)+ ¢ o) 25—+ "2 — )TN G(E 1)y () dpdg
2
%2 — %1 7oA

+./: N G(& w)y" (u)dudg|.

J 1

Subtracting (6) from (3), we have
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w(m +%2> _ LAtk [ 9 Ga) + 12 p(oa)]
2 Fer i

2 (302 — 221)

_ %2G %1+%2, ) "0 du — [ _ , "0 dud
/%] ( 2 H ¥ %2—%1%// 2 'G(&, )" (p)dpdg

n

T e N AL ()dydé}

4| sl

- /. H%] 70n) - M{/:(%z—cﬁlc(c,y)d@

n ”(«:—m)?1G<é‘,u>d§}}¢”<y)dﬂ-

1

According to the Green function’s definition,

_ n— K %1§ll§€
G(é’”){ -8 <<,

we obtain
F+1

n A M — %+1— > — 1 )k
/ (%2—6)?_1G(C,y)d§:( i) (302 — 511)

“ H3+1)

and
A
k

/%2(6 A 1G(e, ) = (4 — 57) 11 ., (s = ) (o2 = )k

: Gy
Substituting identity (8) and (9) into (7), we obtain

o757)- s

1 [Ij:l*,kl/’(%Z) + I%,kll)(%l)}

_ /”2 o] i _ (}fz—ll)%Jrl I k)
s 2 F 2(A+1)(z7 3 2(A 1
x 2 %1) T T
A
- ()t
2 2(%+1)(%2—%1)

2] " (w)dp.

So, we take

41

_ mAm N (o p)k M —
7w = o3 %) 23 1) e 2( 1)

Ca—p (p—sa)kt!

2 2(%+1)(%27%1)

>

Additionally, note that

G(%lgleﬂ) :{ A s sEs

@)

®)

)

(10)

(11)
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In the above identity (11), if we choose 3¢ < pu < %, then we obtain

A A
i e ()T
A
13

I el N G ey
7= 2(3+1)  2(2+1)Ga—sm)t

2 2(%+1)(%27%1)

FI(V):_%+ (%2_1’1)? _ (ll_%l)?

A T <0
200 — )k 20300 —s0)k

This demonstrates that F is decreasing. As a result, for all 1y < pu < @, F(u) <0
from F(s) = 0.
On the other hand, if % < u < 3, then

A A
_ K= (o — )& *! s — 1 (u—a)%"!
F(Z’l) - 2 - A A + A A A
2(;+1)(%2—%1)k 2(;4—1) Z(F—Fl)(%z—%ﬂk
Therefore,
A A
1 sy — U)Kk — 09k
f/(y)_i_i_ ( 2 ]/l) - (V l) -
20500 — 3e1) % 2(500 — 31)%
A A_

k(s — )k k(s —sa)E

which demonstrates that 7' is decreasing and F’(5r;) = 0 and so F'(u) > 0. Consequently,
F is increasing and F(55) = 0. Hence, F(y) < 0 for all 522 < i < 3. Moreover,
¢" (u) > 0 because  is convex.

Taking into account the two situations mentioned above, we may conclude that
F(u) <0forall u € [5, ).
The first inequality is derived from (10), as follows:

1/](%1 +%2> S Fk(/\+k)
2

2 (30— 2a1)

Py {I;\q,kBL’(%Z) + Iizf,k'#(%l)}-
k
For the right-hand side of the Hermite-Hadamard inequality, we recall

$(E) = 90a) + (§ =)' () + [ 6@ ¥ (m)an

Let ¢ = srp. From the above identity, we have

Yoa) = pia)+ o =)y Ga) + [ Gloa 1 (o)
)TV, yon) + 225 ) 43 [ Gl (0 (12

If we subtract (6) from (12), then we have
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Y0oa) +90Ga)  Te(A+k)
2

3 [ 9 a) + Ii;,kw(%l)} (13)

2(%2 - %1)

= 3/ cla i~ KZ—MU [ G =016 (e

1

/ (& —sm)k G(f:,u)w”(u)dﬂdé‘]

- 1 / y [G(%z,y) - A{ / ”2(%2 Ll

k(30 = 3a)k /o
+ [Pt ez ||y (wan
1 (= A (2 = ) = (g = 5my) 11
- = G, 1) — -
7-/%1 [ G 1) k(%2%1)k{ %(%—i—l)
(4 — o)t H! (%1-#)(;42—%1)F o ()dn
( +1) %
When we set
(%2—ﬂ)2+1 »np — 1 (1 %1)%+l
() = Gl ) — 3 Tt
> ’ (%4—1)(%2—%1)? i (% Jr1)(%2 — o)k 1

then, for »s; < u < 51, we obtain

(2 —3a) 1 = G — )k
S(u) = 1
g (%Jrl)(%z—%lﬁ

Ifg <pu< @,then we get

A
k

= Lol = )t

(52— 3a1)

which proves that S is increasing. 3(s¢1) = 0, and so we obtain S (u) > 0.
Similarly, if we take # < u < 5, we have

A
k

3/ = L2t —lom)t o
(52 = 5a1) %

This suggests that S is a decreasing function and J(s5) = 0, and consequently
S(u) > 0. Moreover, " (u) > 0 because  is convex.

Taking into account the two situations mentioned above, we may conclude that
F(u) > 0forall u € [5, ).
The second inequality is obtained from (10), as follows:

Yea) +90a) o Te(A+k)
2 T 200 —sa)*

[ 9 Ga) + I ).

That completes the proof. As a result, Hermite-Hadamard inequality for the k-
fractional integral operator is proven again. [J
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Theorem 6. Let € C?[3¢1, 500] and A, k > 0. As a result, the following arquments are true:

1 If we choose an increasing function of ||, then we have

e R

x [Iir,klp(}fZ) + Iﬁ{,klp(ﬂl)} ' (14)

”(”13%2) ‘ + Iz//’<%z>|}-

(52 — %1)2<(f$)2 -7 +2) {
16(4+1)(%+2)

2 If we choose a decreasing function of |¢" |, then we have

’1/’(%1 —l—%z) - Ti(A+k)
2

2 (ea — )1 [Ii\ﬁ*,k‘/’(’ﬁ) + Iiz,kll’(%ﬁ]‘ (15)
2 —

4)//(%1;'%2> ’}

(300 — 511)? AZ—A—FZ
o () - ){\w’%%)
16<F+1)<%+2)

3 If |¢"| is a convex function of |51, >3], then

o)

(5 — 31)? ( % k+2>

ey e "’(%Z%ﬂ}
(252 el

Proof. In order to obtain inequality (14), if we use identity (10), we obtain

4»(%1+%2)  Ti(A+k)
2

7

7

+ max{

I LRIEIRR I EN

2 (522 — 1)
_ [t B (%z—y)%"rl 0 —
B 2 A Tt
<! 2(F+1)(%2*%1)k Z(FJrl)
)
a—p (p—a)E! Y (w)dp
2 2(%—}—1)(%2—%1)%

A
sy — ) EH My —
(32— 1) 4 2 1

a /%1 [%1_;1_2@{‘—i—l)(%z—%l)2 2(%4—1)

x|+
2

A
s~ (=) F ! "
R | ¥ (w)dp
2(3+1)0a )
/.”2 m—m ()it + 22
2|72 a1 ea -t 2(3 1)
A
a—p (o)t
R T |¢ (w)dp.
2<E+1)(%2_%1)k
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Taking absolute values and using triangle inequality on the above identity, utilizing
simple calculations, we obtain

‘zp(”l +%2) - zl“k()\+k)

2 (302 — 1)
1+ A
1t %1_11_ (%Z_F)%—H

w71+ 2
Y ( 12 2) /%1 2 2(%+1)(%2_%1)%

e Tk W (V—"l)%ﬂ du
2(1+1) 2(b+1)62
x i
Ll D S G- Sl DL
[v WW@[ 2 2} +1)Ga )k
n  — (]’li%l)%+1 d]«l
(i) 2o

(o= ((4) -4
: 16(12 Jr(f)kg£+;)+2) { ¢//<%1;%2)‘+ |‘/’“(”2)|}'

So, the inequality of (14) is established. It can be easily determined using the same
procedure for inequality (15). Also, to obtain the inequality of (16), we utilize the fact that
the convex function ¥ is bounded above by max{|( ()|, |(>r2)|} since it is defined on
the interval [, 75]. As a result, we obtain the inequality (16) from (10) as follows:

’4)(%1 +%2) B 2Fk()\+k)

2 (32 — 31)

(560 — %1)2((§C\>2 - % +2)
16(% +1) (% +2)

X max “1,0”(%1)‘ + |y” (%1—;%2>

(522 —%1)2((2)2 -2 +2)

1 {Ij:l*,k‘/’(%Z) + Ii;,klP(%ﬂ} |

>

oL Gn) + 1 Ga)] ’

7

(522 ]

16(4+1) (4 +2) {max{w(%l) lp"(%l;%z)‘}
+max{ 47(%1;%2) ¢//(%2)|H'

Remark 1. In Theorem 6, if we choose k = 1, then we obtain Theorem 7 in [25].

7

7

O

Theorem 7. Let ) € C?[3¢1, 50] and A, k > 0. Then, the following arguments are true:
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1 If we choose an increasing function of ||, then we have

Yu) +P(n)  Tr(A+k)
’ 1 2 2 _z(;_%l)g[lir,k‘/’(’fz)ﬂ ktl)(m)]' (17)
)L(%Z — %1)2

Zk(% +1) (% +2) |¢N(%2)|'

2 If we choose an decreasing function of ||, then we have

|1P(%1) +9Ga) | Ti(A+k)
2

1 [Iif,klp(’ﬁ) + I%,klp(%)} ’ (18)

2(%2 — %1)
)\(%2

zk(%ﬂ)( +2) 9" Cal

3 If |[¢"| is a convex function on [by, by), then

Yia) +9Gn) (A +k)
| e _zul;—m)?[Ij‘“"lp(}{Z)HQZ"‘IP(M’ v
A3 — )?

//(%2)|}.

max{ |¢" (1)
Zk(% + 1) (% + 2)
Proof. We use the following identity, which we established from (13), to demonstrate the
inequality (17):

P0a) + ()  Ti(A+k)
2

oL o) + )]

2(50 — )

o f G b
/%1 { 2(%4_1)(%2_%1)% }l[) (.u) H.

Taking absolute values on both sides of the above identity and using triangle inequality
and [¢"] as an increasing function, we obtain

1 {Iif,kll’(%ﬁ +1 —klp(%l)}

‘lp(m +9pGa)  T(A+k)
2

2(%2 — %1)

A A
N %2 |/ %2_%1 1 (”2_7/‘)F+1 _A(.u_%l)?+1 dy
2(;—}-1)(%2—%1)?
Aoy — 31)?

2k(% + 1) (% + 2) 97 Gl

Thus, the inequality of (17) is established. The inequality (18) can be determined in a
similar way. Finally, for inequality (19), we make use of (13) and the fact that every convex
function i defined on the interval [, 75] is bound above by max{|¢ (34 )|, |[¢(>22)|} to
have

IN
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|¢<m> +9(a)  Ti(A+K)
2

3 [ 9 Ga) + L klP(%1)}|

2(50 — 511)

IR AT RO S |
(2 |}/ (300 — 511) (300 — p)* A(H 1)k i
2()‘ 3

z —|—1)(%2—%1)

//

IN

A(sey — 31)?

2k(3+1) (3 +2) max{ |9 ()],

which is the required result. [

//(%2)‘}

Remark 2. In Theorem 7, if we take k = 1, then we have Theorem 5 in [25].

Theorem 8. Let ¢ € C?[5e1, 30] and A, k > 0. If |¢"| is a convex function of |51, 5], then we
have the following inequalities:

_—RATE [Iﬁ;,klli(%z) + Iig,k‘/’(%l)} —y (%1—2F%2>

{{¢"Ga)| + 9" 2)|}-

Proof. Using identity (10), we have

Te(A+k) 14 A » + 0
— 1 | 0a) + I 9(Ga)| -y ——
2(%2_%1)£[ Tk 2 K } 2

_ %1;;{2 H—m (%2—]/1)%+1 . M — 11

! 2 2(%4‘1)(%2*%1)% 2(%4‘1)

A
(;”l_%l)k+1 l,b//(]’l)dﬂ
)
2(%4—1)(%2—%1)?
/}‘2 a2l (e — )+ _ m o
222 23+ 1)Ga )t 2(F41)

(4 — 59 ¥ 11

2(% +1)(%2 — 1)

>

] P (u)dp.

Setting u = (1 — ) + oo where dy = (30 — 51)d¢, after some calculation, then
we have

M I)L +IA _ (
230 — %1)% [ %f,k‘l’(%z) %;,kw(%l)} P

m{/ﬂﬁ—é‘) 1+<:< +1)+«’§k“}¢ (1=8)sa + Eom)dd
13

%1+%2> 20)

2

w [ |a-otta-ag—ardyia-om s gaac .

In Equation (20), taking the absolute value on both sides and using the convexity of
|9"], we get
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k
W [Ii;,kil)(%z) + Ii;,k‘/’(%l)} - lP(%l ; %2> |

2(30p — 721)
w /(f [(1 —0i?-1-g+e —«:)(2 +1> +(1 —CMH} 9" (3a0) |dE
+/05 [5(1—5)2“ —g+§2<2+1> +§?+2} ¢ (522)|dg

[ a-atrea-o-

1

2

1-8+a- c)&ﬁ“] [ (5e1)|dE

[ ea-orrrea-of -ty ealac ).

2

If the necessary simple calculations are made, the desired result is obtained. That is:

)\ k M Va4
(b2 —311)? (?})2_2+2)
= 16(4+1) (3 +2) el

O
Remark 3. By setting k = 1 in Theorem 8, then we find the result presented (Theorem 9) in [25].

Theorem 9. Let p € C2[5¢1,30] and A,k > 0. If |¢""| is a convex function of [»1, 55|, then we
obtain the following inequalities:

Wia)+9pGa)  Tr(A+k)
‘ 1 2 2) _ 2(%]{2 - %l)% I:I,),;i*',kl/)(J’fZ) + I»);Z_,kl/)(}tl)} ’

(202 — 321)
a(p+1)(2+

Proof. We begin by recalling the identity given in (13) as follows:

22
k

2) {19 Ga)| + 9" G2) |}

Y(a) +9P(n) T (A + k)
1 5 2) _ 2(}122 e [Iir,kllﬂ(%z) + Ii;,kl/’(%l)}

A (e — W) EH = (e — 59 £
A
)?

i)
)%+1

(1" — (501 — 7/‘)(%2 — 1) "
+ %(%H) + ) }]w(#)dﬂ

% g7 (%2%1)£+1/\(%2]4)£+1 7A(]/l*%l)%+1 wll(l’l)dﬂ
Joa (£+1)Ga =)t

k(%z —

>

By taking u = (1 — &)1y + {50 and dy = (500 — 311)dE with & € [0,1], we get
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Yia) + () (A +k)

o

2

|+ 0

- -1 Ga) + I G

1 /%z
2 }[]

2(%2—%1)?
(> —%1)2(1 _g)%—&-l (>0 _%1)2 B <%2_%1)2§%+1 P Ry
(%+1) + (%H) (%H) }tl) ((1=¢)s + Eo02)dg.

If we take the absolute value on both sides and use the convexity of |¢”|, then

P(n) +9P(s0) Tr(A+k)
' e 72(;—%1)% (1 pGa) + 1 )]
Ga—sm)

IN

(1) {/01 [~ -0F 2+ (1-) — (1 - et |y () |de
13

+/01 {§(1§)£+1§€£+2M¢H(%2)’d§}

(30 — 501)2%

a(den)(3+2) el +y"l)

which is our required inequality. Thus, the proof is completed. O

Remark 4. Letting k = 1 in Theorem 9 gives Theorem 11 in [25].

Theorem 10. Let ) € C?[3¢1, 5] and A,k > 0. If ¢ is a convex function of 1, 53], then we have
the following inequalities:

< 2%71Fk()\+k) A A

2

) <

)| < w 1)

i+ WOR) 1T p(n
T) k (T) &

(

Proof. First of all, from Definition 2 and utilizing identity (2), we can do the following
calculations

(%2 — %1)%

I/(\M)+ kll)(%z)

. 1 ) -
N m /”ﬁ%z (b2 =€) P(&)dg

2

= kl“kl(/\) /fw%z—é)@1{¢<%1>+<6—m>¢’<%2>+ fc(a,mlp”(mdu}d@

2
"52) i
k

1 2 4_ ’ _
= krk(A) {l)b(%l)/m(%Z(:)k 1d(:+l,b(%2) /M(J{Z*(:) 1((:—%1)dg

2

o [ 0F G (e .
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Therefore,

1€7> Y02) (22)

o AL
1 2 2

= kl“k()\) 17[)(%1) A +lpl(%2) %<%+1)

A
k

ey A
+ o [T G =06y G .
JSma=J
In the same way,

I?w)* klp(%l)

~ wmm T
- kal(/\) /:;%2 (5—%1)£1{¢(%1)+(€—%1)¢( 2)+ [ GG my" (u )dy}dé
= krklw 90(%1)'/;?;%2(5—%1)?1d€+¢7’(%2) /%jl;/z(é—zl)kd@‘
) [ @)t G e )dudé}

Therefore

12%1?2)—,]{1/2(%1) (23)

Y o b
S Wl)( : ) +¢f<%2>( 531

s [Ce-mt (é‘ﬂ)nb()dydé}.

A
2% T (A+k)
)

Adding (22) and (23), and multiplying the result by , we obtain the follow-

(sa—sm1) k
ing result:
28 (A +K) [ 2 A ]
0 [Ty YO H I, - $0a) (24)
Ga—w)b [ (232) % ( aga) gt
= Y0a) + 25y (n) + [/ [ a0 G " (ndpaz

%27%1
L et e e |

Subtracting (24) from (3), we get
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I/\m)+ kl/J(J{Z) + Iz\ﬂ)* kll](%l)

(
72 1+ 20 7 2%71/\ 72 72 2 7
= [To(E e - 2| [T [ a - 0F Gy ()

)+ 0 2%*1Fk(/\+k)
1P 2 - A
(32 — 31k

Pl 2 k(}Q—%])? ;
" /mT :(5 - %1>£_1G(§,u)ll}”<#)dﬂdf’§]
> A_q S
= ot >_2k)‘{ : a6 wd
/%1 l ( 2 ) n— )t /@Wz ¢)F T G(E m)dg
" /mT (€= }‘1)?‘_1@(6/#)«15” " (u)dp.

So, we take

L) = G(”l”z,y)k( 27 A ta -0 cEmie e

2 sy — )k

2

+ 2<¢—m>ilc<¢,u>dc}.

!
According to the Green function’s definition, we can write:

_fom—u m<u<g
G(g’”)_{m—é, (<u<om,

and

otz \_[a-n m<p<Hy2
2 /]’l - %15%2 %1%2*%2 SHS%Z

7

Hence, if we choose 5 < u < % in (25), then we obtain

21 " .
o) = Ga-m- {7 o= OF 0a - e
k(s —5e)k =5
+ f(é—%l)?‘l(%l—@)clw/yz<c—m>?‘1(z1—y>d¢}
_ 2%71(;1_%1)%“ <0 (26)

P
k

(% + 1) (300 — 1)

On the other hand, if we choose @ < u < 35 in Equation (25), then we have

2

A*l X
L _ | — %2) _ 2k A { U - %71 g
v ( 2 k(3 — 321)k /M(ZZ ¢)E(a —§)dg

+/,4%2(%2—§)%_1(%1 —P‘)d‘:+/ (6_%0%_1(%1 _C)dé}

1

A_q
R G Bl D LAY 27)

(% +1) (30— 501)

—~
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Since ¥ is a convex function of 3, »52],; therefore, "' (1) > 0 and by using (26) and
(27) in (25), we get

l/}(%1+%2><2;<\11—'k()t+k)
2 T Ga—a)t

IE\M)JF kll](%Z) + I)(\M)* klp(%l)‘| 7

which is the left half inequality of (21).
Next, we prove the right half inequality of (21). For this purpose, we take § = sz in
Equation (2), and we have

Vg

Pa) = i)+ (Ga—a) o)+ [ Gl u)g" (u)dy

w = 1P(%1)+%2;%1¢'(%2)+% :ZG(%z/ﬂ)IP”(ﬂ)du- (28)

If we subtract (24) from (28), then we have

P(oa) + () 28 TR(A+K)
2

I s o)+ I (s )1 (29)
(%2_%1)% ( 12~2> K 2 ( 1t 2) k 1
1 =

= 5[ Glamy"(wdu -
! %2 — %1
1t

[T -t wlp()dud@]

gl 1

= %/‘7"2 lG(%ZIV)_M}é{/:;z(%Z—g)ﬁlG(G,y)dC

[ Join [ =01 G @ (e

() = Geaw-—2—{ [ ta-0t TCEmic

k(3 — 5e1)% 7

|+

[T - %1>Wc<¢,u>da}

1

= a—p) - “{ [ e =06 e

k(50 — 511)% 2

|+

+ [T )t (é‘u)dé}

71

then for s < p < 572, we obtain
W) = Ga—p) - At

+ F(C— %1)%71(%1 - @)d§+/T(C— %1)%71(%1 - #)dﬁ}
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Therefore

>

_ 2k (3 — 521)
A
(300 — 29k

which proves that £(y¢) is increasing. £(»r1) = 0, and so we have £(p) > 0.
Similarly, if we take 2172 <y < 30, we get

£(p) =1 20

£ = Ga—p) - “){ [ a0} a1

k(30 — 51 p
+/:2(%2—§)" (31 — p)dg + 5 T (-t 1(%1—§)dC}
= - Az?(%z—ﬂ)ﬁli‘
<z+1)(%2—%1)"
Hence . N
El(]’l)_ 1+2k(%2—"l/l)}f <0
(500 — 511) %

This suggests that £(j) is a decreasing function and £(s5) = 0, and consequently
£(n) > 0.

Taking into account the two situations mentioned above, we may conclude that
£(p) > 0forall y € [5, 55]. Also, " (i) > 0 because ¢ is convex.

The right half inequality of (21) is obtained from (29), as follows:

A1
lp(%l)—;—lll(%z) > 2k Ty (A +k) 13@)%”0(%2)—'—1/(\@)7 P(sq)|.

A
(302 — 221) ¥ &
Finally, we arrive at the required result. As a result, it is demonstrated that the
Hermite-Hadamard inequality for the k-fractional integral operator is a special case. [

3. Conclusions

In this article, we presented a new method to prove the Hermite-Hadamard inequality
using the k-Riemann-Liouville fractional integral operators, based on a Green’s function
and obtained some new identities for convex and monotone functions. Also, using this new
method, a different form of the Hermite-Hadamard inequality was obtained. In particular,
we found that utilizing this new approach and the other Green’s functions—G;, Gz and G4
in [29]-different types of integral inequalities can be obtained. In addition to these identities,
researchers can also obtain new inequalities for the g-th power of different convexities by
using the Holder and Power-mean inequalities or others (In particular, Theorem 10 can
be used). Using this method, new and different identities can be obtained for concave
functions. We believe that the new consequences and methods presented in this work will
encourage researchers to investigate a more interesting sequel in this field.
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