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Abstract: The qualitative theory for planar dynamical systems is used to study the bifurcation of the
wave solutions for the space-fractional nonlinear Schrödinger equation with multiplicative white
noise. Employing the first integral, we introduce some new wave solutions, assorted into periodic,
solitary, and kink wave solutions. The dependence of the solutions on the initial conditions is
investigated. Some solutions are clarified by the display of their 2D and 3D representations with
varying levels of noise to show the influence of multiplicative white noise on the solutions
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1. Introduction

Stochastic partial differential equations have been used to describe nonlinear phenom-
ena in engineering and the applied sciences, see, e.g., [1–7]. The presence of noise may
lead to several statistical characteristics that cannot be ignored. Various fields, such as
fluid mechanics, meteorology, chemistry, geophysics, physics, biology, engineering, have
emphasized the importance of considering random noise when predicting, simulating,
analyzing, and modeling complicated processes [8–12]. Fractional derivatives have been
successfully used to model nonlinear phenomena, making fractional calculus an important
tool in sciences such as physics, mechanics, chemistry, and biology [13–18]. The nonlin-
ear phenomena are well-described by fractional stochastic partial differential equations.
Compared to deterministic PDEs, fractional PDEs containing stochastic terms are typically
harder to solve. The importance of discovering traveling wave solutions to fractional
stochastic partial differential equations lies in the fact that these solutions are crucial to
understanding and interpreting the studied phenomena.

In general, traveling wave solutions to nonlinear partial differential equations can be
constructed through a variety of methods, for instance, the Hirota bilinear method [19,20], Dar-
boux transformation [21], complete discriminant system method [22–24], Weierstrass elliptic
function method [25], uniform algebraic method [26], and Lie symmetries method [27–29].
The majority of techniques that can be used to create wave solutions rely on the assumption
of a particular form for the solution of the reduced ordinary differential equation. However,
the bifurcation study of the traveling wave system allows for us to create the traveling
wave solution for a range of bifurcation parameter values, without the need to for such
assumptions. Several works have used this techniques successfully [30–34].

The current paper studies the stochastic Schrödinger equation forced by multiplicative
noise in the Stratonovich sense

iUt + β1Tα
xxU + β2Tα

yyU + β3

(
|U|2U

)
+ β4Tα

xyU = −iσU ◦Gt, (1)

In the above equation, Tα denotes the conformable fractional derivative of order α ∈]0, 1[,
σ is the intensity of the noise, Gt =

dG
dt is the time derivative of Brownian motion G(t),
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and U is the complex envelope function associated with the optical-pulse electric field in a
combining frame. The variables t, x and y are the retarded time, normalized distance along
the longitudinal axis of the fiber, and normalized distance along the transverse axis of the
fiber, respectively. The constant β1, β2, β4 characterize the influences of the second-order
dispersion, and β3 introduces the Kerr non-linearity effect.

The motivation for the current study is the difficulty of considering all aspects that af-
fect the problem under consideration. Therefore, we considered the stochastic perturbations
to the (2 + 1) equation, which takes the form [35]

iUt + β1Uxx + β2Uyy + β3(|U|2U) + β4Uxy = 0, (2)

with space-fractional derivatives. With this addition, Equation (1) becomes a good model
for describing the optical-pulse electric field in a combined frame. Equation (1) can also
be considered a generalization of Equation (2) by inserting the stochastic and fractional
derivatives. Thus, the solutions of classical versions, i.e., (when σ = 0 or α → 1 or both)
can be obtained as a special case of the solutions of Equation (1).

Equation (2) was first introduced in [35] and has been subsequently studied in several
works, such as [36]. For β2 = β4 = 0, and β3 = 1, Equation (2) reduces to

iUt + β1Uxx + |U|2U = 0, (3)

which is a nonlinear shrödinger equation in anomalous and normal dispersion regimes with
β1 = ± 1

2 . Equation (2) was considered in [35], in which the author utilized the variational
iteration method (VIM) to obtain bright and dark optical solitons.

As far as the author knows, fractional stochastic partial differential equations have not
been previously studied. Their study could help to investigate the influence of the space-
fractional order derivatives and noise on the solutions. To keep the paper self-contained,
some properties of the conformable fractional derivatives and the definition of the Brownian
motion are given in Appendix A.

The current work is organised as follows: Section 2 is the mathematical analysis of the
problem with the aim of converting the fractional stochastic partial differential equation
into an ordinary differential equation. Section 3 includes a study of the bifurcation and
phase portrait description of the dynamical system, corresponding to the reduced ordinary
differential equation. Section 4 contains some bounded-wave solutions and examines their
degeneracy through transition between the phase orbits. In Section 5, the influence of noise
on the obtained solutions is examined by producing two- and three-dimensional graphical
representations of the solutions for different values of the noise parameter.

2. Mathematical Analysis

We will assume the solution for the Equation (1) has the form

U(x, y, t) = ψ(η) exp [iN (x, y, t)− σG− σ2t], (4)

where
η =

1
α
(a1xα + a2yα) + a3t, N =

1
α
(b1xα + b2yα) + b3t, (5)

where ai, bi, i = 1, 2, 3 are non-zero constants, and ψ(η) is a real valued function that
characterizes the amplitude of the traveling wave solution. By substituting Equations (4)
and (5) into Equation (1) and using the following identities
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dU = exp [iN (x, y, t)− σG− σ2t]
[
(a3ψ′ + ib3ψ)dt− σψGt −

1
2

σ2ψ

]
,

= exp [iN (x, y, t)− σG− σ2t]
[
(a3ψ′ + ib3ψ)dt− σψ ◦Gt

]
, (6a)

Tα
xxU = exp [iN (x, y, t)− σG− σ2t]

[
(a2

1ψ′′ − b2
1ψ) + 2ia1b1ψ′

]
, (6b)

Tα
yyU = exp [iN (x, y, t)− σG− σ2t]

[
(a2

2ψ′′ − b2
2ψ) + 2ia2b2ψ′

]
, (6c)

Tα
xyU = exp [iN (x, y, t)− σG− σ2t]

[
(a1a2ψ′′ − b1b2ψ) + i(b1a2 + a1b2)ψ

′], (6d)

and then separating the imaginary and real parts, we obtain

ψ′[a3 + 2β1a1b1 + 2β2a2b2 + (b1a2 + a1b2)] = 0, (7a)

[β1a2
1 + β2a2

2 + β4a1a2]ψ
′′ + [β1b2

1 − β2b2
2 − b3 − β4b1b2]ψ + β3ψ3 exp [−2σ2t] exp (−2σG) = 0. (7b)

In the above equations, the notation ′ denotes the derivative with respect to η. As can be
seen in Equation (7a), this holds identically if

a3 = −2[β1a1b1 + β2a2b2]− (b1a2 + a1b2). (8)

Taking the expectation for both sides of Equation (7b), we can obtain

[β1a2
1 + β2a2

2 + β4a1a2]ψ
′′ + [β1b2

1 − β2b2
2 − b3 − β4b1b2]ψ + β3ψ3 exp [−2σ2t]E[exp (−2σG)] = 0. (9)

Since G(t) has a normal distribution, we can see that E(exp [−2σG]) = exp [2σ2t]. Thus,
Equation (9) reduces to

ψ′′(η) + 2ρ1ψ(η) + 4ρ2ψ(η)3 = 0, (10)

where

ρ1 =
β1b2

1 − β2b2
2 − b3 − β4b1b2

2[β1a2
1 + β2a2

2 + β4a1a2]
, ρ2 =

β3

4[β1a2
1 + β2a2

2 + β4a1a2]
. (11)

Thus, the problem of solving the stochastic partial differential Equation (1) reduces
to finding the solution of Equation (10). If we integrate both sides of Equation (10) with
respect to ψ and separate the variables, we obtain a first-order differential form

dψ√
F4(ψ)

= ±
√

2dη, (12)

where γ is an integration constant, and

F4(ψ) = γ− ρ1ψ2 − ρ2ψ4. (13)

To integrate both sides of Equation (12), the range of the parameters ρ1, ρ2, and E must
be determined. There are two methods for accomplishing this. These are the complete
discriminate of the quartic polynomial F4(ψ) and bifurcation theory. Bifurcation theory is
the more useful method. In addition to determining the range of the parameters, it yields
useful information about the solution. For example, bifurcation theory yields information
about the existence of periodic, homoclinic, and hetroclinic orbits, which translates to the
existence of periodic, solitary, and kink (or anti-kink) wave solutions. We will, additionally,
study the degeneracy of the obtained solutions by examining the transition between the
phase orbits.
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3. Bifurcation of the Phase Portraits

Using ψ′ = z transforms Equation (10) into the following dynamical system

ψ′ = z, (14a)

z′ = −2ρ1ψ− 4ρ2ψ3. (14b)

System (14) is conservative, since div(ψ′, z′) = 0, and has the Hamiltonian function

H(ψ, z) =
1
2

z2 + ρ1ψ2 + ρ2ψ4, (15)

With this function, the system in (14) is the Hamilton canonical equations ψ′ = ∂H
∂z , z′ =

− ∂H
∂ψ . That is, system (14) is a Hamiltonian system with one degree of freedom describing

the motion of a particle under the influence of the two-parameters potential function

V(ψ) = ρ1ψ2 + ρ2ψ4. (16)

Note that the Hamiltonian (15) does not explicitly depend on η , which plays the role
of time in our system. Thus, it is a conserved quantity and we have the first integral

1
2

z2 + ρ1ψ2 + ρ2ψ4 = γ. (17)

The equilibrium points for the Hamiltonian system (14) are the critical points for
the potential function (16), i.e., are the points E = (ψ∗, 0) where ψ∗ is a solution of ∂V

∂ψ =

2ψ∗[ρ1 + 2ρ2ψ∗
2
] = 0. Thus, if ρ1ρ2 > 0, the system (14) has one equilibrium point E0 =

(0, 0). However, if ρ1ρ2 < 0, it has three equilibrium points, E0 = (0, 0), E1,2 = (±
√
−ρ1
2ρ2

, 0).
These equilibrium points can be classified as local maximum or local minimum points for
the potential function (16). To do this, we calculate the second derivative

∂2V
∂ψ2 |E0 = 2ρ1,

∂2V
∂ψ2 |E1,2 = −4ρ1, (18)

To carry out this classification, we will take

R1 = {(ρ1, ρ2) ∈ R2 : ρ1 > 0, ρ2 > 0},
R2 = {(ρ1, ρ2) ∈ R2 : ρ1 < 0, ρ2 < 0},
R3 = {(ρ1, ρ2) ∈ R2 : ρ1 > 0, ρ2 < 0},
R4 = {(ρ1, ρ2) ∈ R2 : ρ1 < 0, ρ2 > 0}.

(19)

Then, we can classify the equilibrium points as follows:

1. If (ρ1, ρ2) ∈ R1, then E0 is the unique equilibrium point for system (14), and a local
minimum for the potential function (16) as illustrated in Figure 1a. Hence, it is a
center for the Hamiltonian system (14).

2. If (ρ1, ρ2) ∈ R2, then system (14) has E0 as the unique equilibrium, and a local
maximum for the potential function (16), as illustrated in Figure 1b. Hence, it is a
saddle point for the Hamiltonian system (14).

3. If (ρ1, ρ2) ∈ R3, then system (14) has three equilibrium points E0,1,2. As illustrated
in Figure 1, E0 is local minimum for the potential (16) while E1,2 are local maxima
points for the potential (1). Hence, E0 is a center and E1,2 are saddle points for the
Hamiltonian system (14).

4. If (ρ1, ρ2) ∈ R4, then there are three equilibrium points E0,1,2 for the system (14) with
E0 a saddle and E1,2 centers.
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(a) (b)

(c) (d)

Figure 1. The potential function (16) for different values of ρ1 and ρ2, the black solid circles indicate the
equilibrium points. (a) ρ1 = 2, ρ2 = 1; (b) ρ1 = −2, ρ2 = −1; (c) ρ1 = 2, ρ2 = −1; (d) ρ1 = −2, ρ2 = 1.

The phase orbits are the energy levels parameterized by the parameter γ and are given
by

Cγ = {(ψ, z) ∈ R2 : z2 = 2F4(ψ)}. (20)

The values of the parameter E at the equilibrium points, which are used to describe
the phase portrait for the system (14), are

γ0 = V(0) = 0, γ1 = V(±
√
−ρ1

2ρ2
) = −

ρ2
1

4ρ2
. (21)

We provide a short description for the phase portrait of the Hamilton system (14).

• For (ρ1, ρ2) ∈ R1, the phase portrait consists of a family of bounded periodic orbits
Cγ>0 about the center equilibrium point E0, as shown in Figure 2a. These orbits
indicate the existence of periodic wave solutions for the system (14).

• For (ρ1, ρ2) ∈ R2, the phase orbits for the system (14) are unbounded, as shown in
Figure 2b, where these orbits are color-coded with Cγ=0 shown in black, Cγ>0 in blue,
and Cγ<0 in red. These orbits indicate the existence of unbounded wave solutions.

• For (ρ1, ρ2) ∈ R3, the phase portrait for the system (14) is shown in Figure 2c. There is
a family of unbound orbits Cγ>γ1 , shown in green. For γ = γ1, we obtain a heteroclinic
orbit, shown in red, connecting the two saddle points E1,2 with two unbounded
extensions. The heteroclinic orbit indicate the existence of kink (or anti-kink) wave
solution and unbounded wave solutions. For 0 < γ < γ1, there are three families of
orbits shown in blue. One is periodic and lies inside the heteroclinic orbit while the
others are unbounded. Finally, for γ < 0, we have two unbounded family of orbits in
pink while, when γ = 0, there are two unbounded orbits in black, in addition to the
equilibrium point E0.
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• For (ρ1, ρ2) ∈ R4, all the orbits of the Hamilton system (14) are bounded, as shown
in Figure 2d. There are two periodic families of bounded orbits, shown in blue
Cγ1<γ<0. These families are contained in the homoclinic orbit Cγ=0, shown in red,
which provides a solitary solution. For γ > 0, there is a family of super periodic orbits,
shown in green. These indicate the existence of the super periodic wave solution.

(a) (b)

(c) (d)

Figure 2. Phase portrait for the Hamiltonian system (14) in the phase plane (ψ, z) for different
values ρ1 and ρ2, with the black solid circles indicating the equilibrium points. (a) ρ1 = 2, ρ2 = 1;
(b) ρ1 = −2, ρ2 = −1; (c) ρ1 = 2, ρ2 = −1; (d) ρ1 = −2, ρ2 = 1.

4. Traveling Wave Solutions

We will use the study of the bifurcation and phase portrait to classify the solutions of
the wave solutions Equation (1). We are only concerned with the construction of bounded
wave solutions, since unbounded wave solutions are neither desired nor useful in physical
applications. Additionally, the way of building these solutions is similar to that of con-
structing the bounded solutions. The bounded solutions arise from the bounded orbits in
the phase plane. With that in mind, we collected the conditions for the existence bounded
solutions and their classifications with the following lemma.

Lemma 1. System (14) has bounded orbits in the following cases

1. periodic solutions if (ρ1, ρ2, γ) ∈ (R+ ×R+ ×R+) ∪ (R+ ×R−×]0, γ1[)∪ (R− ×R+ ×
(]γ1, 0[∪]0, ∞[)),
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2. kink (anti-kink) solution if (ρ1, ρ2) ∈ R+ ×R− × {γ1},
3. solitary solution if R− ×R+ × {0}.

All other orbits are unbounded.

4.1. Periodic Solutions

There are four types of periodic orbits, as shown in Figure 2a,c,d. We integrated both
sides of Equation (12) along the possible interval of real wave propagation.

1. For (ρ1, ρ2) ∈ R1 and γ > 0, system (14) has a bounded family of periodic orbits,
shown in Figure 2a. Each orbit of this family intersects ψ−axis at two points, indicating
that F4(ψ) has two real roots, which denote ±u1. Thus, we can write F4(ψ) =
ρ2(ψ

2 − u2
1)(ψ

2 + u2
2). The interval of the real solution is ψ ∈]− u1, u1[. Integrating

both sides of Equation (12) along this interval, we obtain∫ ψ

0

dψ√
(u2

1 − ψ2)(ψ2 + u2
2)

= ±
√

2ρ2

∫ η

0
dη. (22)

Thus, we can obtain a bi-periodic wave solution, given by

ψ1,2(η) = ±
u1u2√

u2
1 + u2

2)
sd(
√

2ρ2(u2
1 + u2

2)η,
u1√

u2
1 + u2

2

). (23)

This gives us a solution of Equation (1), with the the form

U1,2(x, y, t) = ± u1u2√
u2

1 + u2
2)

sd(
√

2ρ2(u2
1 + u2

2)[
1
α
(b1xα + b2yα) + b3t],

u1√
u2

1 + u2
2

)

× exp [iN (x, y, t)− σG− σ2t].

(24)

We note that solution (24) is a new solution for Equation (1).
2. For (ρ1, ρ2) ∈ R3 and 0 < γ < γ1, system (14) has two types of orbits, shown in

blue in Figure 2c one periodic and the other unbounded. An orbit of this family
crosses the ψ− axis in four points; hence, F4(ψ) has four real roots, ±u3,±u4, where
0 < u3 < u4, i.e., F4(ψ) =

√−ρ2(ψ
2 − u2

3)(ψ− u2
4). The interval of real solutions is

ψ ∈]−∞,−u4[∪]− u3, u3[∪]u4, ∞[. We will only consider ψ ∈]− u3, u3[, avoiding
the investigation of the unbounded solutions at present. Integrating both sides of
Equation (12) gives∫ ψ

−u3

dψ√
(u2

3 − ψ2)(u2
4 − ψ2)

= ±
√
−2ρ2

∫ η

0
dη. (25)

This equation gives

ψ3,4(η) = ±u3sn(u4
√
−2ρ2η,

u3

u4
). (26)

Thus, Equation (1) has a novel solution in the form

U3,4(x, y, t) = ±u3sn(u4
√
−2ρ2[

1
α
(b1xα + b2yα) + b3t],

u3

u4
) exp [iN (x, y, t)− σG− σ2t]. (27)

3. If (ρ1, ρ2) ∈ R4, system (14) has two families of periodic orbits, as shown in blue and
green in Figure 2d. These families are:

• For γ1 < γ < 0, the system (14) has a family of periodic orbits, shown in blue,
each of which cuts the ψ− axis at four points, showing that F4(ψ) has four real
roots, denoted as ±u5,±u6, where 0 < u5 < u6. Thus, we can write F4(ψ) =
ρ2(u2

5−ψ2)(ψ2− u2
6). The interval of the real solution is ψ ∈]− u6,−u5[∪]u5, u6[,
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with ψ ∈]− u6,−u5[ corresponding to a periodic family on the left of the oval
homoclinic orbit, shown in red, and ψ ∈]u5, u6[ to a periodic family lying to the
right of the oval homoclinic orbit. We will only consider the one on the left, as
the calculation for the other is similar. The integration of both sides of Equation
(12) along the interval ψ ∈]− u6,−u5[ shows∫ ψ

−u6

dψ√
(u2

5 − ψ2)(ψ2 − u2
6)

= ±
√

2ρ2

∫ η

0
dη. (28)

From which it follows that

ψ5,6(η) = ±u6dn(u6
√

2ρ2η,

√
1−

u2
5

u2
6
). (29)

Therefore, Equation (1) has the solution

U5,6 = ±u6dn(u6
√

2ρ2[
1
α
(b1xα + b2yα) + b3t],

√
1−

u2
5

u2
6
) exp [iN (x, y, t)− σG− σ2t]. (30)

Solution (33) is a new solution for Equation (1).
• For γ > 0, there is a family of super-periodic orbits, shown in green. A member

of this family intersects ψ− axis at two points, and so F4(ψ) has two real zeros,
namely, ±u7, and two purely imaginary roots ±iu8. Thus, F4(ψ) = ρ2(u2

7 −
ψ2)(u2

8 + ψ2). The interval of the real solution is ψ ∈]− u7, u7[. By integrating
both sides of Equation (12), we obtain∫ ψ

u7

dψ√
(u2

7 − ψ2)(ψ2 + u2
8)

= ±
√

2ρ2

∫ η

0
dη. (31)

From the above equation, we can obtain

ψ7 = u7cn(
√

2ρ2(u2
7 + u2

8)η,
u7√

u2
7 + u2

8

). (32)

Therefore, Equation (12) has the solution

U7(x, y, t) = u7cn(
√

2ρ2(u2
7 + u2

8)[
1
α
(b1xα + b2yα)

+ b3t],
u7√

u2
7 + u2

8

) exp [iN (x, y, t)− σG− σ2t].
(33)

The last solution is a novel solution for Equation (1).

4.2. Kink(Anti-Kink) Solutions

System (14) has a kink or anti-kink solution if (ρ1, ρ2) ∈ R3 and γ = γ1, since it has a
heteroclinic phase orbit connecting the two saddle points E1,2, as shown in Figure 2c. The in-

terval of real solutions for the Hamilton system (14) is ψ ∈]−
√
−ρ1
2ρ2

,
√
−ρ1
2ρ2

[. Integrating
both sides of Equation (12) gives∫ ψ

0

dψ

ψ2 + ρ1
2ρ2

= ±
√
−2ρ2

∫ η

0
dη. (34)
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This shows that

ψ(η) = ±
√
−ρ1

2ρ2
tanh

√
−2ρ2η. (35)

Thus, Equation (1) has a solution in the form

U8(x, y, t) = ±
√
−ρ1

2ρ2
tanh

√
−2ρ2[

1
α
(b1xα + b2yα) + b3t] exp [iN (x, y, t)− σG− σ2t]. (36)

Solution (36) is a novel solution for Equation (1).

4.3. Solitary Solution

System (14) has two homoclinic orbits that connect the saddle point O = (0, 0) to itself
if (ρ1, ρ2) ∈ R4 and γ = 0, as shown in Figure 2d in red. The two orbits are the right
and the left ovals in the figure. We calculate the solution corresponding to the left oval.

The interval of real solution is ψ ∈]−
√
−ρ1
ρ2

, 0[. Integrating both sides of Equation (12),
we obtain

ψ(η) = ±
√
−ρ1

ρ2
sech

√
−2ρ1η. (37)

Hence, Equation (1) has the solution

U9(x, y, t) = ±
√
−ρ1

ρ2
sech[

√
−2ρ1[

1
α
(b1xα + b2yα) + b3t] exp [iN (x, y, t)− σG− σ2t]. (38)

The solution (38) is new.
Some remarks on Equation (1) and the obtained solutions are provided below.

Remark 1. From the solutions to Equation (1) we have the following:

1. In the absence of the noise σ = 0, the stochastic fractional-space partial differential equation (1)
becomes a fractional-space partial differential equation. Thus, setting σ = 0 in the solutions
(24), (27), (33), (32), (36), and (38), we obtain new solutions for the latter equation.

2. Equation (1) approaches the stochastic partial differential equation when the fractional-order
derivative α approaches one. Thus, when α → 1, the solutions (24), (27), (33), (32), (36),
and (38) converge to new solutions for the stochastic equation.

3. When α→ 1 and σ = 0, Equation (1) becomes a classical partial differential equation. Thus,
the solutions (24), (27), (33), and (32) yield new solutions to the classical equations.

In the following remark, we look at the degeneracy of the Jacobi elliptic solutions
through the transmission between the phase orbits. This remark confirms the correctness
and consistency of the obtained solutions.

Remark 2. Depending on the value of the parameter γ, we have the following:

1. The periodic family of orbits around the center point O shown in Figure 2a degenerates to the
center point O = (0, 0) when γ → 0, which means that u1, u2 → 0 when γ → 0. Thus,
the solution (24) approaches U1,2 = 0, which are the ψ− coordinates of the equilibrium point O.

2. The periodic family of orbits around the center point O shown in blue in Figure 2c degenerates into:

• The center point O when γ→ 0, which means that u3, u4 → 0. Thus, the solution (27)
approaches U3,4 = 0, the ψ− coordinates of the equilibrium point O.

• The hetroclinic orbit shown in red in Figure 2c when γ → γ1 and then u3 →
√
−ρ1
2ρ2

and u4 → −
√
−ρ1
2ρ2

. Hence, the solution (27) approaches the solution (36).



Fractal Fract. 2023, 7, 157 10 of 15

3. The periodic family of orbits shown in blue in Figure 2d will approach the homoclinic orbit,

shown in red, when γ → 0 and therefore, u5 → 0, u6 →
√
−ρ1
ρ2

. Thus, the solution (33)
approaches the solution (38).

4. The family of super-periodic orbits in green in Figure 2d will approach the two homoclinic

orbits in red when γ → 0; therefore, u7 →
√
−ρ1
ρ2

, u8 → 0. Hence, the solution (32) will
approach the solution (38).

5. Graphic Representation

In this section, we explore the influence of noise σ on some of the solutions obtained
above. We will use various graphical representations to illustrate the impact of the stochastic
Wiener process on the solutions. Initially, we assume that parameters b1 = 0.2, b2 = 0.4,
b3 = 0.5, with the values of ρ1, ρ2, fall in the regions of (19) corresponding to the solutions
given in Section 4, and for different noise values σ.

• The effect of the noise on the solution (24) for the noise values σ = 0.0, σ = 0.2,
and σ = 0.5 is shown in Figure 3. Figure 3a shows the solution of (24), which is
periodic in the absence of the noise (σ = 0). The introduction of noise generates
disturbances in the solution, as shown in Figure 3b,c. In Figure 4, we present a 2D
representation of the solution of (24). When σ = 0, the solution, shown in blue, is
periodic. Increasing the noise causes increasing disturbances to the periodic solution.
Additionally, the 2D representation of the surface, shown in red in Figure 4, shows
that when the noise σ increases, the surface becomes significantly flatter after minor
transit patterns.

• The classical version of Equation (1) with zero noise and integer fractional order has a
kink solution (36), as shown in Figure 5a, and its 2D representation is shown in blue
in Figure 6. Figure 5b,c show the changes in the shape of the solution (36) due to
small noise values σ = 0.2, σ = 0.4, and their 2D representations clarify these changes.
For larger noise values, the surface that characterizes the wave solution (36) become
significantly flat, as shown in red by Figure 6.

• In the absence of noise σ = 0 and fractional order , α→ 1, Equation (1) has one soliton
solution, as shown in Figure 7a, with its 2D representation appearing in blue in Figure 8.
For low noise values σ = 0.2 and σ = 0.5, the surface representing the solution (38) has
some disturbances, which increasing with increases in noise σ, as shown in Figure 7b,c.
This is also shown in Figure 8, presenting a 2D representation of the solution. For large
noise values σ, the surface representing the solution (38) becomes flat, as shown in
Figure 8 in red. Thus, it is clear that the stochastic Wiener process influences the solution
(38) of Equation (1) and also stabilizes the solutions at around zero.

(a) (b) (c)

Figure 3. solution (24) for different values of the noise σ and α = 1, y = 0.5 and (x, t) ∈ [0, 10]× [0, 10].
(a) σ = 0.0; (b) σ = 0.2; (c) σ = 0.5.
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σ 0.5 σ 0.2 σ 0.0 σ 5.0

2 4 6 8 10
t

0.1

0.2

0.3

0.4

0.5

0.6

U

Figure 4. Two-dimensional representation of the solution (24) for distinct values of the noise σ, α = 1,
x = 1, y = 0.5, and t ∈ [0, 10].

(a) (b) (c)

Figure 5. The solution (36) for different values of the noise σ and α = 1, y = 0.5 and (x, t) ∈
[0, 10]× [0, 10]. (a) σ = 0.0; (b) σ = 0.2; (c) σ = 0.5.

σ 0.5 σ 0.2 σ 0.0 σ 5

2 4 6 8 10
t

0.5

1.0

1.5

2.0

U

Figure 6. Two dimensional representation of the solution (36) for distinct values of the noise σ, α = 1,
x = 1, y = 0.5, and t ∈ [0, 10].
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(a) (b) (c)

Figure 7. The solution (38) for different values of the noise σ and α = 1, y = 0.5 and (x, t) ∈
[0, 2.5]× [0, 22]. (a) σ = 0.0; (b) σ = 0.2; (c) σ = 0.5.

σ 0.5 σ 0.2 σ 0.0 σ 5

5 10 15 20
t

0.5

1.0

1.5

2.0

U

Figure 8. Two-dimensional representation of the solution (38) for distinct values of the noise σ, α = 1,
x = 1, y = 0.5, and t ∈ [0, 22].

Thus, the graphical representation of the surfaces representing the wave solutions (24),
(36), and (38) have some disturbances due to the presence of noise σ, and these surfaces
become significantly flatter as the value of the noise increases. Thus, we can conclude that
adding a stochastic Wiener process stabilizes the solutions at around zero.

6. Discussion

We analyzed the space-fractional nonlinear Schrödinger equation with multiplicative
white noise. This equation was transformed to a one-degree-of-freedom Hamiltonian
system. The qualitative theory of the resulting planar dynamical system was applied to
study the bifurcation and the phase portrait of the reduced system. A brief description of
the phase plane was given. In Lemma 1, we listed the conditions leading to bounded wave
solutions. We constructed some new solutions leading to periodic, solitary, and kink(anti-
kink) wave solutions. From these solutions, we obtained new solutions for the space-
fractional version of this equation in the absence of noise, and for its stochastic version when
the fractional order derivative tends to one. We studied the degeneracy of the solutions
due to the transition between the phase orbits. This study shows the consistency and
correctness of the solutions. The 2D and 3D graphical representations of some solutions are
included for different noise values. The multiplicative white noise’s effect on the solutions
was addressed. As the noise increases, the surface represented by the wave solution
becomes significantly flatter, leading us to the conclusion that introducing a stochastic
Wiener process stabilizes the solutions at around zero.
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Appendix A. Conformable Derivatives

Fractional calculus is based on the generalization of derivatives and integrals to non-
integer orders. Several definitions have been developed, including Riemann Liouville,
Caputo, and conformable fractional operators. These concepts offer more flexible tools for
modelling phenomena in the sciences and engineering. The conformal fractional operator
is relatively easy to define and offers the advantage that many of the traditional identities in
calculus, such as the product rule, the quotient rule, and the chain rule, have counterparts
in conformal fractional calculus.

Definition A1 ([37]). Let f :]0, ∞[→ R be a function, and 0 < ν ≤ 1 then the conformable
fractional derivative of order ν of f at t defined as

Dν( f )(t) = lim
p→0

f (t + εt1−ν)− f (t)
ε

, (A1)

Below, we enumerate some properties of the conformable derivatives that are needed
in our work. Let the two functions f1, f2 be ν− conformable differentiable at t and a, b , two
real numbers; then, the following holds

1. Dν(a f1 + b f2)(t) = aDν( f1)(t) + bDν( f2)(t),
2. Dν(xλ) = λxλ−ν, λ ∈ R,
3. Dν( f1 × f2)(t) = f1(t)Dν( f2)(t) + f2(t)Dν( f1)(t).

4. Dν

(
f1
f2

)
(t) = f2(t)Dν( f1)(t)− f1(t)Dν( f2)(t)

f 2
2 (t)

5. If f is differentiable at t then Dν( f )(t) = t1−p d f
dt (t).

We also provide a definition of the standard Wiener process, as given in [38].

Definition A2. A Stochastic process {G(t)}t≥0 is a standard Wiener process if

1. G(0) = 0;
2. G(t) is a continuous function for t ≥ 0;
3. For t3 < t2 < t1,G(t1)−G(t2) and G(t2)−G(t3) are independent;
4. G(t2)−G(t1) has a normal distribution with mean zero and variance t2 − t1.

are verified.

If we calculate the stochastic integral in the middle, the integral
∫ t

0 U(τ)dG(τ) is
named the Stratonovish stochastic integral and it is referred by

∫ t
0 U(τ) ◦ dG. When the

integral is evaluated at the left end, the integral
∫ t

0 U(τ)dG(t) is named Itô stochastic
integral [39].
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