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Abstract: In this paper, the Black–Scholes equation is solved using a new technique. This scheme is
derived by combining the Laplace transform method and the nonstandard finite difference (NSFD)
strategy. The qualitative properties of the method are discussed, and it is shown that the new method
is positive, stable, and consistent when low volatility is assumed. The efficiency of the new method is
demonstrated by a numerical example.
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1. Introduction

Derivatives are the basic pillars of financial and economic systems. The most common
derivatives are options, futures, and forward contracts. Options are agreements that give
the owner the possibility, not the commitment, to purchase or sell an asset at a specific price
and at a specific time. These bonds are defined in two general types call options and put
options. Additionally, in terms of how they are exercised, they are divided to two general
types: American and European. The latter are only exercised on the maturity date, but
American options may be applied at any time until the contract expires. In the financial
derivatives market, fair pricing of the option is the most important issue. In the early 1970s,
Black and Scholes took important steps in pricing the options. The result of their work led
to the introduction of the Black–Scholes model, also famous as the Black–Scholes–Merton
(BSM) model [1].

Several works are proposed for solving the BSM model. In [2], a semi-discretization
method based on non-uniform grids using the second-order central finite difference is
used to numerically solve the BSM model. The stability of the numerical solution is also
studied. Using the Black–Scholes model, Milev and Tagliani [3] present a problem for
pricing barrier options to the random movement of the asset. In this problem, choosing
a similar approximation to the quadrature method for calculating an integral path is
assumed. In [4], the ADE method is presented for one-factor option pricing models.
Additionally, the stability, accuracy, and robust performance of this method are investigated.
Golbabaei et al. [5] investigated the performance of the finite element method for option
valuation. They showed that if this method is used correctly, the results of the method are
superconvergent at the boundaries of the finite elements. In [6], Mehdizadeh Khalsarai
and Shokri Jahandizi, an explicit method for pricing barrier options based on a non-
standard discretization strategy is proposed. In their method, qualitative properties, such
as positivity, stability, and compatibility, are preserved. A projection method for pricing
barrier options is presented by Farnoush et al. [7]. Legendre polynomials are used as
orthogonal bases in the implementation of the method. In [8], an explicit scheme to solve
the BSM model without frontier data is presented. In this method, the numerical solution
is calculated at each time point on the new node points, using the reduction of one or
two node points. In [9], an explicit scheme is used to solve the BSM model with a hybrid
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boundary. In this method, a linear frontier data is used at the boundaries so that at least one
asset is zero. They reduce the domain of the calculations by using a time step. Thus there
is no need for boundary conditions. The Crank–Nicholson method to discretize the time
for the valuation of European options and barrier options is proposed by Abdi–Mazrae
et al. [10]. Then, to solve the ODE problems, the multiple shooting method with Lagrange
polynomials is applied [11,12]. The error at each step is controlled by using the Crank–
Nicholson method with variable step length, which prevents the propagation of error.
This will lead to faster computations by increasing the step length at the smooth points
of the domain. In [13], to solve the generalized Black–Scholes equation numerically, the
temporal variable is discretized by the Crank–Nicholson scheme, and the spatial variable
is discretized with the sextic B-spline collocation method. The method has second-order
convergence with respect to the time variable and sixth-order convergence with respect to
the space variable.

As the governing equation, the Black–Scholes model for pricing the European option
is considered [14]:

− ∂v
∂t

+ rS
∂v
∂S

+
1
2

σ2S2 ∂2v
∂S2 − rv = 0. (1)

With prime and frontier data, the following

v(S, 0) = max(S−K, 0)1[L,U ](S), (2)

v(S, t)→ 0 as S→ 0 or S→ ∞, (3)

by updating the prime data on the monitoring dates ti(i = 0, . . . F)

v(S, ti) = v(S, t−i )1[L,U ](S), (4)

where 1[L,U] is an indicator function and is defined as follows:

1[L,U ] =

{
1 if S ∈ [L,U ],
0 if S /∈ [L,U ],

where L and U are lower and upper barriers actives at all times tn. Moreover, S is the
asset price, v the option price (a function of the underlying asset price and time), K the
price of the strike, and T the expiration date. The payoff function of this option is equal
to max(S−K, 0), but if the price of the asset falls outside the range of [L,U ], the contract
expires. The knock-out option at the monitoring dates indicates a discontinuity in obstacles
S = L and S = U , respectively.

Although standard finite difference methods (FDMs) are consistent with the principal
equation and guarantee convergence, they may not maintain the qualitative behavior of
the solution. In [14], a numerical method to solve (1) is presented in which a combination
of the Laplace transform method and the standard FDM is used. The method produces
negative values and spurious oscillations when the central differences are used to discretize
first- and second-order derivatives in the case of σ2 � r.

In this paper, we modify the presented method in [14] by combining the Laplace
transform method with the NSFD method. We use a non-local expression to approximate
the reaction sentence in the proposed method. The new method is conditionally stable,
positivity preserving and of second-order of convergence with respect to the space variable.
The option price values are plotted for all time levels, which shows that the new method is
positive and non-oscillating.

This paper is divided into the following sections. In Section 2, we briefly describe the
Laplace transformation method. In Section 3, we apply the Laplace transformation method
for the BSM equation. In Section 4, we have an overview of NSFD methods. In Section 5,
we present the new method using non-local approximation for the reaction term of the BS
equation. The evaluation of the novel method which pertains to the positivity-preserving
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property, truncation error and stability is presented in Section 6. The numerical experiments
to confirm the efficiency of the new method are given in Section 7.

2. The Laplace Transform

Definition 1 ([15]). Suppose f (t) is a function, and its Laplace transform is defined by

L { f (t)} =
∫ ∞

0
e−λt f (t)dt, (5)

where the transform is denoted by F(λ). Let f (t) for all positive values t be defined in range (0, ∞).
Additionally, it is assumed that λ is real and the integral is convergent. For integral convergence (5),
the following condition must hold:

Reλ > γ,

where γ is a constant and f (t) satisfying

| f (t)| = O(eγt) as t→ ∞. (6)

Theorem 1 ([16]). Suppose f (t) is a piecewise continuous function with exponential order γ on
intervals [0, ∞) and L

(
f (t)

)
= F(λ). Then

F(k)(λ) = (−1)k
∫ ∞

0
tke−λt f (t)dt, k = 1, 2, 3, . . . (λ > γ). (7)

If L
(

f (t)
)
= F(λ), then the inverse Laplace transform is defined by

f (t) = L −1{F(λ)}. (8)

Theorem 2 ((Post-Widder) [15]). If the integral

L { f (t)} =
∫ ∞

0
e−λt f (t)dt. (9)

converges for every λ > γ, then for every t > 0 of continuity of f (t), the inverse Laplace transform
is defined as follows:

f (t) = lim
k→∞

(−1)k

k!

( k
t

)k+1
F(k)

( k
t

)
. (10)

The Laplace transform is a way to solve partial differential equations. In this method,
by taking the Laplace transform with respect to a variable, a PDE transforms into an ODE.

For example, by taking the Laplace transform of v(S, t) with respect to t, the following
equation will be obtained:

V(S, λ) =
∫ ∞

0
e−λtv(S, t)dt, (11)

where v(S, t) is the solution to the PDE, and the k-th derivative of the Laplace transform is
defined as follows:

dkV(S, λ)

dλk =: V(k)(S, λ) = (−1)k
∫ ∞

0
tke−λtv(S, t)dt. (12)

The Laplace transform of vt is defined as follows:

L {∂v
∂t
} =

∫ ∞

0
e−λtvt(S, t)dt = λV(S, λ)− v(S, 0), (13)
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where v(S, 0) is the initial condition. Additionally, the Laplace transform of ∂v
∂S and ∂2v

∂S2 is
defined by

L { ∂v
∂S
} = d

dS
{L [v(S, t)]} = dV(S, λ)

dS
, (14)

and

L { ∂2v
∂S2 } =

d2

dS2 {L [v(S, t)]} = d2V(S, λ)

dS2 , (15)

by eliminating variable t using the Laplace transform, the PDE transforms into an ODE
with boundary conditions [17].

3. The Laplace Transform Method for the BSM Equation

In this section, the combination of the Laplace transform and FDM is used to numeri-
cally solve the BSM model (1). Multiplying each term of (1) by tke−λt and integration on
the interval [0, ∞), we have

−
∫ ∞

0
tke−λt ∂v

∂t
+ rS

∫ ∞

0
tke−λt ∂v

∂S
+

1
2

σ2S2
∫ ∞

0
tke−λt ∂2v

∂S2 − r
∫ ∞

0
tke−λtv = 0. (16)

Now, by taking the Laplace transform with respect to variable t and by using (11)–(15),
the following ordinary differential equation (ODE) is obtained as follows:

− 1
2

σ2S2 d2V(k)

dS2 − rS
dV(k)

dS
+ (r + λ)V(k) =

{
v(S, 0), k = 0,
−kV(k−1), k = 1, 2, · · · .

(17)

The above relative is a recursive relationship, relating two consecutive derivatives
V(k−1) and V(k). Then all higher derivatives V(k)(S, λ) are obtained by an iterative proce-
dure involving the ODE (17). Now, we can obtain the numerical solution of (17) with a finite
difference method. By using the central difference for d2V(k)

dS2 and the upwind difference for
dV(k)

dS , the following is obtained:

−1
2

σ2S2
j

[V(k)
j−1 − 2V(k)

j + V(k)
j+1

∆S2

]
− rSj

[V(k)
j+1 −V(k)

j

∆S

]
+ (r + λ)V(k)

j =

{
v(S, 0), k = 0,
−kV(k−1), k = 1, 2, · · · ,

(18)

and replacing the central difference for dV(k)

dS , the following is given

−1
2

σ2S2
j
(V(k)

j−1 − 2V(k)
j + V(k)

j+1

∆S2

)
− rSj

(V(k)
j+1 −V(k)

j−1

2∆S
)
+ (r + λ)V(k)

j =

{
v(S, 0), k = 0,
−kV(k−1), k = 1, 2, · · · ,

(19)

with the frontier data V(k)(0, λ) = 0 and V(k)(∞, λ) = 0, where V(k)
j is approximation

V(k)(S, λ) at the grid point Sj with Sj = j∆S(j = 1, . . . , M − 1) and ∆S = Smax
M , which

leads to: {
QpwV(k) = v(S, 0), k = 0,
QpwV(k) = −kV(k−1), k = 1, 2, · · · ,

(20)

where the tridiagonal matrices corresponding to (18) and (19) are respectively equal to

Qpw = tridiag
{
− 1

2

(
σSj

∆S

)2

; (r + λ) +

(
σSj

∆S

)2

+
rSj

∆S
;−1

2

(
σSj

∆S

)2

−
rSj

∆S

}
, (21)
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and

Qpw = tridiag
{
− 1

2

[(
σSj

∆S

)2

−
rSj

∆S

]
; (r + λ) +

(
σSj

∆S

)2

;−1
2

[(
σSj

∆S

)2

+
rSj

∆S

]}
. (22)

As [14] if in (20) k = 1, . . . , N and λ = N
T are assumed, we obtain the following

approximation vN(Sj, t) of v(Sj, t) using the post-wider formula (10):

vN(Sj, T) =
(−1)N

N!
(

N
T
)

N+1
V(N)(Sj,

N
T
). (23)

With lim
N→∞

vN(Sj, t) = v(Sj, t). An explicit form for vN(Sj, T) is obtained combin-

ing (20) with (23)

vN(Sj, T) = (
N
T

Q−1
PW)

N+1
v(Sj, 0). (24)

So, N
T Q−1

PW is the iteration matrix.
According to Figures 1a, 2a and 3a, the mixed method by using discretization (18)

is free of spurious oscillations, and it preserves positivity. The mixed method by using
discretization (19) often produces spurious oscillations and negative values in the solution
when σ and r are satisfied in σ2 � r (see Figures 1b, 2b and 3b). It is shown clearly in
Figures 1c, 2c and 3c, in which the cross section at t = T of the analytical solution and
different numerical methods are presented. Additionally, in Table 1, numerical approxima-
tions obtained by applying the mixed method at time levels t = 0.2, 0.4, 0.6 and different
spatial points are calculated for better comparison. The financial parameters for the numer-
ical solution of Equation (15) are taken from [14]. In the following, the strategy of NSFD
discretization to overcome the mentioned drawbacks for discretization (19) is used.

(a) (b)

90 92 94 96 98 100 102 104 106 108 110

S

0

1

2

3

4

5

6

7

8

9

10

V
(S

,T
)

Exact sol

Upwind

Central

(c)

Figure 1. Call option value for r = 0.05, σ = 0.001, T = 1, U = 110, K = 100, L = 90, Smax = 200,
∆S = 0.05, N = 100. (a) The mixed method using discretization (18). (b) The mixed method using
discretization (19). (c) Solutions at t = T.
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(a) (b)

90 92 94 96 98 100 102 104 106 108 110

S

-2

0

2

4

6

8

10

V
(S

,T
)

Exact sol

Upwind

Central

(c)

Figure 2. Call option value for r = 0.05, σ = 0.001, T = 1, U = 110, K = 100, L = 90, Smax = 200,
∆S = 0.05, N = 1000. (a) The mixed method using discretization (18). (b) The mixed method using
discretization (19). (c) Solutions at t = T.

(a) (b)

90 92 94 96 98 100 102 104 106 108 110

S

-2

0

2

4

6

8

10

V
(S

,T
)

Exact sol

Upwind

Central

(c)

Figure 3. Call option value for r = 0.05, σ = 0.001, T = 1, U = 110, K = 100, L = 90, Smax = 200,
∆S = 0.05, N = 10,000. (a) The mixed method using discretization (18). (b) The mixed method using
discretization (19). (c) Solutions at t = T.
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Table 1. Numerical solutions for the mixed method using the upwind difference and the central
difference for dV(k)

dS term.

M = 4000, S → 95 96 102 103 104 105

For N = 100

t = 0.2 Upwind 9.4810× 10−17 4.1760× 10−12 2.9441 3.9437 4.9433 5.9429
Central 1.4900× 10−22 2.6009× 10−16 2.9581 3.9625 4.9668 5.9712

t = 0.4 Upwind 3.5324× 10−9 6.1635× 10−6 3.9275 4.9266 5.9258 6.9249
Central 8.4533× 10−13 3.7451× 10−8 3.9659 4.9749 5.9838 6.9928

t = 0.6 Upwind 5.0885× 10−5 6.4924× 10−3 4.9002 5.8989 6.8974 7.8717
Central 5.7477× 10−7 8.6729× 10−4 4.9730 5.9865 7.0001 8.0120

For N = 1000

t = 0.2 Upwind 2.9741× 10−87 9.2550× 10−68 2.0949 3.0948 4.0948 5.0948
Central 3.4051× 10−112 1.3075× 10−87 2.0958 3.0963 4.0967 5.0971

t = 0.4 Upwind 9.5591× 10−75 1.0311× 10−56 2.1946 3.1946 4.1945 5.1944
Central 6.0345× 10−99 7.9996× 10−76 2.1967 3.1976 4.1985 5.1994

t = 0.6 Upwind 9.9419× 10−66 6.0477× 10−49 2.2943 3.2942 4.2940 5.2939
Central 3.3916× 10−89 2.5116× 10−67 2.2976 3.2990 4.3003 5.3017

For N = 10,000

t = 0.2 Upwind 7.6032× 10−184 4.3603× 10−145 2.0095 3.0095 4.0095 5.0095
Central 6.4119× 10−213 2.2017× 10−168 2.010 3.010 4.010 5.010

t = 0.4 Upwind 1.3175× 10−170 2.6163× 10−133 2.0195 3.0195 4.0195 5.0195
Central 1.3446× 10−199 1.5994× 10−156 2.0197 3.0198 4.0199 5.0199

t = 0.6 Upwind 7.3729× 10−161 8.2404× 10−125 2.0295 3.0295 4.0294 5.0294
Central 9.1041× 10−190 6.0974× 10−148 2.0298 3.0299 4.0300 5.0302

4. NSFD Strategy

In this section, a summary of the NSFDs is given, more details on which one can
see in [18–24]. The initial foundation of NSFD schemes originated from the drawbacks of
standard finite-difference schemes. Those numerical methods resting on the unsophisti-
cated finite difference approximations which help solve ODEs and PDEs may fail to work
properly. Additionally, properties such as positivity of solution may not be transferred to
the numerical solution. Consequently, there is a need to devise and investigate numerical
methods to solve this problem. To this end, Mickens introduced NSFD methods in [20].
The proposed methods preserve ordinary properties, such as stability, consistency, and
convergence. Additionally, they are designed to maintain the qualitative properties of the
exact answer.

The NSFD methods can be recognized in two ways: first, how to approximate the
derivatives in the equations, and second, how to approximate nonlinear expressions. The
forward Euler method is one of the most widely used methods for approximation of the
first-order derivative. In the naive case, derivative Vx is approximated by V(x+h)−V(x)

h ,
in which h represents the step length. In non-standard methods, Vx is approximated
by V(x+h)−V(x)

ψ(h) so that ψ(h) is an increasing continuous function of h and satisfies the
following relation:

ψ(h) = h + O(h2), 0 < ψ(h) < 1, h→ 0. (25)

It should be noted that whenever h tends to zero, the first derivative must be obtained

dV
dx

= lim
h→0

V(x + ψ1(h))−V(x)
ψ2(h)

, (26)
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where ψ1(h) and ψ2(h) are continuous functions of h and satisfy the relation (25). If the
numerical method is verified in one of the following conditions, the method is called
non-standard:

• In the discretization of the derivatives in the equation using standard finite difference
methods, instead of h in the denominator, a complex function such as ψ of h is used
which satisfies (26). Therefore, a complex analytic function can be presented that
satisfies the following relation:

ψ(h) = h + O(h2), 0 < ψ(h) < 1, h→ 0, (27)

Several functions ψ(h) that satisfy in (27) are [20]:

h, sin(h) or
1− e−λh

λ
.

• Nonlinear terms in the differential equation are approximated by non-local phrases.
The following are instances of this law (see [18–24]):

V ≈ α
(
Vj+1 + Vj−1

)
+ β

(
Vj+1 + Vj−1

)
+
(
1− 2α− 2β

)
Vj, α, β ∈ R,

V ≈ αVj−1 + (1− α)Vj+1, α ∈ R,

V ≈ αVj−1 + βVj+1 + (1− α− β)Vj, α, β ∈ R.

It should be noted that there is no general regulation for the selection of the denomi-
nator function or non-local approximations. However, there are some general rules in the
literature. See for more details [18–24].

5. The New Scheme

In this section, by using values at different spatial points for discretization V(k) as

V(k) ≈ (α + β)
(
V(k)

j+1 + V(k)
j−1

)
+
(
1− 2α− 2β

)
V(k)

j , α, β ∈ R,

the new method is proposed:

− 1
2

σ2S2
j
(V(k)

j−1 − 2V(k)
j + V(k)

j+1

∆S2

)
− rSj

(V(k)
j+1 −V(k)

j−1

2∆S
)
+ (r + λ)(α + β)

(
V(k)

j+1 + V(k)
j−1

)
+ (r + λ)

(
1− 2α− 2β

)
V(k)

j =

{
v(S, 0), k = 0,
−kV(k−1), k = 1, 2, · · · ,

(28)

where α and β are the parameters obtained by imposing positivity restrictions. The above
discretization may be written in matrix form as follows:{

Q̂pwV(k) = v(S, 0), k = 0,
Q̂pwV(k) = −kV(k−1), k = 1, 2, · · · ,

(29)

with

Q̂pw =tridiag
{
− 1

2
(σSj

∆S
)2

+
rSj

2∆S
+ (α + β)(r + λ);

(σSj

∆S
)2 − (2α + 2β− 1)(r + λ);

− 1
2
(σSj

∆S
)2 −

rSj

2∆S
+ (α + β)(r + λ)

}
.
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The approximation vN(Sj, t) of v(Sj, t) by using the Post-Widder formula is

vN(Sj, T) = (
N
T

Q̂−1
PW)

N+1
v(Sj, 0). (30)

6. Analysis of the New Scheme

Here, the positivity preservation, stability, consistency and convergence properties of
the new method are investigated. Firstly, we present some definitions and results that will
be needed in the proof of Theorem 5.

Definition 2. A matrix A = (aij) is called essentially positive if A is irreducible and aij ≥ 0,
i 6= j.

Theorem 3 ([25]). A matrix A ∈ Zn×n is a nonsingular M-matrix if and only if A−1 exists and
A−1 ≥ 0.

Definition 3. A matrix A = (aij) is called an L-matrix if aii > 0, ∀i ∈ N and aij ≤ 0, i 6= j.

Theorem 4 ([25]). Let A be an L-matrix which is strongly row or column diagonally dominant,
i.e., Ae > 0 or eT A > 0T . Then A is a nonsingular M-matrix.

Theorem 5. scheme (29) is positive, if

(α + β) ≤ − r2

8σ2(r + λ)
. (31)

Proof. As the initial condition is positive, if Q̂−1
pw > 0, then we get that scheme (30) is

positive. If Q̂pw is an M-matrix, then Q̂−1
pw > 0.

For Q̂pw to be an M-matrix, it should happen that

− 1
2
(σSj

∆S
)2

+
rSj

2∆S
+ (α + β)(r + λ) ≤ 0,

⇔ (α + β)(r + λ) ≤ 1
2

[(σSj

∆S
)2 −

rSj

∆S

]
,

(32)

and

− 1
2
(σSj

∆S
)2 −

rSj

2∆S
+ (α + β)(r + λ) ≤ 0,

⇔ (α + β)(r + λ) ≤ 1
2

[(σSj

∆S
)2

+
rSj

∆S

]
,

(33)

and(σSj

∆S
)2 − (2α + 2β− 1)(r + λ) ≥ 0,⇒ (α + β)(r + λ) ≤ 1

2

[(σSj

∆S
)2

+ (r + λ)
]
. (34)
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From (32)–(34), we can write:

(α + β)(r + λ) ≤ 1
2

[(σSj

∆S
)2 −

rSj

∆S

]
,

⇐⇒ (α + β) ≤ 1
2(r + λ)

[(σSj

∆S
)2 −

rSj

∆S

]
,

⇐⇒ (α + β) ≤ σ2

2(r + λ)

[( Sj

∆S

)2

− r
σ2

( Sj

∆S

)
+

r2

4σ4 −
r2

4σ4

]
,

⇐⇒ (α + β) ≤ σ2

2(r + λ)

[( Sj

∆S
− r

2σ2

)2

− r2

4σ4

]
,

⇐⇒ (α + β) ≤ σ2

2(r + λ)

( Sj

∆S
− r

2σ2

)2

− r2

8σ2(r + λ)
.

(35)

Now, from the last inequality in (35), if (α + β) ≤ − r2

8σ2(r + λ)
then (32) holds. In

addition, (33) is a direct consequence of (32). This concludes the proof.

Theorem 6. The new method is conditionally stable and convergent to the exact solution with
order two with respect to the spatial variable.

Proof. According to Theorem 3, Q̂pw is similar to a symmetric tridiagonal matrix (see [25],
p. 24) so that the eigenvalues of Q̂pw, λi(Q̂PW), i = 1, ..., N are real.

On the other hand, Q̂pw is row diagonally dominant with

ri = |aii| −∑
j 6=i
|aij| = r + λ, i = 1, . . . , N − 1,

which yields ‖Q̂−1
pw‖∞ ≤ max 1

ri
(see [25], proposition 1.3). So

ρ(Q̂−1
PW) ≤ ‖Q̂−1

pw‖∞ ≤
1

r + λ
=

1
r + N

T
< 1, (36)

where ρ(Q̂−1
PW) is the spectral radius of the matrix Q̂−1

PW . According to Lex’s theorem [26],
the method is stable and convergent, and the local truncation error is equal to

Tj =−
1
2

σ2S2
j

(V(k)(Sj−1)− 2V(k)(Sj) + V(k)S(j + 1)
∆S2

)
− rSj

(V(k)(Sj+1)−V(k)(Sj−1)

2∆S

)
+ (r + λ)

[
α
(
V(k)(Sj+1) + V(k)(Sj−1)

)
+ β

(
V(k)(Sj+1) + V(k)(Sj−1)

)
+
(
1− 2α− 2β

)
V(k)(Sj)

]
,

(37)

Taylor’s expansion of V(k)(Sj−1) and V(k)(Sj+1) around Sj for j = 1, 2, · · · , n is equal to

V(k)(Sj−1) = V(k)
j − ∆S

(dV(k)

dS
)
+

∆S2

2!
(d2V(k)

dS2

)
− ∆S3

3!
(d3V(k)

dS3

)
+

∆S4

4!
(d4V(k)

dS4

)
+ · · · ,

V(k)(Sj+1) = V(k)
j + ∆S

(dV(k)

dS
)
+

∆S2

2!
(d2V(k)

dS2

)
+

∆S3

3!
(d3V(k)

dS3

)
+

∆S4

4!
(d4V(k)

dS4

)
+ · · · ,
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by substitution into (37) can write

Tj =

(
− 1

2
σ2S2

j
d2V(k)

dS2 − rSj
dV(k)

dS
+(r + λ)V(k)

)
+ (α + β)(r + λ)(∆S)2(d2V(k)

dS2

)
−

rSj

3!
(∆S)2(d3V(k)

dS3

)
+ · · · ,

but V is the solution of the ODE, then(
− 1

2
σ2S2

j
d2V(k)

dS2 − rSj
dV(k)

dS
+ (r + λ)V(k)

)
= 0.

Then, the principal term of the local truncation error (28) is equal to

(α + β)(r + λ)(∆S)2(d2V(k)

dS2

)
−

rSj

3!
(∆S)2(d3V(k)

dS3

)
+ · · · ,

which completes the proof.

7. Numerical Experiments

To prove the upside of the newly designed positive scheme with σ2 � r, again (17) is
considered. In the proposed nonstandard scheme for different N, the solution is acceptable,
free of spurious oscillations, and positivity is preserved (see Figure 4a–c). The cross sections
of the analytical and numerical solutions at t = T are shown in Figure 4d,e, respectively,
using NSFD schemes.

If condition (31) is violated, the solution obtained from the new method may produce
abnormal oscillations and negative values in the results (see Figure 5).

The findings suggest that the combination of Laplace transforms method and the
standard finite difference method to solve the Black–Scholes equation will lead to numerical
issues, including spurious oscillations and numerical diffusion. These issues will rise if
σ2 � r and the central differences are employed to discretize the first- and second-order
derivatives. Yet, if the Laplace transform method and the NSFD method are used together,
we may have smoother behavior of the numerical solution than when the standard finite
difference method is used.

Under uncertain economic conditions, sensitivity analysis is one of the best methods
to assess investment risk. Indicators such as the time left until expiration of the option, the
strike price, the volatility of the underlying asset, and, last but not least, the interest rate,
are all important when determining the price of the options. Now, we will briefly review
these variables and the consequences, viz, the calculation of sensitivities or Greeks, the
most significant of which are

Delta ∆ =
∂V
∂S

,

Gamma Γ =
∂2V
∂S2 .

Delta represents the change in the price of an option as a result of the stock prices
falling or rising. If the price sensitivity of the option to stock price is determined, the buyer
can determine the amount of loss or gain incurred if the option contract is not exercised, as
well as the maximum loss that may incur if the contract is not exercised.

The ratio of the change in Delta to the change in stock prices is called Gamma. The
extent to which portfolio composition needs to change and be adapted can be determined
by investors and buyers based on this parameter. The latter is comprised of shares and
stock options, which help maintain a trading position during these changes. The portfolio’s
structure and size will be less likely to fluctuate if the Gamma value is low. On the contrary,
if the Gamma value increases, the need for such variation will be increased.
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Figure 4. Call option value for r = 0.05, σ = 0.001, T = 1, U = 110, K = 100, L = 90, Smax = 200,
∆S = 0.05. (a) The NSFD method with N = 100. (b) The NSFD method with N = 1000. (c) The NSFD
method with N = 10,000. (d) Compare solutions for N = 100 and N = 1000 at t = T. (e) Compare
solutions for N = 1000 and N = 10,000 at t = T.
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Figure 5. Condition (31) is violated. Call option value for r = 0.05, σ = 0.001, T = 1, U = 110,
K = 100, L = 90, Smax = 200, ∆S = 0.05.

Now, using the mixed and NSFD schemes, Delta and Gamma are compared for
N = 1000. Figure 6 presents the results for Delta. The value of Delta using the mixed
scheme generates spurious oscillations, while using the NSFD scheme cause the elimination
of these oscillations. Furthermore, Figure 7 depicts the results for Gamma. The value of
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Gamma in the mixed scheme generates spurious oscillations, while applying the NSFD
scheme eliminates these oscillations.
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Figure 6. Delta using the mixed scheme (left) and the NSFD scheme (right), with finance data
r = 0.05, σ = 0.001, K = 100, T = 1, U = 110, L = 90, Smax = 200, ∆S = 0.05 and ∆t = 10−3.
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Figure 7. Gamma using the mixed scheme (left) and the NSFD scheme (right), with finance data
r = 0.05, σ = 0.001, K = 100, T = 1, U = 110, L = 90, Smax = 200, ∆S = 0.05 and ∆t = 10−3.

8. Conclusions and Discussion

In this article, one new NSFD scheme to numerically solve the BSM model is applied,
which is used for options pricing. This scheme is derived by combining the Laplace
transform method and the NSFD strategy. The results show that the new method retains
the essential qualitative properties, such as positivity and stability. The local truncation
error of the new scheme isO(∆S2). The results of the novel method compared with those of
other standard numerical methods, such as the mixed method, indicate that the unmistaken
implementation of the method we have devised produces numerical solutions for the Black–
Scholes equation. The results suggest that non-standard difference schemes may be of use
when solving problems that can exert influence on the stock price similar to nonlinear Black–
Scholes equations and generalized BSM models. The proposed method can be extended to
a high-order method and for a class of nonlinear Black–Scholes equation [27].
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