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Luminiţa-Ioana Cotîrlǎ 1,*,† and Gangadharan Murugusundaramoorthy 2,†

1 Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
2 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology,

Vellore 632014, Tamilnadu, India
* Correspondence: luminita.cotirla@math.utcluj.ro
† These authors contributed equally to this work.

Abstract: In this paper, we make use of the concept of q−calculus in the theory of univalent functions,
to obtain the bounds for certain coefficient functional problems of Janowski type starlike functions
and to find the Fekete–Szegö functional. A similar results have been done for the function ℘−1.
Further, for functions in newly defined class we determine coefficient estimates, distortion bounds,
radius problems, results related to partial sums.
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1. Introduction, Definitions and Preliminaries

Denote byA the class of analytic functions ℘ inside open unit discU = {ξ ∈ C : |ξ| < 1}
of the form

℘(ξ) = ξ +
∞

∑
n=2

anξn, ξ ∈ U. (1)

Let S be the subclass of A consisting of univalent functions. For two analytic functions
℘(ξ) given by (1) and `(ξ) = ξ + ∑∞

n=2 bnξn, ξ ∈ U, the convolution (Hadamard product)
of ℘(ξ) and `(ξ) is defined as:

℘(ξ) ∗ `(ξ) =
∞

∑
n=0

anbnξn.

Let ℘, ` ∈ A. We say that ℘ is subordinate to ` if there exists a Schwarz function w(ξ), ana-
lytic in U with w(0) = 0 and |w(ξ)| < 1 (ξ ∈ U), such that ℘(ξ) = `(ω(ξ)) (ξ ∈
U). This subordination is denoted by

℘ ≺ ` or ℘(ξ) ≺ `(ξ) (ξ ∈ U).

In particular, if the function ` is univalent in U, the above subordination is equivalent to

℘(0) = `(0) and ℘(U) ⊂ `(U).

The well-known subclasses of S that are are starlike and convex in U is defined as below:

S∗ :=
{
℘ ∈ A : <

( ξ℘′(ξ)

℘(ξ)

)
> 0, ξ ∈ U

}
(2)

C :=
{
℘ ∈ A : <

( (ξ℘′(ξ))′
℘′(ξ)

)
> 0, ξ ∈ U

}
. (3)
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, respectively. Equivalently, we have

S∗(ϕ) =

{
℘ ∈ A :

ξ℘′(ξ)

℘(ξ)
≺ ϕ(ξ)

}
,

C(ϕ) =

{
℘ ∈ A :

(ξ℘′(ξ))′

℘′(ξ)
≺ ϕ(ξ)

}
,

where
ϕ(ξ) =

1 + ξ

1− ξ
. (4)

Janowski [1] defined the generalized function class S∗[D, E] of starlike functions named as
Janwoski function class as follows. A function ℘ is called in the class S∗[D, E] if

ξ℘′(ξ)

℘(ξ)
≺ 1 + Dξ

1 + Eξ
(−1 ≤ E < D ≤ 1)

or
ξ℘′(ξ)

℘(ξ)
=

(D + 1)p(ξ)− (D− 1)
(E + 1)p(ξ)− (E− 1)

(−1 ≤ E < D ≤ 1). (5)

The mentioned classes with the restriction −1 ≤ E < D ≤ 1 reduce to the popular Janowski
starlike and Janowski convex functions, respectively. By replacing D = 1− 2ϑ and E = −1,
where 0 ≤ ϑ < 1, we obtain the classes, namely the class of starlike and convex functions
of order ϑ (0 ≤ ϑ < 1) introduced by Robertson in [2], given, respectively, by

S∗(ϑ) :=
{
℘ ∈ A : <

( ξ℘′(ξ)

℘(ξ)

)
> ϑ, ξ ∈ U

}
and

C(ϑ) :=
{
℘ ∈ A : <

( (ξ℘′(ξ))′
℘′(ξ)

)
> ϑ, ξ ∈ U

}
.

It is well known that S∗(ϑ) ⊂ S and C(ϑ) ⊂ S. By virtue of the well known Alexander’s
relation, we see that ℘ ∈ C(ϑ) in U if and only if ξ℘′(ξ) ∈ S∗(ϑ) for each 0 ≤ ϑ < 1. The
classes defined above plays an imperative role in the progress of Geometric Function Theory
(GFT). Various stimulating properties of S have been studied from different viewpoints
and perspective.The new class of A are defined by integral and differential operators in
terms of convolution and we observe that this formalism (convolution product ) brings
an ease in further mathematical investigation and also helps to understand the geometric
and symmetric properties of f ∈ S better. The reputation of convolution in the theory
of operators may easily be understood from the papers in [3–11]. We briefly recall here
the notion of q−operators , i.e., q−difference operators that play vital role in the theory
of hypergeometric series, special functions and quantum physics. The application of
q−calculus was originated by Jackson [12] (see [13–17]). Kanas and Răducanu [14] have
used the fractional q-calculus operators to examine certain function classes of A.

Consider 0 < q < 1 and a non-negative integer n. The q−integer number or basic
number n is defined by

[n]q =
1− qn

1− q
= 1 + q + q2 + . . . + qn−1, [0]q = 0.

We denote by [t]q =
1− qt

1− q
, where is t non-integer number .

The q−shifted factorial is defined as follows

[0]q! = 1, [n]q! = [1]q[2]q . . . [n]q.
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Note that lim
q→1−

[n]q = n and lim
q→1−

[n]q! = n!.

The Jackson’s q−derivative operator (or q−difference operator) for a function ℘ ∈ A is
defined by

Dq℘(ξ) =


℘(qξ)− ℘(ζ)

ζ(q− 1)
, ξ 6= 0

℘′(0) , ξ = 0.
(6)

Note that
Dqξn = [n]qξn−1, n ∈ N = {1, 2, . . .}, ξ ∈ U.

Further, we define the operator Dm
q ℘(ξ), m ∈ N as follows

D0
q℘(ξ) = ℘(ξ) and Dm

q ℘(ξ) = Dq(Dm−1
q ℘(ξ)).

For t ∈ R and n ∈ N, the q−generalized Pochhammer symbol is defined by

[t]n = [t]q[t + 1]q[t + 2]q . . . [t + n− 1]q.

Moreover, for t > 0 the q−Gamma function is given by

Γq(t + 1) = [t]qΓq(t) and Γq(1) = 1.

By Ruscheweyh differential operator [18], lately Kanas and Răducanu [14] introduced
the Ruscheweyh q−differential operator defined by

Rm
q ℘(ξ) = Fq,m+1(ξ) ∗ ℘(ξ) ξ ∈ U, m > −1 (7)

where ℘ ∈ A and

Fq,m+1(ξ) = ξ +
∞

∑
n=2

Γq(n + m)

[n− 1]q!Γq(1 + m)
ξn. (8)

From (7) we have
R0

q℘(ξ) = ℘(ξ), R1
q℘(ξ) = ξDq℘(ξ)

and

Rn
q℘(ξ) =

ξDn
q
(
ξn−1℘(ξ)

)
[n]q!

n ∈ N.

For ℘ ∈ A given by (1), in view of (7) and (8), we obtain

Rm
q ℘(ξ) = ξ +

∞

∑
n=2

Γq(n + m)

[n− 1]q!Γq(1 + m)
anξn ξ ∈ U. (9)

Note that
lim

q→1−
Fq,m+1(ξ) =

ζ

(1− ξ)m+1

and
lim

q→1−
Rm

q ℘(ξ) = ℘(ξ) ∗ ξ

(1− ξ)m+1 .

Moreover,

Dq(Rm
q ℘(ξ)) = 1 +

∞

∑
n=2

[n]qΥq(n, m)anξn−1 (10)

where

Υn = Υq(n, m) =
Γq(n + m)

[n− 1]q!Γq(1 + m)
. (11)
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In this article motivated by the works in [3–11,17], using the operator defined in (9)
we introduce a new class of A as below:

Sm,n
q (D, E) =

{
℘ ∈ A :

ξDq(Rm
q ℘(ξ))

Rm
q ℘(ξ)

≺ 1 + Dξ

1 + Eξ

}
(ξ ∈ U), (12)

where −1 ≤ E < D ≤ 1 and obtain Fekete–Szegö functional. Further, coefficient estimates,
characteristic properties and partial sums results are derived.
By fixing the values of D and E one can state new classes Sm,n

q (1− 2α,−1) = Sm,n
q (α)

analogues to the classes studied in [2] and Sm,n
q (1− 1) = Sm,n

q (ϕ) where ϕ is given by (4).

2. The Fekete–Szegö Inequality for f ∈ Sm,n
q (D, E)

To prove the Fekete–Szegö inequality for ℘ ∈ Sm,n
q (D, E) we use the following:

Lemma 1 ([19,20]). If P(ξ) = 1 + p1ξ + p2ξ2 + . . . and is in P ∈ P the class of functions of
positive real part in U, then

|pn| ≤ 1, n ≥ 1, (13)

and for h̄ ∈ C complex number∣∣∣p2 − h̄p2
1

∣∣∣ ≤ 2 max{1, |1− 2h̄|}. (14)

If h̄ is a real parameter, then

∣∣∣p2 − h̄p2
1

∣∣∣ ≤

−4h̄ + 2 (h̄ ≤ 0)

2 (0 ≤ h̄ ≤ 1)

4h̄− 2 (h̄ ≥ 1).

(15)

When h̄ > 1 or h̄ < 0, equality (15) holds true if and only if

P1(ξ) =
1 + ξ

1− ξ

or one of its rotations. When 0 < h̄ < 1, then (15) holds if and only if

P2(ξ) =
1 + ξ2

1− ξ2

or one of its rotations. When h̄ = 0, equality (15) holds if and only if

P3(ξ) =

(
1 + c

2

)
1 + ξ

−ξ + 1
+

(
1− c

2

)
−ξ + 1
1 + ξ

(0 ≤ c ≤ 1)

or one of its rotations. When h̄ = 1, then (15) holds true if P(ξ) is a reciprocal of one of the functions
such that the equality holds true in the case when h̄ = 0.

Theorem 1. If ℘ ∈ A and be given by (1), belongs to Sm,n
q (D, E), then

|a2| ≤
|D− E|

qΥ2
, (16)

|a3| ≤
|D− E|

q(1 + q)Υ3
max

{
1,
∣∣∣∣1 + 2E− D
−E + D

− (
−E + D

q
)

∣∣∣∣}. (17)
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and for a complex number ℵ,∣∣∣a3 − ℵa2
2

∣∣∣ ≤ D− E
Υ3

max{1, |Ξ(ℵ, D, E)|}, (18)

where

Ξ(ℵ, D, E) =
1 + 2E− D

D− E
− (

D− E
q

) +
(1 + q)ℵ(D− E)Υ3

qΥ2
2

,

and

Υn =
Γq(n + m)

[n− 1]q!Γq(1 + m)
.

Proof. We show that the relations (16), (17), (18) and (29) hold true for ℘ ∈ Sm,n
q (D, E).

If f ∈ Sm,n
q (D, E),

ξDq(Rm
q ℘(ξ))

Rm
q ℘(ξ)

≺ 1 + Dξ

1 + Eξ
(19)

which yields,

ξDq(Rm
q ℘(ξ))

Rm
q ℘(ξ)

=
1 + Dw(ξ)

1 + Ew(ξ)
= G(w(ξ)), (−1 ≤ E < D ≤ 1).

We can write w(ξ) as follow

w(ξ) =
1− h(ξ)
1 + h(ξ)

=
p1ξ + p2ξ2 + p3ξ3 + · · ·

2 + p1ξ + p2ξ2 + p3ξ3 + · · · .

but
G(w(ξ)) = 1 +

1
2
(D− E)p1ξ +

1
4

(
2(D− E)p2 − (1 + E)p2

1

)
ξ2 + · · · , (20)

and

ξDq(Rm
q ℘(ξ))

Rm
q ℘(ξ)

= 1 + (−1 + [2]q)Υ2a2ξ +
(
(−1 + [3]q)Υ3a3 − (−1 + [2]q)Υ2

2a2
2

)
ξ2 + ...

(21)
Equivalently,

ξDq(Rm
q ℘(ξ))

Rm
q ℘(ξ)

= 1 + qΥ2a2ξ + q
(
(q + 1)Υ3a3 − Υ2

2a2
2

)
ξ2 + ... (22)

If we compare (20) and (22) we get

a2 =
D− E
2qΥ2

p1, (23)

a3 =
D− E

2q(q + 1)Υ3

(
p2 −

p2
1

2

[
1 + E
D− E

− (
D− E

q
)

])
. (24)

and applying (13) to (23) and (14) to (24), we get

|a2| ≤
|D− E|

qΥ2
, (25)

|a3| ≤
|D− E|

q(q + 1)Υ3
max

{
1,
∣∣∣∣1 + 2E− D

D− E
− (

D− E
q

)

∣∣∣∣}. (26)
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In addition, from (23) and (24), we get

∣∣∣a3 − ℵa2
2

∣∣∣ = |D− E|
2q(q + 1)Υ3

∣∣∣∣∣p2 −
p2

1
2

Ξ(ℵ, D, E)

∣∣∣∣∣, (27)

where

Ξ(ℵ, D, E) =
1 + E
D− E

− (
D− E

q
) +

(1 + q)ℵ(D− E)Υ3

qΥ2
2

. (28)

If we apply (14) to (27) we attain the required results. In addition, for real ℵ, using (15) to
above (27).

Theorem 2. If ℘ ∈ A and be given by (1), belongs to Sm,n
q (D, E) then for a real parameter ℵ, we

have

∣∣∣a3 − ℵa2
2

∣∣∣ ≤ |D− E|
q(q + 1)Υ3


1−Ψ(ℵ, D, E) (ℵ < σ1)

1 (σ1 ≤ ℵ ≤ σ2)

Ψ(ℵ, D, E)− 1 (ℵ > σ2),

(29)

where

Ψ(ℵ, D, E) =
1
2

(
1 + E
D− E

− (
D− E

q
) +

(1 + q)ℵ(D− E)Υ3

qΥ2
2

)
, (30)

σ1 =
qΥ2

2
(1 + q)(D− E)Υ3

(
D− E

q
− 1 + E

D− E

)
and

σ2 =
qΥ2

2
(1 + q)(D− E)Υ3

(
D− E

q
+

2D− 3E− 1
D− E

)
.

Proof. For real ℵ using (15) to above (27), we get the required results.

3. The Coefficient Inequalities for ℘−1 ∈ Sm,n
q (D, E)

The Koebe one quarter theorem [21] ensures that the image of U under every univalent
function ℘ ∈ A contains a disk of radius 1

4 . Thus every univalent function ℘ has an inverse
℘−1 satisfying

℘−1(℘(ξ)) = ξ, (ξ ∈ U)and℘(℘−1(w)) = w, (|w| < r0(℘), r0(℘) ≥
1
4
).

A function ℘ ∈ A is said to be bi-univalent in U if both ℘ and ℘−1 are univalent in U.
We notice that the class of bi-univalent functions defined in the unit disk U is not empty.
For example, the functions ξ, ξ

1−ξ , − log(1− ξ) and 1
2 log 1+ξ

1−ξ are members of bi-univalent
function class; however, the Koebe function is not a member.

Theorem 3. If ℘ ∈ Sm,n
q (D, E) and the inverse function of ℘, ℘−1(w) = w +

∞
∑

n=2
dnwn, the

Koebe domain of the class ℘ ∈ Sm,n
q (D, E), then

|d2| =
|D− E|

qΥ2
(31)

|d3| =
|D− E|

q(q + 1)Υ3
max{1, |Ξ(2, D, E)− 1|} (32)
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and for any h̄ ∈ C, we have

| d3 − h̄d2
2 | ≤

|D− E|
q(q + 1)Υ3

max{1, |Ξ(2, D, E) + h̄
(q + 1)(D− E)Υ3

qΥ2
2

− 1| (33)

where Ξ(2, D, E) = 1+E
D−E − (D−E

q ) + 2(1+q)(D−E)Υ3
qΥ2

2
.

Proof. As

℘−1(w) = w +
∞

∑
n=2

dnwn (34)

is the inverse function of ℘, it can be seen that

ξ = ℘−1(℘(ξ)) = ℘{℘−1(ξ)}. (35)

From (1) and (35), we obtain that

ξ = ℘−1(ξ +
∞

∑
n=2

anξn). (36)

We can obtain from (35) and (36),

ξ + (a2 + d2)ξ
2 + (a3 + 2a2d2 + d3)ξ

3 + ... = ξ. (37)

By equating corresponding coefficients, of the relation (37), we obtain

d2 = −a2 (38)

d3 = 2a2
2 − a3. (39)

From relations (23) and (38)

d2 = −D− E
2qΥ2

p1; (40)

(41)

To find |d3|, from (39) we have
|d3| = |a3 − 2a2

2|

thus, by using (27) for real (ℵ = 2)we have

|d3| =
∣∣∣a3 − 2a2

2

∣∣∣ =
|D− E|

2q(q + 1)Υ3
v

∣∣∣∣∣p2 −
p2

1
2

Ξ(2, D, E)

∣∣∣∣∣;
=

|D− E|
q(q + 1)Υ3

max{1, |Ξ(2, D, E)− 1|} (42)

where

Ξ(2, D, E) =
1 + E
−E + D

− (
D− E

q
) +

2(1 + q)(D− E)Υ3

qΥ2
2

. (43)
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For any complex number h̄, we consider

d3 − h̄d2
2 =

D− E
2q(q + 1)Υ3

(
p2 −

p2
1

2
Ξ(2, D, E)

)
− h̄

(D− E)2

4q2Υ2
2

p2
1.

=
D− E

2q(q + 1)Υ3

(
p2 −

p2
1

2

[
Ξ(2, D, E) + h̄

(q + 1)(D− E)Υ3

qΥ2
2

])
.

(44)

Taking modulus on both sides of (44) and by using Lemma 1 and (13), we get:

|d3 − h̄d2
2| ≤

|D− E|
q(q + 1)Υ3

max{1, |Ξ(2, D, E) + h̄
(q + 1)(D− E)Υ3

qΥ2
2

− 1|, (45)

and this completes our proof.

4. Characterization Properties

Employing techniques given by Silverman [22] we discuss certain characteristic prop-
erties of f ∈ Sm,n

q (D, E) such as partial sums results, necessary and sufficient conditions,
radii of close-to-convexity, distortion bounds, radii of starlikeness and convexity.

Theorem 4. If ℘ ∈ A and be given by (1), belongs to Sm,n
q (D, E) then

∞

∑
n=2

(∣∣D− [n]qE
∣∣+ (−1 + [n]q

))
Υn|an| ≤ | − E + D|, (46)

where Υn given by (11).

Proof. Let ℘ ∈ Sm,n
q (D, E) and by (12) we have

ξDq(Rm
q ℘(ξ))

Rm
q ℘(ξ)

=
1 + Dw(ξ)

Ew(ξ) + 1
(ξ ∈ U) (47)

where w(ξ) is a Schwarz function. Equivalently∣∣∣∣∣ ξDq(Rm
q ℘(ξ))−Rm

q ℘(ξ)

DRm
q ℘(ξ)− EξDq(Rm

q ℘(ξ))

∣∣∣∣∣ < 1.

Thus, ∣∣∣∣∣ ξDq(Rm
q ℘(ξ))−Rm

q ℘(ξ)

DRm
q ℘(ξ)− EξDq(Rm

q ℘(ξ))

∣∣∣∣∣
=

∣∣∣∣∣ ∑∞
n=2
(
[n]q − 1

)
Υnanξn

(D− E)ξ + ∑∞
n=2
(

D− E[n]q
)
Υnanξn

∣∣∣∣∣
≤ ∑∞

n=2
(
[n]q − 1

)
Υn|an|tn−1

|D− E| −∑∞
n=2
∣∣D− E[n]q

∣∣Υn|an|tn−1 < 1.

Allowing t→ 1, simple computation yields (46).

Example 1. For

℘(ξ) = ξ +
∞

∑
n=2

|D− E|[(
−1 + [n]q

)
+
∣∣D− [n]qE

∣∣]Υn
knξn, ξ ∈ U,
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such that ∑∞
n=2 kn = 1, we get

∞

∑
n=2

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
Υn|an|

=
∞

∑
n=2

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
Υn

(
|D− E|[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
Υn

kn

)

= |D− E|
∞

∑
n=2

kn = |D− E|.

Then ℘(ξ) ∈ Sm,n
q (D, E), and we observe that (46) is sharp.

Corollary 1. Let ℘ ∈ Sm,n
q (D, E) given by (1). Then

|an| ≤
|D− E|[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
Υn

, for n ≥ 2, (48)

where Υn is defined by (11). The approximation is sharp for

℘(ξ) = ξ − |D− E|[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
Υn

ξn, n ≥ 2. (49)

Theorem 5. If ℘ ∈ A is in the class Sm,n
q (D, E), then

t− |D− E|
[|D− (1 + q)E|+ q]Υ2

t2 ≤ |℘(ξ)| ≤ t +
|D− E|

[|D− (1 + q)E|+ q]Υ2
t2. (50)

For the function define by

℘(ξ) = ξ − |D− E|
[|D− (1 + q)E|+ q]Υ2

ξ2 |ξ| = t < 1, (51)

the approximation is sharp.

Proof. We consider

|℘(ξ)| =

∣∣∣∣∣ξ + ∞

∑
n=2

anξn

∣∣∣∣∣
≤ |ξ|+

∞

∑
n=2

an|ξ|n

= t +
∞

∑
n=2

an|t|n,

since for |ξ| = t < 1 we get tn < t2 for n ≥ 2 and

|℘(ξ)| ≤ t + t2
∞

∑
n=2
|an|. (52)

Comparably

|℘(ξ)| ≥ t− t2
∞

∑
n=2
|an|. (53)
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From the relation (46) we have

∞

∑
n=2

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
Υn|an| ≤ |D− E|,

but

[|D− (1 + q)E|+ q]Υ2

∞

∑
n=2
|an| ≤

∞

∑
n=2

[∣∣D− E[n]q
∣∣+ (−1 + [n]q

)]
Υn|an|

≤ |−E + D|.

Thus
∞

∑
n=2

an ≤
|D− E|

[|D− (1 + q)E|+ q]Υ2
. (54)

Using (54) in(52) and (53), we obtain the desired result.

Theorem 6. If ℘ ∈ Sm,n
q (D, E), then

1− 2|D− E|
[q + |D− (1 + q)E|]Υ2

t ≤
∣∣℘′(ξ)∣∣ ≤ 1 +

2|D− E|
[|D− (1 + q)E|+ q]Υ2

t. (55)

The equality holds for ℘ given in (51).

Proof. The proof is quite analogous by way of Theorem 5, so omitted.

Theorem 7. Let ℘i ∈ Sm,n
q (D, E) given by

℘i(ξ) = ξ +
∞

∑
n=2

ai,nξn, where i = 1, 2, 3, ..., k. (56)

Then H ∈ Sm,n
q (D, E), where

H(ξ) =
k

∑
i=1

ci℘i(ξ) where
k

∑
i=1

ci = 1. (57)

Proof. By Theorem 4, we have

∞

∑
n=2

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
Υn|an| ≤ | − E + D|.

In addition,

H(ξ) =
k

∑
i=1

ci

(
ξ +

∞

∑
n=2

ai,nξn

)

= ξ +
∞

∑
n=2

(
k

∑
i=1

ciai,n

)
ξn.
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Therefore

∞

∑
n=2

[∣∣D− E[n]q
∣∣+ (−1 + [n]q

)]
Υn

∣∣∣∣∣ k

∑
i=1

ciai,n

∣∣∣∣∣
≤

k

∑
i=1

[
∞

∑
n=2

[∣∣D− E[n]q
∣∣+ (−1 + [n]q

)]
Υn|ai,n|

]
ci

=
k

∑
i=1
| − E + D|ci = | − E + D|

k

∑
i=1

ci = | − E + D|,

thus, H(ξ) ∈ Sm,n
q (D, E).

Theorem 8. If ℘i ∈ Sm,n
q (D, E), be given by (56) then

G(ξ) = ξ +
1
k

∞

∑
n=2

(
k

∑
i=1

an,iξ
n

)
, (58)

where G is the arithmetic mean of ℘i, and G ∈ Sm,n
q (D, E).

Proof. To show G(ξ) ∈ Sm,n
q (D, E), by Theorem 4 it is adequate to show that

∞

∑
n=2

[∣∣−E[n]q + D
∣∣+ (−1 + [n]q

)]
Υn

(
1
k

k

∑
i=1
|ai,n|

)
≤ |D− E|.

We consider that

∞

∑
n=2

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
Υn

(
1
k

k

∑
i=1
|ai,n|

)

=
1
k

k

∑
i=1

(
∞

∑
n=2

[∣∣−E[n]q + D
∣∣+ (−1 + [n]q

)]
Υn|ai,n|

)

≤ 1
k

k

∑
i=1
|D− E| = |D− E|.

We observe that G ∈ Sm,n
q (D, E).

Theorem 9. If ℘ ∈ Sm,n
q (D, E), then ℘ is a starlike functions of order ϑ (0 ≤ ϑ < 1), |ξ| < t∗,

t∗ = inf
n≥2

(
(1− ϑ)

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
| − E + D|(n− ϑ)

Υn

) 1
n−1

.

The equality holds for ℘ given in (49) .

Proof. Let ℘ ∈ Sm,n
q (D, E). We know that ℘ is in a starlike functions of order ϑ, if∣∣∣∣ ξ℘′(ξ)℘(ξ)

− 1
∣∣∣∣ < −ϑ + 1.

By simple computation we get

∞

∑
n=2

(
−ϑ + n
1− ϑ

)
|an||ξ|n−1 < 1. (59)
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Since ℘ ∈ Sm,n
q (D, E), from (46) we get

∞

∑
n=2

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
| − E + D| Υn|an| < 1. (60)

The relation (59) will holds true if

∞

∑
n=2

(
−ϑ + n
1− ϑ

)
|an||ξ|n−1

<
∞

∑
n=2

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
|D− E| Υn|an|,

which implies that

|ξ|−1+n <

(
(1− ϑ)

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
|D− E|(n− ϑ)

Υn

)
,

|ξ| <

(
(1− ϑ)

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
|D− E|(−ϑ + n)

Υn

) 1
−1+n

,

which yields the starlikeness of the family.

Theorem 10. If ℘ ∈ Sm,n
q (D, E), then ℘ is a close-to-convex functions of order ϑ (0 ≤ ϑ < 1),

|ξ| < t∗1 ,

t∗1 = inf
n≥2

(
(−ϑ + 1)

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
n| − E + D| Υn

) 1
−1+n

.

Proof. Let ℘ ∈ Sm,n
q (D, E). If ℘ is close-to-convex function of order ϑ, then we have∣∣℘′(ξ)− 1

∣∣ < 1− ϑ,

that is
∞

∑
n=2

n
−ϑ + 1

|an||ξ|−1+n < 1. (61)

Since ℘ ∈ Sm,n
q (D, E), by (46) we have

∞

∑
n=2

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
|D− E| Υn|an| < 1. (62)

The relation (59) will holds true if

∞

∑
n=2

n
1− ϑ

|an||ξ|−1+n

<
∞

∑
n=2

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
|D− E| Υn|an|.

Or, equivalently

|ξ|n−1 <

(
(1− ϑ)

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
n| − E + D| Υn

)
,

|ξ| <

(
(1− ϑ)

[∣∣D− [n]qE
∣∣+ (−1 + [n]q

)]
n|D− E| Υn

) 1
−1+n

,
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which yields the desired result.

5. Partial Sums

The partial sums results were examined in [23] by Silverman, for ℘ ∈ S∗(ϑ) and
℘ ∈ C(ϑ) and ℘ is as assumed in (1) and established through

℘1(ξ) = ξ,

℘j(ξ) = ξ +
j

∑
n=2

anξn.

Partial sums for different subclasses was investigated by several author’s, we can see [24,25]
and references cited therein. In this section we investigate sharp lower bounds for

<
(

℘(ξ)

℘j(ξ)

)
, <
(
℘j(ξ)

℘(ξ)

)
, <
(
℘′(ξ)

℘′j(ξ)

)
and <

(
℘′j(ξ)

℘′(ξ)

)
.

Theorem 11. If ℘ ∈ A and be given by (1), belongs to Sm,n
q (D, E) and holds (46), then

<
(

℘(ξ)

℘j(ξ)

)
≥ 1− 1

Θj+1
(∀ξ ∈ U) (63)

and

<
(
℘j(ξ)

℘(ξ)

)
≥

Θj+1

1 + Θj+1
(∀ξ ∈ U), (64)

where

Θj =

[∣∣D− [n]qE
∣∣+ ([n]q − 1

)]
|D− E| Υn. (65)

Proof. To prove (63), we set:

Θj+1

[
℘(ξ)

℘j(ξ)
−
(

1− 1
Θj+1

)]
=

1 +
j

∑
n=2

anξn−1 + Θj+1
∞
∑

n=j+1
anξn−1

1 +
j

∑
n=2

anξn−1

=
1 + ψ1(ξ)

1 + ψ2(ξ)
.

Taking
1 + ψ1(ξ)

1 + ψ2(ξ)
=

1 + w(ξ)

1− w(ξ)
,

by simple computation,

w(ξ) =
ψ1(ξ)− ψ2(ξ)

2 + ψ1(ξ) + ψ2(ξ)
.

Thus

w(ξ) =

Θj+1
∞
∑

n=j+1
anξn−1

2 + 2
j

∑
n=2

anξn−1 + Θj+1
∞
∑

n=j+1
anξn−1

,
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which leads the inequality:

|w(ξ)| ≤
Θj+1

∞
∑

n=j+1
|an|

2− 2
j

∑
n=2
|an| −Θj+1

∞
∑

n=j+1
|an|

, |ξ| < 1.

We get |w(ξ)| ≤ 1 if and only if

2Θj+1

∞

∑
n=j+1

|an| ≤ −2
j

∑
n=2
|an|+ 2,

which yields that:

Θj+1

∞

∑
n=j+1

|an|+
j

∑
n=2
|an| ≤ 1. (66)

To prove (63), it suffices to show that the left hand side of (66) is bounded above by the
following sum:

∞

∑
n=2

Θn|an|,

which is equivalent to

j

∑
n=2

(Θn − 1)|an|+
∞

∑
n=j+1

(
Θn −Θj+1

)
|an| ≥ 0. (67)

From (67), it evidence that the proof of approximation in (63) is now completed.
To prove (64), we consider:

(
1 + Θj+1

)(℘j(ξ)

℘(ξ)
−

Θj+1

1 + Θj+1

)
=

1 +
j

∑
n=2

anξ−1+n −Θj+1
∞
∑

n=j+1
anξ−1+n

1 +
∞
∑

n=2
anξ−1+n

=
1 + w(ξ)

1− w(ξ)
,

where

|w(ξ)| ≤

(
1 + Θj+1

) ∞
∑

n=j+1
|an|

2− 2
j

∑
n=2
|an| −

(
Θj+1 − 1

) ∞
∑

n=j+1
|an|
≤ 1. (68)

The relation (68) is equivalent to

j

∑
n=2
|an|+ Θj+1

∞

∑
n=j+1

|an| ≤ 1. (69)

The left hand side of (69) is bounded above by
∞
∑

n=2
Θn|an|, which completes the proof of

the assertion(64), thus the proof of Theorem 11 is completed.
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Theorem 12. If ℘ ∈ A be given by (1), belongs to Sm,n
q (D, E) and satisfies (46), then

<
(
℘′(ξ)

℘′j(ξ)

)
≥ 1− 1 + j

Θj+1
(∀ζ ∈ U) (70)

and

<
(
℘′j(ξ)

℘′(ξ)

)
≥

Θj+1

Θj+1 + 1 + j
(∀ξ ∈ U), (71)

where Θj is as in (65).

Proof. The proof of this theorem is much akin to that of Theorem 11, and we will omit the
details.

6. Conclusions

We have considered the results like the necessary and sufficient conditions, partial
sums type results, the Fekete–Szegö inequalities, close-to-convexity, the radii of starlikeness
and distortions bounds. In addition, inspiring further researchers working in the field
of Geometric Function Theory and draw the attention of the interested readers towards
recent articles (see, [26–29]). In conclusion, we suggest, the recently-published review-
cum-expository review article by Srivastava ([26], p. 340), who piercing out the fact
that the results for the above-mentioned or new q− analogues can easily (and possibly
trivially) be translated into the corresponding results for the so-called (p; q)−analogues
(with 0 < |q| < p ≤ 1) by applying some obvious parametric and argument variations
with the additional parameter p being redundant. In addition, we trust that, this paper will
stimulate a number of researchers to extend this idea for meromorphic functions, also new
classes can be defined by convoluting with certain probability distribution series and also
further subordinating with generalized telephone numbers [30].
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