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Abstract: In this paper, we introduce and systematically analyze the classes of (pre-)(B, ρ, (tk))-
piecewise continuous almost periodic functions and (pre-)(B, ρ, (tk))-piecewise continuous uniformly
recurrent functions with values in complex Banach spaces. We weaken substantially, or remove
completely, the assumption that the sequence (tk) of possible first kind discontinuities of the function
under consideration is a Wexler sequence (in order to achieve these aims, we use certain results
about Stepanov almost periodic type functions). We provide many applications in the analysis of
the existence and uniqueness of almost periodic type solutions for various classes of the abstract
impulsive Volterra integro-differential inclusions.
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1. Introduction and Preliminaries

Let (X, ‖ · ‖) be a complex Banach space, let I = R or I = [0, ∞), and let c ∈ C be such
that |c| = 1. If a continuous function f : I → X and a number ε > 0 are given, then we say
that a number τ > 0 an (ε, c)-period for f (·) if and only if ‖ f (t + τ)− c f (t)‖ ≤ ε for all
t ∈ I. By ϑc( f , ε) we denote the set consisting of all (ε, c)-periods for f (·). It is said that f (·)
is c-almost periodic if and only if for each ε > 0 the set ϑc( f , ε) is relatively dense in [0, ∞).
The usual class of (Bohr) almost periodic functions is obtained by plugging c = 1. For more
details about almost periodic type functions and their applications, we refer the reader to
the research monographs [1–23] and references cited therein.

In the recent research article [24] by M. Fečkan et al., we have extended the notion of
c-almost periodicity by introducing and analyzing the notion of ρ-almost periodicity with
ρ being a general binary relation on X. This class of functions will play an important role in
our analysis (cf. Definition 1(i) below for the notion of Bohr (B, ρ)-almost periodicity). On
the other hand, in [25], we have recently provided some applications of (a, k)-regularized
C-resolvent families to the abstract impulsive Volterra integro-differential inclusions in
Banach spaces. The main aim of this paper is to reconsider the notion of a piecewise
continuous almost periodic function. This notion has been thoroughly analyzed in the
research monographs [26] by A. Halanay, D. Wexler and [27] by A. M. Samoilenko, N. A.
Perestyuk, by introducing and systematically investigating the classes of (pre-)(B, ρ, (tk))-
piecewise continuous almost periodic functions and (pre-)(B, ρ, (tk))-piecewise continuous
uniformly recurrent functions. We also aim to continue the research study carried out
in [25] by investigating the almost periodic type solutions for various classes of the abstract
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impulsive Volterra integro-differential inclusions. We consider here the functions of the
form F : I × X → E, where (X, ‖ · ‖) and (E, ‖ · ‖E) are complex Banach spaces and I = R
or I = [0, ∞). In the existing literature, it has been commonly assumed that the sequence
(tk) of possible first kind discontinuities of function f (·) under consideration is a Wexler
sequence. Using certain results about Stepanov almost periodic type functions, we show
that this condition is sometimes rather superfluous and almost completely irrelevant. Before
proceeding any further, we would like to note that this is probably the first research article
which investigates the existence and uniqueness of the uniformly recurrent type solutions,
the Weyl almost periodic type solutions and the Besicovitch–Doss almost periodic type
solutions to the abstract impulsive Volterra integro-differential equations. Furthermore,
this is probably the first paper in the existing literature which investigates the almost
periodic type solutions for certain classes of the abstract higher-order impulsive Cauchy
problems. It should also be mentioned that we introduce here, for the first time in the
existing literature, the class of Weyl-p-almost periodic sequences in the sense of the general
approach of A. S. Kovanko [28], the class of Doss-p-almost periodic sequences (1 ≤ p < ∞)
and analyze their applications in the study of the existence and uniqueness of the Weyl-
p-almost periodic solutions (Doss-p-almost periodic solutions) for certain kinds of the
abstract impulsive Volterra integro-differential equations.

The organization and main ideas of this paper can be briefly summarized as follows.
After explaining the notation used in the paper, we recall the basic definitions and results
about ρ-almost periodic type functions in Section 1.1. The main aim of Section 1.2 is to recol-
lect the basic facts about the class of piecewise continuous almost periodic functions, which
has been commonly used in the existing literature. We extend the notion of piecewise con-
tinuous almost periodicity in Section 2, where we introduce and analyze various classes of
(B, ρ)-piecewise continuous almost periodic type functions. More precisely, in Definition 6,
we introduce the classes of (pre-)(B, ρ, (tk))-piecewise continuous almost periodic functions
and (pre-)(B, ρ, (tk))-piecewise continuous uniformly recurrent functions. The assumption
that the corresponding sequence (tk) of possible discontinuities is a Wexler sequence is
almost completely irrelevant in the analysis. This is not the case with the quasi-uniformly
continuity condition (QUC) from the formulation of Definition 6, which plays an important
role in our study. In Examples 1 and 2, we present two illustrative examples of real-valued
functions which are (tk)-piecewise continuous almost periodic (cf. also Remarks 2–4 for
some useful observations about the function spaces introduced in Definition 6). Several
structural characterizations for introducing classes of piecewise continuous almost periodic
type functions have been proved in Propositions 1–3; it should be specifically empha-
sized that the supremum formula holds for certain classes of pre-(B, T, (tk))-piecewise
continuous uniformly recurrent functions (cf. Proposition 5).

In Section 3, we continue the analysis of L. Qi and R. Yuan from their remarkable
paper [29] concerning the relations between the piecewise continuous almost periodic func-
tions and the Stepanov almost periodic type functions. We improve some structural results
obtained in [29] by removing the assumption that (tk) is a Wexler sequence. The main re-
sults in this section are Theorems 1 and 2; some consequences of these results are presented
in Theorems 3–5 and Propositions 6 and 7. Composition principles for (B, (tk))-piecewise
continuous almost periodic type functions are investigated in Section 3.1. Section 4 exam-
ines the existence and uniqueness of almost periodic type solutions for certain classes of
the abstract impulsive differential inclusions of integer order, while Section 5 examines
the existence and uniqueness of almost periodic type solutions for certain classes of the
abstract Volterra impulsive integro-differential inclusions. Section 4 is broken down into
four subsections: Section 4.1 is devoted to the study of asymptotically almost periodic type
solutions of the abstract impulsive differential Cauchy problem (ACP)1;1, asymptotically
Weyl almost periodic type solutions of (ACP)1;1 are sought in Section 4.2, the Besicovitch
almost periodic type solutions of (ACP)1;1 are sought in Section 4.3, and the almost peri-
odic type solutions of the abstract higher-order impulsive Cauchy problems are sought in
Section 4.4 (let us only mention that the separation condition infk∈N(tk+1 − tk) > 0 on the
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corresponding sequence (tk) of possible discontinuities is not employed in some results).
The final section of the paper is reserved for the conclusions and final remarks about the
problems considered. In addition to the above, we present many illustrative examples and
open problems.

We use the standard notation throughout the paper. By (X, ‖ · ‖) and (E, ‖ · ‖E) we
denote two complex Banach spaces; I denotes the identity operator on E. By B, we denote
the collection of non-empty subsets of X such that for every x ∈ X, there exists B ∈ B
such that x ∈ B. The abbreviation C(K : X), where K is a non-empty compact subset
of R, stands for the space of all continuous functions from K into X; C(K) ≡ C(K : C),
Nn := {1, · · ·, n} and N0

n := {0, 1, · · ·, n}, where n ∈ N. Let 0 < τ ≤ ∞ and a ∈ L1
loc([0, τ)).

Then, we say that the function a(t) is a kernel on [0, τ) if and only if for each f ∈ C([0, τ))

the assumption
∫ t

0 a(t− s) f (s) ds = 0, t ∈ [0, τ) implies f (t) = 0, t ∈ [0, τ). Set gα(t) :=
tα−1/Γ(α), t > 0, where Γ(·) denotes the Euler Gamma function, and g0(t) := δ(t), the
Dirac delta distribution. We set L(t, δ) := (t− δ, t+ δ), B(t, δ) := [t− δ, t+ δ] (t ∈ R, δ > 0),
S1 := {z ∈ C : |z| = 1}, bsc := sup{k ∈ Z : k ≤ s} and dse := inf{k ∈ Z : k ≥ s} (s ∈ R).
Unless stated otherwise, we will always assume that I = R or I = [0, ∞) henceforth. If
Ω ⊆ C, then Ωc denotes its complement in C; χA(·) denotes the characteristic function of
the set A. The notion of Caputo fractional derivative Dα

t u(t), where u : [0, ∞) → X and
α > 0, is taken in the sense of Equation (3.1) [25]. By P(X), we denote the power set of X.

Let T > 0. Then, the space of X-valued piecewise continuous functions on [0, T] is
defined by

PC([0, T] : X) ≡
{

u : [0, T]→ X : u ∈ C
(
(ti, ti+1] : X

)
, u(ti−) = u(ti) exist for any

i ∈ Nl , u(ti+) exist for any i ∈ N0
l and u(0) = u(0+)

}
,

where 0 ≡ t0 < t1 < t2 < . . . < tl < T ≡ tl+1, and the symbols u(ti−) and u(ti+)
denote the left and the right limits of the function u(t) at the point t = ti, i ∈ N0

l−1, re-
spectively. Let us recall that PC([0, T] : X) is a Banach space endowed with the norm
‖u‖ := max{supt∈[0,T) ‖u(t+)‖, supt∈(0,T] ‖u(t−)‖}. The space of X-valued piecewise con-
tinuous functions on [0, ∞), denoted by PC([0, ∞) : X), if defined as the union of those
functions f : [0, ∞)→ X such that the discontinuities of f (·) form a discrete set and that
for each T > 0 we have f|[0,T](·) ∈ PC([0, T] : X). We similarly define the space PC(R : X).

If ω ∈ R, then Cω([0, ∞) : X) stands for the space of all continuous functions f :
[0, ∞)→ X such that the function t 7→ e−ωt‖ f (t)‖, t ≥ 0 is bounded; the space PCω([0, ∞) :
X) stands for the space of all piecewise continuous functions f : [0, ∞)→ X such that the
function t 7→ e−ωt‖ f (t)‖, t ≥ 0 is bounded.

Concerning the basic definitions and results about binary relations, see [24]. We refer
the reader to [25] for more details concerning the multivalued linear operators and solution
operator families subgenerated by them; unless stated otherwise, we will always assume
henceforth that the operator C ∈ L(X) is injective.

1.1. ρ-Almost Periodic Type Functions

In this subsection, we will recall the basic definitions and facts about (Stepanov)
ρ-almost periodic type functions. We need the following notion [24]:

Definition 1. Suppose that ∅ 6= I ⊆ R, F : I × X → E is a continuous function, and ρ is a
binary relation on E. Then, we say that:

(i) F(·; ·) is Bohr (B, ρ)-almost periodic if and only if for every B ∈ B and ε > 0 there exists
l > 0 such that for each t0 ∈ I there exists τ ∈ B(t0, l) ∩ I such that, for every t ∈ I and
x ∈ B, there exists an element yt;x ∈ ρ(F(t; x)) such that∥∥F(t + τ; x)− yt;x

∥∥ ≤ ε.
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(ii) F(·; ·) is (B, ρ)-uniformly recurrent if and only if for every B ∈ B there exists a sequence
(τk) in I such that limk→+∞ |τk| = +∞ and that, for every t ∈ I and x ∈ B, there exists an
element yt;x ∈ ρ(F(t; x)) such that

lim
k→+∞

sup
t∈I;x∈B

∥∥F(t + τk; x)− yt;x
∥∥ = 0.

Any Bohr (B, ρ)-almost periodic function F(·; ·) is (B, ρ)-uniformly recurrent; the
converse statement is not true in general [9]. If X = {0}, then we omit the term “B” from
the notation; furthermore, if ρ = cI for some complex number c ∈ C, then we also say that
the function F(·; ·) is Bohr (B, c)-almost periodic, respectively, (B, c)-uniformly recurrent.

We need the following notion (cf. [30] for the case in which ρ is single-valued):

Definition 2. Suppose that 1 ≤ p < +∞, ρ is a binary relation on E and F : I × X → E. Then,
we say that:

(i) F(·; ·) is Stepanov-p-(B, ρ)-almost periodic if and only if for every B ∈ B and ε > 0 there
exists l > 0 such that for each t0 ∈ I there exists τ ∈ B(t0, l) ∩ I such that, for every t ∈ I
and x ∈ B, there exists a mapping Ft,x : [0, 1] → E such that Ft,x(u) ∈ ρ(F(t + u; x)) for
a.e. u ∈ [0, 1], Ft,x ∈ Lp([0, 1] : E) and∥∥F(t + τ + u; x)− Ft,x(u)

∥∥
Lp([0,1]:E) ≤ ε, t ∈ I, x ∈ B.

(ii) F(·; ·) is Stepanov-(p, ρ)-B-uniformly recurrent if and only if for every B ∈ B there exists
a sequence (τk) in I such that limk→+∞ |τk| = +∞ and that, for every t ∈ I and x ∈ B,
there exists a mapping Ft,x : [0, 1]→ E such that Ft,x(u) ∈ ρ(F(t + u; x)) for a.e. u ∈ [0, 1],
Ft,x ∈ Lp([0, 1] : E) and

lim
k→+∞

sup
t∈I;x∈B

∥∥F(t + τk + u; x)− Ft,x(u)
∥∥

Lp([0,1]:E) = 0.

If X = {0}, then it is also said that F(·) is Stepanov-(p, ρ)-almost periodic (Stepanov-(p, ρ)-
uniformly recurrent). Finally, if ρ = cI for some c ∈ C, then we also say that the function F(·) is
Stepanov-(p, c)-almost periodic (Stepanov-(p, c)-uniformly recurrent); if c = 1, then it is also said
that the function f (·) is Stepanov-p-almost periodic (Stepanov-p-uniformly recurrent).

1.2. Piecewise Continuous Almost Periodic Functions

The piecewise continuous almost periodic type solutions for various classes of impul-
sive integro-differential equations have been analyzed by numerous authors so far (see,
e.g., the research monograph [21] by G. Tr. Stamov for a comprehensive survey of results).
In this subsection, we analyze the piecewise continuous almost periodic type functions.

We say that an X-valued sequence (xn)n∈Z [(xn)n∈N] is (Bohr) almost periodic if and
only if, for every ε > 0, there exists a natural number N0(ε) such that among any N0(ε)
consecutive integers in Z [N], there exists at least one integer τ ∈ Z [τ ∈ N] satisfying that∥∥xn+τ − xn

∥∥ ≤ ε, n ∈ Z [n ∈ N].

Any almost periodic X-valued sequence is bounded. As in the case of functions, this
number is said to be an ε-period of sequence (xn). The equivalent concept of Bochner almost
periodicity of X-valued sequences can be introduced, as well; see, e.g., [27] (Theorem 70,
pp. 185–186 and its important consequences [27] (Theorems 71–73, pp. 186–188). It is
well-known that a sequence (xk)k∈Z in X is almost periodic if and only if there exists an
almost periodic function f : R → X such that xk = f (k) for all k ∈ Z; see, e.g., the proof
of [31] (Theorem 2) given in the scalar-valued case. It is not difficult to prove that, for every
almost periodic sequence (xk)k∈N in X, there exists a unique almost periodic sequence
(x̃k)k∈Z in X such that x̃k = xk for all k ∈ N, so that a sequence (xk)k∈N in X is almost
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periodic if and only if there exists an almost periodic function f : [0, ∞) → X such that
xk = f (k) for all k ∈ N.

Unless stated otherwise, we will always assume henceforth that (tk)k∈Z [(tk)k∈N] is a
sequence in R [in (0, ∞)] such that δ0 := infk∈Z(tk+1− tk) > 0 [δ0 := infk∈N(tk+1− tk) > 0].
Set tj

k := tk+j − tk, j, k ∈ Z [j, k ∈ N]. We need the following definitions:

Definition 3. The family of sequences (tj
k)k∈Z [(tj

k)k∈N], j ∈ Z [j ∈ N] is called equipotentially
almost periodic if and only if, for every ε > 0, there exists a relatively dense set Qε in R [in [0, ∞)]
such that for each τ ∈ Qε there exists an integer q ∈ Z [q ∈ N] such that |ti+q − ti − τ| < ε for
all i ∈ Z [i ∈ N].

Definition 4. The sequence (tk)k∈Z [(tk)k∈N] is said to be uniformly almost periodic if and only if,
for every ε > 0, there exists a relatively dense set Qε in Z [in N] such that∣∣∣tj

i+q − tj
i

∣∣∣ < ε, i, j ∈ Z [i, j ∈ N], q ∈ Qε.

We know that, if the sequence (tk)k∈Z [(tk)k∈N] is uniformly almost periodic, then the
family of sequences (tj

k)k∈Z [(tj
k)k∈N], j ∈ Z [j ∈ N] is equipotentially almost periodic. See

also [27] (p. 377) and [29] (Lemma 2.12; let us also note that the family of sequences (tj
k)k∈Z,

j ∈ Z is equipotentially almost periodic if and only if there exist a unique non-zero real
number ζ and an almost periodic sequence (ak)k∈Z such that tk = ζk + ak for all k ∈ Z. It
seems very plausible that a similar statement holds for the equipotentially almost periodic
sequences (ak)k∈N.

The usual definition of a piecewise continuous almost periodic function goes as follows
(see [26,27] for more details about the subject):

Definition 5. Suppose that the function f : R → X [ f : [0, ∞) → X] is piecewise continuous
with the possible first kind discontinuities at the points of a fixed sequence (tk)k∈Z [(tk)k∈N]. Then,
we say that the function f (·) is (tk)-piecewise continuous almost periodic if and only if the following
conditions are fulfilled:

(i) The family of sequences (tj
k)k∈Z [(tj

k)k∈N], j ∈ Z [j ∈ N] is equipotentially almost periodic,
i.e., (tk) is a Wexler sequence.

(ii) For every ε > 0, there exists δ > 0 such that, if the points t1 and t2 belong to (ti, ti+1) for
some i ∈ Z [i ∈ N0; t0 ≡ 0] and |t1 − t2| < δ, then ‖ f (t1)− f (t2)‖ < ε.

(iii) For every ε > 0, there exists a relatively dense set S in R [in [0, ∞)] such that, if τ ∈ S, then
‖ f (t + τ)− f (t)‖ < ε for all t ∈ R such that |t− tk| > ε, k ∈ Z [k ∈ N]. Such a point τ is
called an ε-almost period of f (·).

For example, let the family of sequences (tj
k)k∈Z, j ∈ Z be equipotentially almost

periodic. Then, we know that the function f : R→ R, defined by f (t) := µi if t ∈ (ti, ti+1]
for some i ∈ Z, is (tk)-piecewise continuous almost periodic provided that the sequence
(µi)i∈Z is almost periodic (cf. [27] (pp. 202–203) for the proof of the above fact).

For further information about piecewise continuous almost periodic functions and
their applications, we refer the reader to the research articles [32] by H. R. Henríquez, B.
de Andrade, M. Rabelo, [33] by L. Qi, R. Yuan, [20] by V. Tkachenko and references cited
therein. Before proceeding with the original contributions about piecewise continuous
almost periodic type functions, it would be worthwhile to mention that J. Xia has considered,
in [34], the class of piecewise continuous almost periodic functions following a completely
different approach (cf. also the research article [31] by L. Díaz and R. Naulin).
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2. (B, ρ)-Piecewise Continuous Almost Periodic Type Functions

We start this section by introducing the following notion:

Definition 6. Suppose that ρ is a binary relation on E, the function F : R × X → E [F :
[0, ∞)× X → E] satisfies that, for every x ∈ X, the function t 7→ F(t; x) is piecewise continuous
with the possible first kind discontinuities at the points of a fixed sequence (tk)k∈Z [(tk)k∈N]. Then,
we say that the function F(·) is:

(i) pre-(B, ρ, (tk))-piecewise continuous almost periodic if and only if, for every ε > 0 and B ∈ B,
there exists a relatively dense set S in R [in [0, ∞)] such that, if τ ∈ S, x ∈ B and t ∈ R
satisfies |t − tk| > ε for all k ∈ Z [k ∈ N], then there exists yt,x ∈ ρ(F(t; x)) such that
‖F(t + τ; x)− yt,x‖ < ε.

(ii) (B, ρ, (tk))-piecewise continuous almost periodic if and only if the condition (i) from Definition 5
holds, F(·; ·) is pre-(B, ρ, (tk))-piecewise continuous almost periodic and (QUC) holds, where:

(QUC) For every ε > 0 and B ∈ B, there exists δ > 0 such that, if x ∈ B and the points t1
and t2 belong to (ti, ti+1) for some i ∈ Z [i ∈ N0; t0 ≡ 0] and |t1 − t2| < δ, then
‖F(t1; x)− F(t2; x)‖ < ε.

(iii) pre-(B, ρ, (tk))-piecewise continuous uniformly recurrent if and only if there exists a strictly
increasing sequence (αl) of positive real numbers tending to plus infinity and satisfying that,
for every ε > 0 and B ∈ B, there exists an integer l0 ∈ N such that, if x ∈ B, l ≥ l0 and
t ∈ R satisfies |t− tk| > ε for all k ∈ Z [k ∈ N], then there exists yt,x ∈ ρ(F(t; x)) such that
‖F(t + αl ; x)− yt,x‖ < ε.

(iv) (B, ρ, (tk))-piecewise continuous uniformly recurrent if and only if F(·; ·) is pre-(B, ρ, (tk))-
piecewise continuous uniformly recurrent and the condition (QUC) holds.

We say that the function F(·; ·) is (pre-)(B, ρ)-piecewise continuous almost periodic [(pre-)(B, ρ)-
piecewise continuous uniformly recurrent] if and only if F(·; ·) is (pre-)(B, ρ, (tk))-piecewise
continuous almost periodic [(pre-)(B, ρ, (tk))-piecewise continuous uniformly recurrent] for a
certain sequence (tk)k∈Z [(tk)k∈N] obeying the general requirements. If ρ = cI for some c ∈ C, then
we also say that F(·; ·) is (pre-)piecewise continuous c-almost periodic [(pre-)piecewise continuous
c-uniformly recurrent]; furthermore, if c = −1, then we also say that F(·; ·) is (pre-)piecewise
continuous almost anti-periodic [(pre-)piecewise continuous uniformly anti-recurrent]. We omit the
term “B” from the notation if X = {0} and omit the term “c” from the notation if c = 1.

Remark 1. In the notion introduced in Definition 6(i), we can also require that the inequality
‖F(t + τ; x) − yt,x‖ < ε holds provided that |t − tk| > M(ε) for all k ∈ Z [k ∈ N], where
M : (0, ∞)→ [0, ∞) satisfies lim infε→0+ M(ε) = 0. This notion is really not interesting because
a very simple argument shows that a function F : I × X → E obeys this condition if and only
if F(·; ·) is pre-(B, ρ, (tk))-piecewise continuous almost periodic. The same holds in the case of
consideration of parts (ii), (iii) and (iv) of Definition 6 so that we will always assume henceforth
that M(ε) ≡ ε.

Before proceeding any further, we would like to present the following illustrative examples:

Example 1. Suppose that c ∈ S1, ω > 0, t1 ∈ (0, ω] and tk = t1 + (k− 1)ω, k ∈ Z [t0 = 0
and tk = t1 + (k− 1)ω, k ≥ 2]. Suppose, further, that the function F1 : (t1, t1 + ω]× X → E
satisfies that, for every x ∈ X, F1(t1 + ω; x) 6= cF1(t1; x) as well as that limt→t1+ F1(t; x) exists
in E. Then, we can extend the function F1(·; ·) to a function F : R× X → E [F : [0, ∞)× X → E]
such that, for every x ∈ X, the function F(·; x) is piecewise continuous, has the possible first
kind discontinuities at the points of sequence (tk)k∈Z [(tk)k∈N] and F(t + ω; x) = cF(t; x) for all
x ∈ X and t ∈ ⋃k∈Z(tk, tk+1) [t ∈ ⋃k∈N0

(tk, tk+1)]. Since the set of all integers k ∈ Z [k ∈ N]
such that ck = c is relatively dense in Z [N], with the meaning clear, a very simple argument shows
that the function F(·; ·) is (c, (tk))-piecewise continuous almost periodic. For example, if P(t) is an
(anti-)periodic non-zero trigonometric polynomial with real values, then the piecewise continuous
function f0(·) determined by the function f (t) := sign(P(t)), t ∈ R is (tk)-piecewise continuous
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almost (anti-)periodic; here and hereafter, sign(0) = 0, sign(t) = 1 for t > 0 and sign(t) = −1
for t < 0.

For the sequel, we will denote the collection of all functions F : I × X → E constructed in this
way by PPCω,c;(tk)

(I : X).

Example 2. Suppose that m ∈ N, y : R→ R is a Bohr almost periodic function, and there exists
an integer k0 ∈ Z such that y(mk0) 6= y(m(k0 + 1)). Define

f (t) := y

(
m
⌊ t + 1

m

⌋)
, t ∈ R.

In Figure 1, the plot of function f (t) is constructed for y(t) = sin t and m = 3.

-100 -50 50 100

-1.0

-0.5

0.5

1.0

Figure 1. Graph for the case y(t) = sin t and m = 3.

Thus, we have f (t) = y(mk) if y ∈ [mk− 1, mk− 1 + m) for some integer k ∈ Z so that
the prescribed assumption implies that the function f (·) is not continuous on the real line. On
the other hand, for every ε > 0 there exists l > 0 such that any interval I ⊆ R of length ≥ l
contains a point τ such that | f (t + τ)− f (t)| ≤ ε, t ∈ R. Towards this end, let us recall that,
for a given ε > 0 in advance, we can always find l > 0 such that any interval I ⊆ R of length
≥ l contains an integer τ such that |y(t + τ)− y(t)| ≤ ε/m, t ∈ R; the last estimate simply
implies |y(t + mτ)− y(t)| ≤ ε, t ∈ R so that, actually, we can always find a number l′ = lm > 0
such that any interval I ⊆ R of length ≥ lm contains an integer mτ, where τ ∈ Z, such that
|y(t + mτ)− y(t)| ≤ ε, t ∈ R. Let it be the case; then we have

∣∣ f (t + mτ)− f (t)
∣∣ = ∣∣∣∣∣y

(
m
⌊ t + 1

m

⌋
+ mτ

)
− y

(
m
⌊ t + 1

m

⌋)∣∣∣∣∣ ≤ ε, t ∈ R.

Since the function f̌ (·) ≡ f (−·) is continuous from the left side, the condition (i) from Definition 5
holds, and (QUC) holds. It readily follows that the function f̌ (·) is (tk)-piecewise continuous
almost periodic.

The proof of the following extension of [27] (Theorem 77) is simple and therefore omitted:

Proposition 1. Suppose that ρ is a binary relation on E, and the function F : I × X → E
is (pre-)(B, ρ, (tk))-piecewise continuous almost periodic [(pre-)(B, ρ, (tk))-piecewise continuous
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uniformly recurrent]. If (Z, ‖ · ‖Z) is a complex Banach space, ψ : E→ Z is uniformly continuous
on the set ρ(F(I × B)) ∪ F(I × B) for each set B ∈ B and σ = {(ψ(y1), ψ(y2)) : y1ρy2},
then the function ψ ◦ F : I × X → Z is (pre-)(B, σ, (tk))-piecewise continuous almost periodic
[(pre-)(B, σ, (tk))-piecewise continuous uniformly recurrent].

We continue by providing several useful observations:

Remark 2. (i) Condition (QUC) can be relaxed by assuming that, for every ε > 0 and B ∈ B,
there exists δ > 0 such that, if x ∈ B and the points t1 and t2 belong to the set

⋃
k∈Z[tk +

ε, tk+1 − ε] [
⋃

k∈N[tk + ε, tk+1 − ε]] and |t1 − t2| < δ, then ‖F(t1; x) − F(t2; x)‖ < ε;
cf. also [27] (Definition 7, p. 390) for this approach. We feel it is our duty to say that the
condition (QUC) is primarily intended for the analysis of (B, I, (tk))-piecewise continuous
almost periodic type functions and that some problems naturally occur if ρ 6= I.

(ii) The introduction of class of (pre-)(B, ρ)-piecewise continuous uniformly recurrent functions
is strongly justified by the fact that the definition of a piecewise continuous almost periodic
function is a bit restrictive due to condition (i). In actual fact, this condition does not allow one
to consider the existence and uniqueness of the piecewise continuous solutions for a large class
of the abstract impulsive Cauchy problems in which the corresponding sequence of the first
kind discontinuities (tk) is not of linear growth as k→ +∞; for example, we cannot consider
the case t±k = k2 for all k ∈ Z, which is very legitimate from the point of view of the theory of
the abstract impulsive Cauchy problems.

Remark 3. It is clear that any Bohr (B, ρ)-almost periodic [Bohr (B, ρ)-uniformly recurrent]
function F(·; ·) is pre-(B, ρ, (tk))-piecewise continuous almost periodic [pre-(B, ρ, (tk))-piecewise
continuous uniformly recurrent] for any sequence (tk) satisfying the general assumptions as well as
that any Bohr (B, ρ)-almost periodic [Bohr (B, ρ)-uniformly recurrent] function F(·; ·) which is
uniformly continuous on the set I × B for each B ∈ B is (B, ρ, (tk))-piecewise continuous almost
periodic [(B, ρ, (tk))-piecewise continuous uniformly recurrent] for any sequence (tk) satisfying
the general assumptions. In the almost periodic case, the statements of [24] (Proposition 2.2,
Proposition 2.7(ii)) show that this condition holds true if B is a family consisting of some compact
subsets of X, I = R, R(F) ⊆ D(ρ), and ρ is single-valued on R(F).

The subsequent structural result is a generalization of [32] (Lemma 2.6):

Proposition 2. Suppose that F : I × X → E is pre-(B, T, (tk))-piecewise continuous almost
periodic, where ρ = T ∈ L(E) is a linear isomorphism, and the condition (QUC) holds. If B ∈ B is
a compact subset of X, then the set {F(t; x) : t ∈ I, x ∈ B} is relatively compact in E.

Proof. We will basically consider the case in which I = R and explain the essential change
in the case that I = [0, ∞). Since ρ = T ∈ L(E) is a linear isomorphism, it suffices to show
that the set T({F(t; x) : t ∈ R, x ∈ B}) is relatively compact in E. Let ε > 0 be given. Then,
there exists δ > 0 such that, if x ∈ B and the points t1 and t2 belong to (ti, ti+1) for some
i ∈ Z and |t1 − t2| < δ, then ‖F(t1; x)− F(t2; x)‖ < ε/2. Let δ1 ∈ (0, min{δ, ε/4}). After
that, we find l > 0 such that, for every t0 ∈ R, the interval [t0, t0 + l] contains a point τ ∈ I
such that ‖F(t + τ; x)− TF(t; x)‖ ≤ δ1 for all t ∈ R such that |t− tk| ≥ δ1 for all j ∈ Z.
Fix now a point t ∈ R and consider the interval I = [−t, l − t] (if I = [0, ∞), then for each
point t ≥ l we can consider the interval [t− l, t] and a corresponding (δ1, T)-almost period
τ belonging to this set). The set F([0, l]× B) is compact in E; furthermore, if τ ∈ I and the
above conditions are satisfied, then we easily obtain the existence of an integer m ∈ N, the
points s1, . . . , sm ∈ R and the elements x1, . . . , xm ∈ B such that

TF(t; x) ∈ B
(

F(t + τ; x), δ1
)
⊆

⋃
y∈F([0,l]×B)

B(y, δ1)

⊆L
(

F(s1; x1), ε/2
)
∪ . . . ∪ L

(
F(sm; xm), ε/2

)
, x ∈ B,
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provided that |t− tk| ≥ δ1 for all j ∈ Z. If |t− tk| < δ1 for some j ∈ Z, then there exists
an element t′ ∈ [tj + δ1, tj+1 − δ1] ∪ [tj−1 + δ1, tj − δ1] such that ‖F(t; x)− F(t′; x)‖ ≤ ε/2,
x ∈ B, which simply completes the proof of the theorem.

Remark 4. (i) It is also worth noting that Proposition 2 provides a proper generalization of [29]
(Lemma 3.3) as well as that this lemma holds even if the corresponding sequence (τj)j∈Z from
its formulation is not a Wexler sequence.

(ii) It is well-known that there exists a continuous Stepanov-1-almost periodic function f : R→ R
which is not bounded (see, e.g., [35]); therefore, f (·) cannot be piecewise continuous almost
periodic due to Proposition 2.

We continue by stating the following results; the proofs are rather technical and there-
fore omitted (the statements of [24] (Theorem 2.11(ii)–(iv)) can also be simply reformulated
in the new framework):

Proposition 3. Suppose that ρ is a binary relation on E which satisfies that D(ρ) is a closed subset
of X and

(Cρ) : For every ε > 0, there exists δ > 0 such that, for every y1, y2 ∈ E with ‖y1 − y2‖ < δ, we
have ‖z1 − z2‖ < ε for every z1 ∈ ρ(y1) and z2 ∈ ρ(y2).

Suppose, further, that for each m ∈ N, the function Fm : I × X → E satisfies that, for every x ∈ X,
the function t 7→ Fm(t; x) is piecewise continuous with the possible first kind discontinuities at the
points of a fixed sequence (tk). Let F : I × X → E and let limm→∞ Fm(t; x) = F(t; x), uniformly
on I × B for every fixed set B ∈ B.

Then, for every x ∈ X, the function t 7→ F(t; x) is piecewise continuous with the possible
first kind discontinuities at the points of sequence (tk) and the following holds: If for each m ∈ N
the function Fm(·; ·) is pre-(B, ρ, (tk))-piecewise continuous almost periodic [(B, ρ, (tk))-piecewise
continuous almost periodic; pre-(B, ρ, (tk))-piecewise continuous uniformly recurrent/(B, ρ, (tk))-
piecewise continuous uniformly recurrent], then the function F(·; ·) is pre-(B, ρ, (tk))-piecewise
continuous almost periodic [(B, ρ, (tk))-piecewise continuous almost periodic; pre-(B, ρ, (tk))-
piecewise continuous uniformly recurrent/(B, ρ, (tk))-piecewise continuous uniformly recurrent].
Furthermore, if the functions Fm(·; ·) satisfy condition (QUC), then the function F(·; ·) satisfies the
same condition.

Proposition 4. Suppose that the function F : I × X → E is pre-(B, ρ, (tk))-piecewise continu-
ous almost periodic [(B, ρ, (tk))-piecewise continuous almost periodic; pre-(B, ρ, (tk))-piecewise
continuous uniformly recurrent/(B, ρ, (tk))-piecewise continuous uniformly recurrent]. Then, the
function ‖F(·; ·)‖ is pre-(B, σ, (tk))-piecewise continuous almost periodic [(B, σ, (tk))-piecewise
continuous almost periodic; pre-(B, σ, (tk))-piecewise continuous uniformly recurrent/(B, σ, (tk))-
piecewise continuous uniformly recurrent], where

σ := {(‖y1‖, ‖y2‖) | ∃t ∈ I ∃x ∈ X : y1 = F(t; x) and y2 ∈ ρ(y1)}.

It is worth noting that the supremum formula can be clarified for pre-(B, T, (tk))-
piecewise continuous uniformly recurrent functions.

Proposition 5. Suppose that ρ = T ∈ L(E) is a linear isomorphism and F : I × X → E is
a pre-(B, T, (tk))-piecewise continuous uniformly recurrent function. Then, for each a ∈ I and
B ∈ B, we have

sup
t∈I;x∈B

‖F(t; x)‖ ≤
∥∥T−1∥∥ sup

t∈[a,∞);x∈B
‖F(t; x)‖.
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Proof. It suffices to show that for each fixed number ε > 0 we have

sup
t∈I;x∈B

‖F(t; x)‖ ≤
∥∥T−1∥∥ sup

t∈[a,∞);x∈B
‖F(t; x)‖+ ε.

Clearly, there exists a sequence (δk) in (0, ε) such that limk→+∞ δk = 0. After that, we find
a strictly increasing sequence (αk) of positive real numbers tending to plus infinity such
that ‖F(t + αk; x) − TF(t; x)‖ ≤ δk provided that |t − ti| > δk for all i ∈ Z [i ∈ N]. If
t /∈ {ti : i ∈ Z} [t /∈ {ti : i ∈ N}], then there exists k ∈ N such that |t− ti| > δk for some
i ∈ Z [i ∈ N]. Hence, we have ‖TF(t; x)‖ ≤ ‖F(t + αk; x)‖+ δk ≤ ‖F(t + αk; x)‖+ ε and
‖F(t; x)‖ ≤ ‖T−1‖(‖F(t + αk; x)‖+ ε). The final conclusion follows from the fact that, for
every x ∈ B, the function F(·; x) is continuous from the left side.

The statements of [36] (Propositions 2.17 and 2.18) continue to hold in our new frame-
work, and we have the following:

(i) If f : I → R is a pre-c-piecewise continuous uniformly recurrent function, then c = ±1;
furthermore, if f (t) ≥ 0 for all t ∈ I, then c = 1.

(ii) If f : I → E is a pre-c-piecewise continuous uniformly recurrent function, then
limt→+∞ f (t) 6= 0.

It is well-known that, for every almost periodic function f : [0, ∞)→ E, there exists a
unique almost periodic function g : R→ E such that g(t) = f (t) for all t ≥ 0; see H. Bart, S.
Goldberg [37] as well as [7,9] for many similar results of this type. We close this section with
the observation that is not clear whether we can state a satisfactory analogue of this result
for certain subclasses of (pre-)(B, M, ρ)-piecewise continuous almost periodic functions.

3. Relations with Stepanov Almost Periodic Type Functions

As observed by S. I. Trofimchuk in [27] (p. 389), a piecewise continuous almost periodic
function f : I → X is Stepanov almost periodic under additional conditions that are not
restrictive and that the interest in the spaces of piecewise continuous almost periodic
functions comes from the fact that these spaces have stronger topologies than the spaces
of Stepanov almost periodic functions. The main purpose of the following result is to
indicate that any piecewise continuous almost periodic function f : I → X in the sense of
Definition 5 is immediately Stepanov-p-almost periodic for any finite exponent p ≥ 1, as
well as that a much more general result holds true (cf. also [27] (Lemma 58, p. 400)):

Theorem 1. Suppose that ρ = T ∈ L(E), 1 ≤ p < +∞, F : I × X → E is pre-(B, T, (tk))-
piecewise continuous almost periodic [pre-(T, (tk))-piecewise continuous uniformly recurrent] and,
for every B ∈ B, ‖ f ‖∞,B ≡ supt∈I,x∈B ‖F(t; x)‖ < +∞. Then, the function F(·; ·) is Stepanov-
(B, p, T)-almost periodic [Stepanov-(B, p, T)-uniformly recurrent] for any finite exponent p ≥ 1.

Proof. Without loss of generality, we may assume that I = R and T = cI for some c ∈ C;
we will consider only pre-(B, c)-piecewise continuous almost periodic functions. Fix a
number ε > 0 and a set B ∈ B. Let a point x ∈ R be also fixed, and let the interval [x, x + 1]
contain the possible first kind discontinuities at the points {tm, . . . , tm+k} ⊆ [x, x + 1]. Then,
k ≤ d1/δ0e and we have the existence of a sufficiently small real number ε0 > 0 such that

ε
p
0 + 2

( 1
δ0

+ 1
)(

(1 + |c|)‖ f ‖∞,B
)p

ε0 ≤ εp. (1)

Let S be a relatively dense set in R such that, if τ ∈ S and b ∈ B, then ‖F(t + τ; x)−
cF(t; x)‖ < ε0 for all t ∈ R such that |t− tk| > ε0, k ∈ Z. The function t 7→ F(t + τ; b)−
cF(t; b), t ∈ [x, x+ 1] is less than or equal to ε0 if t ∈ [x, tm− ε0]∪ (tm + ε0, tm+1− ε0]∪ . . .∪
(tm+k, x + 1]; otherwise, we have ‖F(t + τ; b)− cF(t; b)‖ ≤ (1 + |c|)‖ f ‖∞,B. This implies

∫ x+1

x

∥∥F(t + τ; b)− cF(t; b)
∥∥p dt ≤ ε

p
0 + 2d1/δ0e

(
(1 + |c|)‖ f ‖∞,B

)p
ε0, b ∈ B.
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Taking into account (1) and a simple computation, we conclude that∫ x+1

x

∥∥F(t + τ; b)− cF(t; b)
∥∥p dt ≤ εp, b ∈ B.

This simply completes the proof of the theorem.

Remark 5. (i) The condition δ0 > 0 is crucial for the proof of Theorem 1 to work. In [27]
(Appendix A.5), S.I. Trofimchuk has also analyzed the class of piecewise continuous almost
periodic functions which satisfies infk∈Z(tk+1 − tk) = 0 [infk∈N(tk+1 − tk) = 0]. If we
allow the last condition, then a piecewise continuous almost periodic function need not be
Besicovitch bounded (Besicovitch almost periodic); cf. [7] for the notion, and [27] (p. 400) for a
counterexample of this type.

(ii) Albeit sometimes inevitable, the condition δ0 > 0 is a little bit redundant. For example, if P(t)
is a non-periodic trigonometric polynomial with real values, then we know that the function
f (t) := sign(P(t)), t ∈ R is Stepanov-p-almost periodic for any exponent p ≥ 1; see [7]
(Example 2.2.3). Clearly, the zeros of P(·) are the points of discontinuity of the piecewise
continuous function f0(·) determined by f (·). However, since P(·) is not periodic, its zeros
cannot be separated; to illustrate this, let us consider the polynomial P(t) := sin t+ sin(

√
2t),

t ∈ R. Any zero of P(·) is of the form tk = 2kπ/(1 +
√

2) for some k ∈ Z or t′m =
(2m + 1)π/(1−

√
2) for some m ∈ Z. It can be simply proved that tk 6= t′m for all k, m ∈ Z

as well as that for each ε > 0 there exist two strictly increasing sequences (ak)k∈N and
(bk)k∈N of positive integers such that |tak − t′bk

| < ε for all k ∈ N; see, e.g., [19] (Definition
2, Theorem 2, Remark 1). This implies the required.

(iii) In the formulation of Theorem 1, we have assumed immediately that c ∈ S1. The proof also
works in the case that c /∈ S1, but then the obtained conclusion in combination with [36]
(Proposition 2.6) shows that f ≡ 0.

(iv) Keeping in mind Theorem 1 and [17] (Theorem 2.3), we can extend the statements of [32]
(Lemma 3.4, Theorem 3.7, Corollary 3.8) for any Stepanov-p-almost periodic inhomogeneity
f (·) with the exponent p > 1; see also [7] (Theorem 2.14.6) for case p = 1.

In the case that (tk)k∈Z is a Wexler sequence, L. Qi and R. Yuan have proved that
a piecewise continuous function f : R → X which satisfies the condition (QUC) is (tk)-
piecewise continuous almost periodic if and only if the function f (·) is Stepanov-p-almost
periodic for every (some) exponent p ≥ 1; see [29] (Theorem 3.2). Taken together with
the statements of Proposition 2 and Theorem 1, the subsequent result provides a proper
generalization of [29] (Theorem 3.2). Here, we do not necessarily assume that (tk)k∈Z is
a Wexler sequence and follow the idea from the proof of [27] (Lemma 59, pp. 401–402),
which is slightly incorrect since it is not clear how we can directly deduce the estimate
|x(t + z′n)− x(t + zn)| ≥ ε/4 for all t ∈ [0, κ] or a similar estimate |x(t + z′n)− x(t + zn)| ≥
ε/4 for all t ∈ [−κ, 0]; see [27] (l. 1, p. 402) and observe that, in the above-described
situation, we can have zn = tj + ε and z′n = tp − ε for some integers j, n, p so that the
quasi-uniform continuity argument cannot be directly applied here.

Theorem 2. Suppose that ρ = T ∈ L(E), 1 ≤ p < +∞ and F : I × X → E is a Stepanov-
(B, p, T)-almost periodic function. If the condition (QUC) holds, then F(·; ·) is pre-(B, T, (tk))-
piecewise continuous almost periodic.

Proof. For the sake of convenience, we will assume that I = R, T = cI for some c ∈ S1
and X = {0}. Let ε > 0 be given; then there exists δ ∈ (0, min{ε/2, δ0/4}) such that,
if the points t1 and t2 belong to the same interval (ti, ti+1) of the continuity of function
f (·) and |t1 − t2| < δ, then ‖ f (t1) − f (t2)‖ < ε/4. Let ηk ∈ (0, εδ1/p/4) for all k ∈ N
and let limk→+∞ ηk = 0. We claim that there exists k0 ∈ N such that, for every τ ∈ R
with

∫ t+1
t ‖ f (s + τ) − c f (s)‖p ds ≤ η

p
k0

, t ∈ R, we have ‖ f (t + τ) − c f (t)‖ ≤ ε for all
t /∈ ⋃l∈Z(tl − ε, tl + ε). If we assume the contrary, then for each k ∈ N there exist points
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sk /∈ ⋃l∈Z(tl − ε, tl + ε) and τk ∈ R such that
∫ t+1

t ‖ f (s + τk) − c f (s)‖p ds ≤ η
p
k , t ∈ R

and ‖ f (sk + τk)− c f (sk)‖ > ε. Using the continuity of function f (·) from the left side, for
each k ∈ N there exist points s′k /∈ ⋃l∈Z(tl − (3ε/4), tl + (3ε/4)) and τk ∈ R such that∫ t+1

t ‖ f (s + τk)− c f (s)‖p ds ≤ η
p
k , t ∈ R, ‖ f (s′k + τk)− c f (s′k)‖ > 3ε/4 and s′k + τk /∈ {tl :

l ∈ Z}. Since δ < ε/2, it follows that, for every k ∈ N, the interval (s′k − δ, s′k + δ) belongs
to the same interval (tj, tj+1) of continuity of function f (·), for some j ∈ Z. On the other
hand, at least one of the intervals (s′k + τk, s′k + τk + δ) and (s′k + τk − δ, s′k + τk) belongs to
the same interval (tp, tp+1) of continuity of function f (·), for some p ∈ Z. If the integer
k ∈ N is fixed, then we may assume without loss of generality that the above holds for the
interval (s′k + τk, s′k + τk + δ); since |c| = 1, this readily implies:∥∥∥[ f (s + s′k + τk)− c f (s + s′k)

]
−
[

f (s′k + τk)− c f (s′k)
]∥∥∥

≤
∥∥ f (s + s′k + τk)− f (s′k + τk)

∥∥+ ∥∥ f (s + s′k)− f (s′k)
∥∥ ≤ ε/2, a.e. s ∈ [0, δ].

Hence, for every k ∈ N, we have:∥∥ f (s + s′k + τk)− c f (s + s′k)
∥∥ ≥ ε/4, a.e. s ∈ [0, δ],

and

η
p
k ≥

∫ tk+1

tk

∥∥ f (s + s′k + τk)− c f (s + s′k)
∥∥p ds

≥
∫ tk+δ

tk

∥∥ f (s + s′k + τk)− c f (s + s′k)
∥∥p ds ≥ (ε/4)pδ,

which is a contradiction. This simply completes the proof of the theorem.

The argument contained in the proof of [29] (Theorem 3.8) can be applied even if
(tk)k∈Z is not a Wexler sequence. Keeping in mind this fact as well as Proposition 2,
Theorem 1, Theorem 2 and [9] (Theorem 6.2.21), we can extend [29] (Theorem 3.8) in the
following way:

Theorem 3. Suppose that F : I × X → E is pre-(B, (tk))-piecewise continuous almost periodic,
the condition (QUC) holds, and any set B of the collection B is a compact subset of X. Then, F(·; ·)
is Bohr B-almost periodic if and only if F(·; ·) is continuous.

We proceed with some applications of Theorems 1 and 2; the first result improves the
statement of [27] (Lemma 31, pp. 204–206):

Theorem 4. Suppose that Fi : I × X → E is a pre-(B, (tk))-piecewise continuous almost periodic
function (i = 1, 2), and every set B of collection B is compact in X. If the condition (QUC)
holds for the functions F1(·; ·) and F2(·; ·), then the functions (F1, F2)(·; ·) and αF1 ± βF2 are
pre-(B, (tk))-piecewise continuous almost periodic and satisfy the condition (QUC).

Proof. Due to Proposition 2 and Theorem 1, we have that the functions F1(·; ·) and F2(·; ·)
are Stepanov-(B, p)-almost periodic. An application of [9] (Proposition 6.2.17) shows that
the function (F1, F2)(·; ·) is Stepanov-(B, p)-almost periodic so that the function (F1, F2)(·; ·)
is pre-(B, (tk))-piecewise continuous almost periodic by Theorem 2. This clearly implies
that the function αF1 ± βF2 is pre-(B, (tk))-piecewise continuous almost periodic, as well.
The condition (QUC) clearly holds for both functions.

Observe that we have not assumed above that (tk)k∈Z is a Wexler sequence; in par-
ticular, if f1(·) and f2(·) are (tk)-piecewise continuous almost periodic functions and
the requirements of Theorem 4 hold, then for each number ε > 0 there exists a rela-
tively dense set of their common ε-almost periods, with the meaning clear. Keeping
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in mind Propositions 3 and 5 and Theorem 4, we can simply prove an analogue of [24]
(Theorem 2.23) for (pre-)(B, (tk))-piecewise continuous almost periodic functions.

Further on, as a simple application of Theorem 4, we have the following:

Proposition 6. Suppose that F1 : I × X → C and F2 : I × X → E are pre-(B, (tk))-piecewise
continuous almost periodic functions, and every set B of collection B is compact in X. If the
condition (QUC) holds for the functions F1(·; ·) and F2(·; ·), then the function (F1 · F2)(·; ·)
is pre-(B, (tk))-piecewise continuous almost periodic; moreover, the function (F−1

1 · F2)(·; ·) is
pre-(B, (tk))-piecewise continuous almost periodic, provided that for each set B ∈ B we have
inft∈I;x∈B |F1(t; x)| > 0.

The next result follows from the argument contained in the proofs of Theorems 1 and 2
and the corresponding result for the Stepanov-p-almost periodic functions:

Proposition 7. Suppose that F : I → E is a pre-piecewise continuous almost periodic function,
and the condition (QUC) holds. Let ε > 0 be fixed. Then, for each number δ ∈ R \ {0} there exists
a relatively dense set S of integers such that the set δ · S consists solely of the ε-almost periods of
F(·).

The Favard type theorems for piecewise continuous almost periodic functions have
been considered in the research article [38] by L. Wang and M. Yu. Let us only mention
that the authors have clarified, in [38] (Theorem 2.3), a sufficient condition for the primitive
function of a scalar-valued piecewise continuous almost periodic function to be almost
periodic; observe, however, that the established result is very unsatisfactory from the
application point of view. On the other hand, using Proposition 2, Theorem 1 and the
Bohl–Bohr–Amerio theorem (see, e.g., [13] (p. 80)), we can clarify the following simple
result on the integration of piecewise continuous almost periodic type functions:

Theorem 5. Suppose that F : I → E is a pre-piecewise continuous almost periodic function, and
E is uniformly convex. If the function t 7→ F[1](t) ≡

∫ t
0 F(s) ds, t ∈ I is bounded, then F[1](·) is

almost periodic.

The statement of [24] (Proposition 2.2) admits a satisfactory reformulation in the new
framework provided that ρ = T ∈ L(E) is a linear isomorphism; in order to see this, we
can combine Proposition 2, Theorems 1 and 2 and [30] (Theorem 1(i)). Before proceeding
to the next subsection, we observe that the statements of [36] (Proposition 2.9, Corollary
2.10, Proposition 2.11) admit satisfactory reformulations in the new context as well. For
example, we can combine Proposition 2, Theorems 1 and 2 and [30] (Proposition 2) in order
to see that the following generalization of [36] (Proposition 2.9) holds true:

Proposition 8. Suppose that ρ = T ∈ L(E) is a linear isomorphism and F : I × X → E is
(pre-)(B, T, (tk))-piecewise continuous almost periodic [(pre-)(B, T, (tk))-piecewise continuous
uniformly recurrent]. Then, for each l ∈ N the function F(·; ·) is (pre-)(B, Tl , (tk))-piecewise
continuous almost periodic [(pre-)(B, Tl , (tk))-piecewise continuous uniformly recurrent].

3.1. Composition Principles for (B, (tk))-Piecewise Continuous Almost Periodic Type Functions

In this subsection, we will prove two composition theorems for (B, (tk))-piecewise
continuous almost periodic type functions. In order to achieve this aim, we employ the
relations between the (B, (tk))-piecewise continuous almost periodic type functions and
the Stepanov almost periodic type functions.

The first result reads as follows:

Theorem 6. Suppose that (Z, ‖ · ‖Z) is a complex Banach space, F : R×X → E is a pre-(B, (tk))-
piecewise continuous almost periodic function, and G : R× E → Z is a pre-(B′, (tk))-piecewise
continuous almost periodic function, where B is a collection of all compact subsets of X, and B′ is
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a collection of all compact subsets of E. If the condition (QUC) holds for the functions F(·; ·) and
G(·; ·), and there exists L > 0 such that∥∥G(t; x)− G(t; y)

∥∥
Z ≤ L‖x− y‖, t ∈ R, x, y ∈ E, (2)

then the function W : R × X → Z, given by W(t; x) := G(t; F(t; x)), t ∈ R, x ∈ X, is
a pre-(B, (tk))-piecewise continuous almost periodic function, and the condition (QUC) holds
for W(·; ·).

Proof. Let ε > 0 and B ∈ B be fixed. Then, Proposition 2 implies that the set B′ := F(R× B)
is relatively compact in E. Let δ1 > 0 be chosen from the condition (QUC) for the function
F(·; ·), the number ε/2L and the set B; further on, let δ2 > 0 be chosen from the condition
(QUC) for the function G(·; ·), the number ε/2 and the set B′. Define δ := min{δ1, δ2}. Let
t′, t′′ ∈ (tk, tk+1) for some k ∈ Z, and let |t′ − t′′| < δ. Then∥∥G

(
t′; F(t′; x)

)
− G

(
t′′; F(t′′; x)

)∥∥
Z

≤
∥∥G
(
t′; F(t′; x)

)
− G

(
t′; F(t′′; x)

)∥∥
Z +

∥∥G
(
t′; F(t′′; x)

)
− G

(
t′′; F(t′′; x)

)∥∥
Z

≤ L
∥∥F(t′; x)− F(t′′; x)

∥∥+ sup
y∈B′

∥∥G(t′; y)− G(t′′; y)
∥∥

Z

≤ L(ε/2L) + (ε/2) = ε.

Therefore, the condition (QUC) holds for W(·; ·); using a similar argument, we can show
that for each x ∈ X the mapping t 7→W(t; x), t ∈ R is continuous from the left side, with
the possible first kind of discontinuities at the points of the sequence (tk)k∈Z. Consider
now the functions FB : R → l∞(B : E) and GB : R → l∞(B′ : Z) defined through
[FB(t)](x) := F(t; x), t ∈ R, x ∈ B and [GB′(t)](y) := G(t; y), t ∈ R, y ∈ B′, where l∞(B : E)
denotes the Banach space of all essentially bounded functions from B into E, equipped
with the sup-norm. Due to Proposition 2, these mappings are well-defined. Using a simple
argument involving the condition (QUC) for the functions F(·; ·) and G(·; ·), it follows that
the functions FB(·) and GB(·) are pre-(tk)-piecewise continuous almost periodic, and the
condition (QUC) holds for them. Applying Theorems 1 and 2 and [9] (Proposition 6.2.17),
we conclude that there exists a common set D of (tk)-almost periods for these functions,
with the meaning clear. If τ ∈ D and |t− tk| > ε for some k ∈ Z, then we have∥∥G

(
t + τ; F(t + τ; x)

)
− G

(
t; F(t; x)

)∥∥
Z

≤
∥∥G
(
t + τ; F(t + τ; x)

)
− G

(
t + τ; F(t; x)

)∥∥
Z +

∥∥G
(
t + τ; F(t; x)

)
− G

(
t; F(t; x)

)∥∥
Z

≤ L
∥∥F(t + τ; x)− F(t; x)

∥∥+ sup
y∈B′

∥∥G(t + τ; y)− G(t; y)
∥∥

Z.

This simply completes the proof of the theorem.

The second structural result simply follows from Theorem 6 and the argument con-
tained in the proof of [9] (Theorem 6.1.50) (cf. also [24] (Theorem 2.17) and [9] (Subsection
6.1.5) for similar results).

Theorem 7. Suppose that (Z, ‖ · ‖Z) is a complex Banach space, F0 : R × X → E is a pre-
(B, (tk))-piecewise continuous almost periodic function, G1 : R× E → Z is a pre-(B′, (tk))-
piecewise continuous almost periodic function, where B is a collection of all compact subsets of X,
and B′ is a collection of all compact subsets of E. Suppose, further, that the condition (QUC) holds
for the functions F0(·; ·) and G1(·; ·), there exists L > 0 such that (2) holds with the function G(·; ·)
replaced therein with the function G1(·; ·), the function Q0 : [0, ∞)× X → E [Q1 : [0, ∞)×
E → Z] satisfies that for each set B ∈ B [B′ ∈ B′] we have limt→+∞ supx∈B ‖Q0(t; x)‖ = 0
[limt→+∞ supy∈B′ ‖Q1(t; y)‖Z = 0]. Then, the function W : R× X → Z, given by W(t; x) :=
[G1 + Q1](t; [F0 + Q0](t; x)), t ∈ R, x ∈ X, is strongly asymptotically pre-(B, (tk))-piecewise
continuous almost periodic in the sense that there exists a pre-(B, (tk))-piecewise continuous
almost periodic function W2 : R× X → E obeying the condition (QUC), and a function Q2 :
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[0, ∞)× X → E satisfying that for each set B ∈ B we have limt→+∞ supx∈B ‖Q2(t; x)‖ = 0 and
W(t; x) = W2(t; x) + Q2(t; x) for all t ≥ 0 and x ∈ X.

Concerning the composition principles for piecewise pseudo almost periodic type
functions, we refer the reader to [39] (Section 3) for some results established by J. Liu and
C. Zhang.

Before going any further, we would like to present the following simple application of
Theorem 6 and some useful observations concerning this result:

Example 3. Let X denote the set of all pre-(tk)-piecewise continuous almost periodic functions
f : R→ X satisfying the condition (QUC). Then, Proposition 3 and Theorem 4 together imply that
(X , ‖ · ‖∞) is a complex Banach space. Consider now Theorem 6 with E = Z = X and B = B′
being the collection of all compact subsets of X. Consider, further, the following simple equation

u(t) = u0 + G(t; u(t)), t ∈ R, (3)

where u0 : R → X is pre-(tk)-piecewise continuous almost periodic and satisfies the condition
(QUC) as well as G : R× X → X is pre-(B, (tk))-piecewise continuous almost periodic and
satisfies the condition (QUC). Suppose that there exists L ∈ (0, 1) such that (2) holds. Then, the
mapping u 3 X 7→ u0 + G(·; u(·)) ∈ X is well-defined due to Proposition 3, Theorems 4 and 6.
Moreover, this mapping is a contraction; therefore, there exists a unique function u ∈ X satisfying
(3). For example, we can take X = C and

G(t; x) = f1(t)g1(x) + . . . . + fk(t)gk(x), t ∈ R, x ∈ C (k ∈ N),

where the functions Fj(·) are pre-(tk)-piecewise continuous almost periodic and satisfy the condition
(QUC), the functions gj(·) are bounded, Lipschitz continuous with constants Lj > 0 and

L1
∥∥ f1
∥∥

∞ + . . . + Lk
∥∥ fk
∥∥

∞ < 1.

On the other hand, it is very difficult to apply Theorem 6 to the abstract semilinear integro-
differential equations of the form

u(t) = u0 +
∫ t

−∞
R(t− s)G(s; u(s)) ds, t ∈ R, (4)

if the operator family (R(t))t>0 ⊆ L(X) satisfies
∫ +∞

0 ‖R(t)‖ dt < +∞ and condition that the
mapping t 7→ R(t)x, t > 0 is (piecewise-)continuous for every element x ∈ X. Then, it is expected
that the mapping t 7→

∫ t
−∞ R(t− s)G(s; u(s)) ds, t ∈ R is Bohr almost periodic in the usual sense,

so that we can always use a more general assumption that G : R× X → X is Stepanov-p-B-almost
periodic for some p ≥ 1 and apply the composition theorems for Stepanov almost periodic type
functions [7,9] combined with some result of type [7] (Proposition 2.6.11); cf. also Remark 5(iv).
We will not discuss here the well-posedness of problem (4) in the case that the mapping t 7→ R(t)x,
t > 0 is only Lebesgue measurable (x ∈ X) and

∫ +∞
0 ‖R(t)‖ dt < +∞.

4. Almost Periodic Type Solutions of Abstract Impulsive Differential Inclusions of
Integer Order

The main aim of this section is to analyze the almost periodic type solutions to the
abstract impulsive differential inclusions of integer order. Of concern is the following
abstract impulsive higher-order Cauchy inclusion

(ACP)n;1 :


u(n)(t) ∈ Au(t) + f (t), t ∈ [0, T] \ {t1, . . . , tl},(
∆u(j))(tk

)
= u(j)(tk+

)
− u(j)(tk−

)
= Cyk

j , k ∈ Nl , j ∈ N0
n−1,

u(j)(0) = Cuj, j ∈ N0
n−1.
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We refer the reader to [25] for the notion of a (pre-)solution of (ACP)n;1 on [0, T] and
[0, ∞). We will use the following result from [25]; it is worth noting that, in the second part,
we do not need the separation condition δ0 > 0 on the sequence (tk):

Lemma 1. (i) Suppose that A is a closed subgenerator of a local (gn, C)-regularized resolvent
family (R(t))t∈[0,τ), where τ > T and n ∈ N. Suppose that the functions C−1 f (·) and
fA(·) are continuous on the set t ∈ [0, T] \ {t1, . . . , tl}, fA(t) ∈ AC−1 f (t) for all t ∈
[0, T] \ {t1, . . . , tl}, as well as the right limits and the left limits of the functions C−1 f (·) and
fA(·) exist at any point of the set {t1, . . . , tl}. Define

u(t) := R(t)u0 +
n−1

∑
j=1

∫ t

0
gj(t− s)R(s)uj ds

+
∫ t

0

∫ t−s

0
gn−1(t− s− r)R(r)

(
C−1 f

)
(s) dr ds + ω(t), t ∈ [0, T], (5)

where

ω(t) :=


0, t ∈ [0, t1],

∑k
p=1 R

(
t− tp

)
yp

0 + ∑k
p=1 ∑n−1

j=1

∫ t−tp
0 gj(t− tp − s)R

(
s
)
yp

j ds,
if t ∈

(
tk, tk+1

]
for some k ∈ N0

l−1.
(6)

Then, the function u(t) is a unique solution of the problem (ACP)n;1, provided that u0, . . . , ul ∈
D(A) and yj

k ∈ D(A) for all k ∈ Nl and j ∈ N0
n−1.

(ii) Suppose that A is a closed subgenerator of a global (gn, C)-regularized resolvent family
(R(t))t≥0, where n ∈ N. Suppose, further, that 0 < t1 < . . . < tl < . . . < +∞, the
sequence (tl)l has no accumulation point, the functions C−1 f (·) and fA(·) are continuous
on the set [0, T] \ {t1, . . . , tl , . . .}, fA(t) ∈ AC−1 f (t) for all t ∈ [0, T] \ {t1, . . . , tl , . . .},
as well as the right limits and the left limits of the functions C−1 f (·) and fA(·) exist at
any point of the set {t1, . . . , tl , . . .}. Define the functions u(t) and ω(t) for t ∈ [0, T] by (5)
and (6), respectively. Then, the function u(t) is a unique solution of the problem (ACP)n;1
for t ∈ [0, T] \ {t1, . . . , tl , . . .}, provided that u0, . . . , ul , . . . ∈ D(A) and yk

j ∈ D(A) for all
k ∈ N and j ∈ N0

n−1.

In this paper, we will mainly consider the case in which n = 1. We start with the
observation that it is not so simple to analyze the existence and uniqueness of (ω, c)-
periodic solutions of the abstract impulsive Volterra integro-differential inclusions on
bounded domains unless some very restrictive assumptions are satisfied. Concerning
this topic, which has recently been analyzed by some authors, we will only provide the
following simple application of Lemma 1 with n = 1. Let ω = tk+1 − tk > 0 for all integers
k ∈ Nn, let f (t) ≡ 0, and let the (local) C-regularized semigroup with subgenerator A
satisfy R(t + ω) = cR(t) for all t ∈ [0, T − ω]. If u0 ∈ D(A), then the solution u(t) of
problem (ACP)1;1 satisfies u(T) = cu(0) if and only if

cu0 = cl+1u0 +
[
cly1

0 + . . . + cyl
0

]
;

if c = 1, this simply means that y1
0 + . . . + yl

0 = 0. We divide the further investigations into
four subsections:

4.1. Asymptotically Almost Periodic Type Solutions of (ACP)1;1

Suppose thatA is the integral generator of a global exponentially decaying C-regularized
semigroup (T(t))t≥0 on X; therefore, there exist finite real constants ω < 0 and M ≥ 1 such
that ‖T(t)‖ ≤ Meωt, t ≥ 0. Suppose, further, that the functions C−1 f (·) and fA(·) satisfy all
requirements from Lemma 1(ii) with n = 1. For simplicity, we set yk ≡ yk

0.
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1. In this part, we will only assume that the sequence (tk) has no accumulation point; the
separation condition δ0 > 0 is complete regardless. If ∑k≥1 e−ωtk‖yk‖ < +∞, then the
function ω(·) defined in the proof of Lemma 1(i) belongs to the space PCω([0, ∞) : X)
since we have (cf. also [7] (Remark 2.6.14(i))):

∥∥ω(t)
∥∥ ≤ Meωt

∞

∑
k=1

e−ωtk‖yk‖ → 0 as t→ +∞; (7)

we will not further discuss here the sufficient conditions ensuring that the function ω(·)
belongs to some space of the weighted ergodic components in R (cf. [9] (Section 6.4)
for more details about these spaces in the multi-dimensional setting). Concerning
the function C−1 f (·), we can assume that there exists a bounded Stepanov-p-almost
periodic function g : R → X and a function q ∈ PCω′([0, ∞) : X), for some ω′ ∈ R
and p ∈ [1, ∞), such that C−1 f (t) = g(t) + q(t) for all t ≥ 0; see, e.g., the proofs
of [7] (Propositions 2.6.11 and 2.6.13). A similar conclusion can be given in the case
that there exist a bounded Stepanov-p-almost periodic function g : R → X and a
function e−ω′ ·q(·) ∈ PAP0

T([0, ∞) : X), for some ω′ ∈ R and p ∈ [1, ∞), such that
C−1 f (t) = g(t) + q(t) for all t ≥ 0; see [39] (p. 3 and Definition 2.7) for the notion, the
argument contained in the proof of [7] (Lemma 2.12.3) and the decomposition used in
the proof of [7] (Proposition 2.6.13). We can also use Stepanov-(p, c)-almost periodic
functions here.

2. Suppose now, in place of condition ∑k≥1 e−ωtk‖yk‖ < +∞, that (yk)k∈N is an al-

most periodic sequence as well as that the family of sequences (tj
k)k∈N, j ∈ N is

equipotentially almost periodic. Then, the argument contained in the proofs of [32]
(Lemmas 3.4 and 3.6, Theorem 3.7) shows that the function ω(·) is piecewise continu-
ous almost periodic.

3. In this issue, we are seeking for the uniformly recurrent analogues of the conclusions
established in the previous issue. Suppose that (τm) is a strictly increasing sequence
of positive real numbers such that limm→+∞ τm = +∞ and (ql) is a strictly increasing
sequence of positive integers. Let, for every ε > 0 and m ∈ N, there exist integers
s1 ∈ N and s2 ∈ N such that, for every l ≥ s1 and j ∈ N, we have ‖yj+ql − yj‖ +
|tj+qs2

− tj − τm| ≤ ε; see also [27] (Lemma 35). If the sequence (yk)k∈N is bounded
[the sequences (yk)k∈N and (Ayk)k∈N are bounded], then Proposition 3 in combination
with the argument contained in the proofs of [32] (Lemma 3.6, Theorem 3.7) shows
that the function ω(·) is (pre-)piecewise continuous uniformly recurrent; see also the
statement (S) in the proof of Theorem 8 below.

For a concrete example, we need to recall that A. Haraux and P. Souplet have proved,
in [18] (Theorem 1.1), that the function

f (t) :=
∞

∑
m=1

1
m

sin2
( tπ

2m

)
, t ∈ R,

satisfies limk→+∞ f (t + 2k) = f (t), uniformly in t ∈ R. Take yj := f (j), tj := j for all j ∈ N
and τm := 2m for all m ∈ N. Then, the above requirements are satisfied.

4.2. Asymptotically Weyl Almost Periodic Type Solutions of (ACP)1;1

Suppose that 1 ≤ p < ∞ and f ∈ Lp
loc(I : E). Let us recall that the function f (·)

is called:
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(i) equi-Weyl-p-almost periodic if and only if for each ε > 0 we can find two real numbers
l > 0 and L > 0 such that any interval I′ ⊆ I of length L contains a point τ ∈ I′

such that

sup
x∈I

[
1
l

∫ x+l

x

∥∥ f (t + τ)− f (t)
∥∥p dt

]1/p

≤ ε.

(ii) Weyl-p-almost periodic if and only if for each ε > 0 we can find a real number L > 0
such that any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

lim
l→∞

sup
x∈I

[
1
l

∫ x+l

x

∥∥ f (t + τ)− f (t)
∥∥p dt

]1/p

≤ ε.

In order to study the existence and uniqueness of asymptotically (equi-)Weyl-p-almost
periodic solutions of the problem (ACP)1;1, we will use the following conditions:

(ew-M1) For every ε > 0, there exist s ∈ N and L > 0 such that every interval I′ ⊆ [0, ∞) of
length L contains a point τ ∈ I′ which satisfies that there exists an integer qτ ∈ N
such that |ti+qτ

− ti − τ| < ε for all i ∈ N and

sup
|J|=s

[
1
s ∑

j∈J

∥∥yj+qτ
− yj

∥∥p
]1/p

< ε, (8)

where the supremum is taken over all segments J ⊆ N of length s.
(w-M1) For every ε > 0, there exists L > 0 such that every interval I′ ⊆ [0, ∞) of length L

contains a point τ ∈ I′ which satisfies that there exist an integer qτ ∈ N and an
integer sτ ∈ N such that |ti+qτ

− ti − τ| < ε for all integers i ∈ N, and (8) holds
for all integers s ≥ sτ .

Condition (ew-M1), respectively, condition (w-M1), implies that the family of se-
quences (tj

k)k∈N, j ∈ N is equipotentially almost periodic as well as that the sequence
(xk)k∈N is equi-Weyl-p-almost periodic, respectively, Weyl-p-almost periodic, in the follow-
ing sense:

(e-M1) For every ε > 0, there exist s ∈ N and L > 0 such that every interval I′ ⊆ [0, ∞) of
length L contains a point τ ∈ I′ ∩N which satisfies that (8) holds with the number
qτ replaced therein with the number τ.

(M1) For every ε > 0, there exists L > 0 such that every interval I′ ⊆ [0, ∞) of length L
contains a point τ ∈ I′ ∩N which satisfies that there exists an integer sτ ∈ N such
that (8) holds for all integers s ≥ sτ , with the number qτ replaced therein with the
number τ.

In the existing literature, the class of equi-Weyl-1-almost periodic sequences has been
commonly used so far (see, e.g, the research articles [40] by V. Bergelson et al., [41] by
T. Downarowicz, A. Iwanik and [42] by A. Iwanik). The class of Weyl-p-almost periodic
sequences seems to be not considered elsewhere, even in the scalar-valued case. Before
going further, let us mention that it is clear that condition (ew-M1) implies (w-M1) as well
as that condition (e-M1) implies (M1).

Concerning the existence and uniqueness of asymptotically Weyl almost periodic
solutions of problem (ACP)1;1, we will state and prove the following result:

Theorem 8. Suppose that (ew-M1), respectively, (w-M1) holds the functions (C−1 f )(·) and
fA(·) satisfy all requirements of Lemma 1 with n = 1, u0 ∈ D(A) and yk ≡ y0

k ∈ D(A) for
all k ∈ N. Suppose, further, that (yk) and (Ayk) are bounded sequences, q ∈ PC0([0, ∞) : X),
the function g : R → X is (equi-)Weyl-p-almost periodic and bounded as well as (C−1 f )(t) =
g(t) + q(t) for all t ≥ 0. Then, there exist a bounded continuous (equi-)Weyl-p-almost periodic
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function G1 : R → X, a bounded piecewise continuous (equi-)Weyl-p-almost periodic function
G2 : [0, ∞) → X and a function Q1 ∈ C0([0, ∞) : X) such that the unique solution u(t) of
problem (ACP)1;1 satisfies u(t) = G1(t) + G2(t) + Q1(t) for all t ≥ 0.

Proof. Keeping in mind [7] (Theorem 2.11.4) and the proof of [7] (Proposition 2.6.13), it
readily follows that there exist a bounded (equi-)Weyl-p-almost periodic function G1 :
R → X and a function Q1 ∈ C0([0, ∞) : X) such that T(t)u0 +

∫ t
0 T(t− s)(C−1 f )(s) ds =

G1(t) + Q1(t) for all t ≥ 0; cf. the formulation of Lemma 1 with R(t) ≡ T(t). It remains to
be proved that the function ω(·) from the formulation of Lemma 1(i) is bounded, piecewise
continuous and (equi-)Weyl-p-almost periodic. Keeping in mind the argument contained
in the proof of [32] (Theorem 3.7), the assumption that (yk) is a bounded sequence and
the fact that the statement of [7] (Proposition 2.3.5) continues to hold for the sequences of
piecewise continuous bounded functions, it suffices to show that the function ω1(·), defined
by ω1(t) := 0 if 0 ≤ t ≤ t1 and ω1(t) := T(t− tk)yk, if tk < t ≤ tk+1 for some integer k ∈ N,
is (equi-)Weyl-p-almost periodic. The consideration is similar for both classes of functions,
and we may assume, without loss of generality, that condition (ew-M1) holds. Since (Ayk)
is a bounded sequence, we have T(t)yk − T(s)yk = [T(t)yk − Cyk] − [T(s)yk − Cyk] =∫ t

s T(r)Ayk dr for all t, s ≥ 0, and therefore, the following statement holds:

(S) For every ε > 0, there exists δ ∈ (0, ε) such that, if t, s ≥ 0 and |t − s| < δ, then
‖T(t)yk − T(s)yk‖ ≤ ε/3 for all k ∈ N.

Let ε > 0 be given. Then, we know that there exist s ∈ N, as large as we want, and L > 0
such that every interval I′ ⊆ [0, ∞) of length L contains a point τ ∈ I′ which satisfies that
there exists an integer qτ ∈ N such that |ti+qτ

− ti − τ| < δ for all i ∈ N and (8) holds.
Suppose now that t > 0, |t− ti| > ε, |t− ti+1| > ε and ti < t < ti+1 for some integer i ∈ N.
Then, the argument contained in the proof of [32] (Lemma 3.6), with ε′ = β = ε, shows that
ti+qτ

< t + τ < ti+qτ+1. Therefore, since (S) holds and |ti+qτ
− ti − τ| < δ, we have:∥∥ω1(t + τ)−ω1(t)

∥∥ =
∥∥T(t + τ − ti+qτ

)yi+qτ
− T(t− ti)yi

∥∥
≤
∥∥T(t + τ − ti+qτ

)yi+qτ
− T(t− ti)yi+qτ

∥∥+ ∥∥T(t− ti)(yi+qτ
− yi)

∥∥
≤ (ε/3) + M

∥∥yi+qτ
− yi

∥∥.

Suppose now that x ≥ 0, [x, x + l] ⊆ [tr, tr+m], x ≤ tr+1 and x + l ≥ tr+m−1 for some
integers r, m ∈ N0. Since the separation condition δ0 > 0 holds, we have l ≥ (m− 2)δ0, and
therefore m ≤ bl/δ0c+ 2. Hence, there exist absolute real constants M1 > 0 and M2 > 0
such that[

1
l

∫ x+l

x

∥∥ω1(t + τ)−ω1(t)
∥∥p dt

]1/p

≤
[

1
l

(∫ tr+ε

tr

∥∥ω1(t + τ)−ω1(t)
∥∥p dt +

∫ tr+1−ε

tr+ε

∥∥ω1(t + τ)−ω1(t)
∥∥p dt

+
∫ tr+1+ε

tr+1−ε

∥∥ω1(t + τ)−ω1(t)
∥∥p dt + . . .

)]1/p

≤ M1

[
1
l

(
ε +

(
εp +

∥∥yr+qτ − yr
∥∥p
)
+ ε + . . .

)]1/p

≤ M1

[
1
l

(
(m + 1)ε + (m + 1)εp +

r+m−1

∑
w=r

∥∥yw+qτ − yw
∥∥p
)]1/p

≤ M1

[
1
l

((
bl/δ0c+ 3

)
ε +

(
bl/δ0c+ 3

)
εp +

r+m−1

∑
w=r

∥∥yw+qτ − yw
∥∥p
)]1/p
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≤ M2

(
ε1/p + ε

)
+ M2

[
1
l

r+m−1

∑
w=r

∥∥yw+qτ − yw
∥∥p
]1/p

≤ M2

(
ε1/p + ε

)
+ M2

[
1
l

r+bl/δ0c+1

∑
w=r

∥∥yw+qτ − yw
∥∥p
]1/p

.

Due to the assumption (8), the above calculation shows that we can take l = δ0(s− 2) in
the corresponding definition of equi-Weyl-p-almost periodicity. The proof of the theorem is
thereby complete.

Remark 6. If we replace the conjuction of condition (ew-M1), respectively, (w-M1), and the
condition that (Ayk) is a bounded sequence, by the condition that ∑k≥1 e−ωtk‖yk‖ < +∞, then the
above argument and (7) together imply that there exist a bounded, continuous (equi-)Weyl-p-almost
periodic function G1 : R → X and a function Q1 ∈ PC0([0, ∞) : X) such that the unique
solution u(t) of problem (ACP)1;1 satisfies u(t) = G1(t) + Q1(t) for all t ≥ 0. Here, we can
only assume that the sequence (tk) has no accumulation point; the separation condition δ0 > 0 is
complete regardless.

Now, we would like to present the following simple example in which Theorem 8 can
be applied (X = C):

Example 4. (i) Suppose that ti = i for all i ∈ N, m ∈ N \ {1}, yk = 0 for 1 ≤ k ≤ m− 1
and yk = 1 for all k ≥ m. Then, it is trivial to show that (ew-M1) holds with L > k + 1 and
s ≥ (k− 1)ε−p; on the other hand, it is clear that (yk)k∈N is not an almost periodic sequence.

(ii) Suppose that ti = i for all i ∈ N, σ ∈ (0, 1), p ≥ 1, (1− σ)p < 1 and yk = kσ for all k ∈ N.
Then, the sequence (yk)k∈N is not equi-Weyl-p-almost periodic (p ≥ 1); on the other hand,
(yk)k∈N is Weyl-p-almost periodic for any exponent p ≥ 1. Towards this end, it suffices to
observe that there exists a finite constant cσ,p > 0 such that, for every τ, sτ , l ∈ N, we have

l+sτ−1

∑
j=l

[
(j + τ)σ − jσ

]p ≤ cσ,pτps1−(1−σ)p
τ ;

see the proof of [9] (Theorem 7.3.8, case 3, p. 566). The requirements of Theorem 8 hold with
condition (w-M1) being satisfied.

We close this section with the observation that we can similarly analyze the exis-
tence and uniqueness of (equi-)Weyl-p-almost periodic solutions for a class of the abstract
impulsive nonautonomous differential equation of the form [32] (1.1).

4.3. Besicovitch–Doss Almost Periodic Type Solutions of (ACP)1;1

We start this subsection by recalling the following special case of the notion introduced
in [43] (Definition 2.1):

Definition 7. Suppose that 1 ≤ p < +∞, F : I → X, φ : [0, ∞) → [0, ∞) and F : (0, ∞) →
(0, ∞). Then, we say that the function F(·) belongs to the class e− (φ, F)− Bp(I : X) if and only
if there exists a sequence (Pk(·)) of trigonometric polynomials such that

lim
k→+∞

lim sup
t→+∞

F(t)
[
φ
(∥∥F(·)− Pk(·)

∥∥)]
Lp([−t,t]∩I)

= 0,

where we assume that the term in brackets belongs to the space Lp([−t, t] ∩ I) for all t > 0. If
φ(x) ≡ x, then we omit the term “φ” from the notation. The usual notion is obtained by plugging
φ(x) ≡ x and F(t) ≡ t−1/p, when we say that the function F(·) is Besicovitch-p-almost periodic.
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As an immediate consequence of [43] (Proposition 10) and the previous considerations,
we have the following result (cf. also Remark 6; we only assume here that the sequence (tk)
has no accumulation point):

Proposition 9. Suppose that the functions (C−1 f )(·) and fA(·) satisfy all requirements of
Lemma 1 with n = 1, u0 ∈ D(A) and yk ≡ y0

k ∈ D(A) for all k ∈ N. Suppose, further,
that ∑k≥1 e−ωtk‖yk‖ < +∞, q ∈ PC0([0, ∞) : X), α > 0, a > 0, αp ≥ 1, ap ≥ 1, the function
g : R→ X is bounded and belongs to the class e− (xα, t−a)− Bp(R : X) as well as (C−1 f )(t) =
g(t) + q(t) for all t ≥ 0. Then, there exist a bounded continuous function G1 : R→ X belonging
to the class e− (xα, t−a)− Bp(R : X) and a function Q1 ∈ PC0([0, ∞) : X) such that the unique
solution u(t) of problem (ACP)1;1 satisfies u(t) = G1(t) + Q1(t) for all t ≥ 0.

Remark 7. Is should be noted that the solution u(·) = G1(·) + Q1(·) belongs to the class e−
(xα, t−a)− Bp(R : X), as well. In order to see this, it suffices to observe that e− (xα, t−a)− Bp(R :
X) is a vector space (see the statement [43] ((i), p. 4221)) and Q1 ∈ e− (xα, t−a)− Bp(R : X),
which follows from a relatively simple computation with the sequence (Pk ≡ 0) in Definition 7 and
the assumption ap ≥ 1.

We also need the following notion (see, e.g., [7] (Definition 2.13.2)):

Definition 8. Let 1 ≤ p < ∞ and let f ∈ Lp
loc(I : X). Then, it is said that f (·) is Doss p-almost

periodic if and only if, for every ε > 0, the set of numbers τ ∈ I for which

lim sup
l→+∞

[
1
2l

∫ l

−l
‖ f (s + τ)− f (s)‖p ds

]1/p

< ε,

in the case that I = R, respectively,

lim sup
l→+∞

[
1
l

∫ l

0
‖ f (s + τ)− f (s)‖p ds

]1/p

< ε,

in the case that I = [0, ∞), is relatively dense in I.

Now, we would like to re-examine the statement of Theorem 8 for Doss-p-almost
periodic solutions. In order to do that, we need to introduce the following condition:

(ed-M1) For every ε > 0, there exists L > 0 such that every interval I′ ⊆ [0, ∞) of length
L contains a point τ ∈ I′ which satisfies that there exists an integer qτ ∈ N such
that |ti+qτ

− ti − τ| < ε for all i ∈ N and

lim sup
s→+∞

[
1
s

s

∑
j=1

∥∥yj+qτ
− yj

∥∥p
]1/p

< ε. (9)

Condition (ed-M1) implies that the family of sequences (tj
k)k∈N, j ∈ N is equipotentially

almost periodic as well as that the sequence (yk)k∈N is Doss-p-almost periodic in the
following sense:

(d-M1) For every ε > 0, there exists L > 0 such that every interval I′ ⊆ [0, ∞) of length
L contains a point τ ∈ I′ ∩N which satisfies that (9) holds with the number qτ

replaced therein with the number τ.

Before stating the next result, we would like to note that the class of Doss-p-almost
periodic sequences has not been defined in the existing literature so far, even in the scalar-
valued setting.
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Theorem 9. Suppose that (ed-M1) holds, the functions (C−1 f )(·) and fA(·) satisfy all require-
ments of Lemma 1 with n = 1, u0 ∈ D(A) and yk ≡ y0

k ∈ D(A) for all k ∈ N. Suppose, further,
that (yk) and (Ayk) are bounded sequences, q ∈ PC0([0, ∞) : X), the function g : R → X is
Doss-p-almost periodic and bounded as well as (C−1 f )(t) = g(t) + q(t) for all t ≥ 0. Then, there
exist a bounded continuous Doss-p-almost periodic function G1 : R → X, a bounded piecewise
continuous Doss-p-almost periodic function G2 : [0, ∞)→ X and a function Q1 ∈ C0([0, ∞) : X)
such that the unique solution u(t) of problem (ACP)1;1 satisfies u(t) = G1(t) + G2(t) + Q1(t)
for all t ≥ 0.

Proof. We will only outline the main details of the proof (see also the proof of Theorem 8).
In place of [7] (Theorem 2.11.4), we can use [7] (Theorem 2.13.10). If condition (ed-M1)
holds in place of condition (ew-M1), then we can use the same arguments as in the proof of
Theorem 8, with x = 0 and r = 0. The remainder of the proof is the same.

Remark 8. Due to [7] (Proposition 2.13.6), we have that the function Q1(·) is also Doss-p-almost
periodic.

The pioneering results about Besicovitch-p-almost periodic sequences have been
given in [3,44]. The first systematic study of scalar-valued Besicovitch-p-almost periodic
sequences has been carried out by A. Bellow and V. Losert in [14] (Section 3); cf. also
Bergelson et al. [40]. In the following definition, we introduce the vector-valued version
of [14] (Definition 3.2):

Definition 9. Suppose that 1 ≤ p < +∞ and (yk)k∈N is a sequence in X. Then, we say that
(yk)k∈N is Besicovitch-p-almost periodic if and only if for every ε > 0 there exists a trigonometric
polynomial P(·) such that

lim sup
s→+∞

[
1
s

s

∑
k=1

∥∥yk − P(k)
∥∥p
]1/p

< ε.

It can be simply shown that any Besicovitch-p-almost periodic sequence (yk)k∈N is
Besicovitch-p-bounded, i.e.,

lim sup
k→+∞

1
k

k

∑
l=1

∥∥yl
∥∥p

< +∞;

see, e.g., the proof of [43] (Proposition 1(i)) for the continuous analogue of this statement.
Therefore, the sequence (kσ)k∈N considered in Example 4(ii) is not Besicovitch-p-almost
periodic since

1
k

k

∑
l=1

lσp ∼ (1 + σp)−1kσp as k→ +∞.

It is completely out of the scope of this paper to reconsider the statements established
in [14] for the vector-valued Besicovitch-p-almost periodic sequences. Before proceeding
further, we would like to address the following questions:

(Q1) Is it possible to state a satisfactory analogue of Theorems 8 and 9 for Besicovitch-p-
almost periodic solutions of problem (ACP)1;1 (1 ≤ p < ∞)?

(Q2) Suppose that the family of sequences (tj
k)k∈N, j ∈ N is equipotentially almost periodic

as well as that the sequence (yk)k∈N is equi-Weyl-p-almost periodic (1 ≤ p < ∞). Is it
true that (ew-M1) holds true?

(Q3) Suppose that the sequence (yk)k∈N is (equi-)Weyl-p-almost periodic [Doss-p-almost
periodic/Besicovitch-p-almost periodic] (1 ≤ p < ∞). Is it true that there exists a
unique (equi-)Weyl-p-almost periodic [Doss-p-almost periodic/Besicovitch-p-almost
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periodic] sequence (ỹk)k∈Z (defined in the obvious way) such that ỹk = yk for all
k ∈ N?

(Q4) Is it true that the sequence (yk)k∈Z [(yk)k∈N] is (equi-)Weyl-p-almost periodic [Doss-p-
almost periodic/Besicovitch-p-almost periodic] (1 ≤ p < ∞) if and only if there exists
a continuous (equi-)Weyl-p-almost periodic [Doss-p-almost periodic/Besicovitch-p-
almost periodic] function f : R→ X [ f : [0, ∞)→ X] such that yk = f (k) for all k ∈ Z
[k ∈ N]?

In connection with the problem (Q2), see also [27] (Lemma 35) and observe that
we cannot expect the affirmative answer in the case of consideration of Weyl-p-almost
periodic sequences and Doss-p-almost periodic sequences; cf. [9] for more details. It
can be very simply shown that the class of Doss-p-almost periodic sequences is the most
general since it contains all Weyl-p-almost periodic sequences and all Besicovitch-p-almost
periodic sequences; it is also worth noting that the class of equi-Weyl-p-almost periodic
sequences is contained in the class of Besicovitch-p-almost periodic sequences, which is
no longer true for the class of Weyl-p-almost periodic sequences. A simple example of a
Besicovitch-p-almost periodic sequence which is not Weyl-p-almost periodic is given as
follows: If 1 ≤ p < +∞ and k ∈ [m2, m2 +

√
m) for some integer m ∈ N, then, we define

yk := m1/2p; then the sequence (yk)k∈N enjoys the abovementioned properties (see also [45]
(Example 6.24), [46] (p. 42) and [43] (Example 4)). We will examine in more detail the
classes of (equi-)Weyl-p-almost periodic sequences, Doss-p-almost periodic sequences and
Besicovitch-p-almost periodic sequences somewhere else (1 ≤ p < ∞).

4.4. Almost Periodic Type Solutions of the Abstract Higher-Order Impulsive Cauchy Problems

We will first explain how the results established in the previous three subsections can
be used in the analysis of the existence and uniqueness of almost periodic type solutions for
certain classes of the abstract higher-order impulsive (degenerate) Cauchy problems. Here,
the idea is to convert these problems into the equivalent abstract impulsive (degenerate)
Cauchy problems of first order on the product spaces.

Suppose, for example, that the operator A generates a strongly continuous semigroup
on X as well as that B is a closed densely defined operator on X with D(A) ⊆ D(B).
Applying [47] (Theorem 3), we conclude that there exists a real number ω > 0 such that,
for every λ ∈ C with <λ > ω, the matricial operator

D :=

[
A− λ I

B −λ

]

generates an exponentially decaying strongly continuous semigroup (T(t))t≥0 on X× X.
Suppose, further, that u1 ∈ D(A), u2 ∈ X, and t 7→ f1,2(t), t ≥ 0 are continuously differen-
tiable and asymptotically almost periodic. Using Lemma 1(ii) and a simple computation
with the variation of parameters formula, we can reformulate all established conclusions
from the previous three subsections of this paper in the analysis of the abstract impulsive
Cauchy problem

u′′(t)− (A− 2λ)u′(t)− [λ(A− λ) + B]u(t) = f ′1(t) + λ f1(t) + f2(t), t ≥ 0;

(∆u)(tk) = yk
0; (∆u′)(tk) = yk

1 + (A− λ)yk
0;

u(0) = u1, u′(0) = u2 + (A− λ)u1 + f1(0).

Without going into full details, we will only emphasize that the certain classes of the abstract
degenerate second-order Cauchy problems with impulsive effects can also be analyzed in a
similar manner by reduction to the abstract degenerate first-order Cauchy problems with
impulsive effects on product spaces; see, e.g., [25] (Example 2.5(ii)), where we analyzed
the well-posedness of the damped Poisson-wave type equations in Lp-spaces (it would be
very tempting to apply the same method to the abstract higher-order Cauchy problems
considered in [48]).
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In the existing literature, the authors have found many interesting criteria ensuring
that a strongly continuous operator family (R(t))t≥0 ⊆ L(X) is (asymptotically) almost
periodic, i.e., the mapping t 7→ R(t)x, t ≥ 0 is (asymptotically) almost periodic for every
fixed element x ∈ X; cf. [7] for more details. Such operator families can be important in the
analysis of the existence and uniqueness of the almost periodic type solutions for certain
classes of the abstract impulsive Volterra integro-differenital inclusions, as the following
illustrative example indicates.

Example 5. The existence and uniqueness of almost periodic solutions for a class of the complete
second-order Cauchy problems have been considered by T.-J. Xiao and J. Liang [22] (Section 7.1.2)
under the assumption that the corresponding problem is strongly well-posed. Specifically, the
authors analyzed the abstract Cauchy problem

u′′(t) +
(
aA0 + bI

)
u′(t) +

(
cA0 + dI

)
u(t) = 0, t ≥ 0,

where a, b, c, d ∈ C and the operator A0 is a closed linear operator with domain and range
contained in a Banach space X. In the case that X := L2[0, 1] and A0 is the Dirichlet Laplacian, the
authors have shown that both propagator families, (S0(t))t≥0 and (S1(t))t≥0, are almost periodic. If
so, then we can consider the piecewise continuous almost periodic solutions of the following abstract
impulsive Cauchy problem

(ACP)2 :


u′′(t) +

(
aA0 + bI

)
u′(t) +

(
cA0 + dI

)
u(t) = 0,

t ∈ [0, ∞) \ {t1, . . . , tl , . . .},(
∆u(j))(tk

)
= u(j)(tk+

)
− u(j)(tk−

)
= yk

j , k ∈ N, j = 0, 1;
u(j)(0) = uj, j = 0, 1,

where 0 < t1 < . . . < tl < . . . < +∞ and the sequence (tl)l has no accumulation point. Due
to the consideration from [25], the function u(t) = S0(t)u0 + S1(t)u1 + ω(t), t ≥ 0, where
ω(t) := ∑1

j=0[Sj(t − t1)y1
j + . . . + Sj(t − tk)yk

j ] if t ∈ (tk, tk+1] for some k ∈ N, is a unique
solution of (ACP)2. Arguing as in Example 6 below, we may conclude that the assumptions
∑k≥1 ‖yk

0‖ < +∞ and ∑k≥1 ‖yk
1‖ < +∞ imply that there exist an almost periodic function

f : [0, ∞)→ X and a function q ∈ PC0([0, ∞) : X) such that u(t) = f (t) + q(t) for all t ≥ 0.

5. Almost Periodic Type Solutions of the Abstract Volterra Integro-Differential
Inclusions with Impulsive Effects

Let us consider the following abstract impulsive Volterra integro-differential inclusion:

Bu(t) ⊆A
∫ t

0
a(t− s)u(s)ds +F (t), t ∈ [0, T] \ {t1, . . . , tl};

(∆u)(tm) = Cym, m = 1, . . . , l, (10)

where 0 ≡ t0 < t1 < . . . < tl < T ≡ tl+1, where 0 < T ≤ ∞, a ∈ L1
loc([0, τ)), a 6= 0,

F : [0, τ)→ P(E), andA : X → P(E), B : X → P(E) are two given mappings, as well as the
well-posedness of the following abstract impulsive Volterra integro-differential inclusion:

Bu(t) ⊆A
∫ t

0
a(t− s)u(s)ds +F (t), t ∈ [0, ∞) \ {t1, . . . , tl , . . .};

(∆u)(tl) = Cyl , l ≥ 1, (11)

where 0 ≡ t0 < t1 < . . . < tl < tl+1 < . . . < +∞, the sequence (tl)l has no accumulation
point, a ∈ L1

loc([0, ∞)), a 6= 0, F : [0, ∞)→ P(E), and A : X → P(E), B : X → P(E) are two
given mappings.

The notion of a (pre-)solution of (10) [(11)] and the notion of a strong solution
of (10) [(11)] have recently been introduced in [25]. We recall the following result from the
same paper:
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Lemma 2. (i) Suppose that a(t) and k(t) are kernels, k(0) = 1, C2 ∈ L(X), and A is a closed
subgenerator of a mild (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ) ⊆ L(X), where
τ > T. Define F (t) := 0 for t ∈ [0, t1] and F (t) := ∑m

s=1 k(t− ts)C2ys if t ∈ (tm, tm+1]
for some integer m ∈ Nl . Define also u(t) := 0 for t ∈ [0, t1] and u(t) := ∑l

s=1 R2(t− ts)ys
if t ∈ (tm, tm+1] for some integer m ∈ Nl . If y1, . . . , yl ∈ D(A), then u(t) is a unique strong
solution of problem (10) on [0, T].

(ii) Suppose that a(t) and k(t) are kernels, k(0) = 1, C1 ∈ L(X, E), and A is a closed subgenera-
tor of a mild (a, k)-regularized C1-existence family (R1(t))t∈[0,τ) ⊆ L(X, E), where τ > T.
Define F (t) and u(t) in the same way as above, with the operator C2 replaced therein with
the operator C1 and the elements y1, . . . , yl ∈ X. Then, u(t) is a solution of problem (10) on
[0, T].

In a global version of Lemma 2, which can be very simply formulated, we do not need
the separation condition δ0 > 0 on the sequence (tk). For the sequel, we need to recall the
following special consequences of [8] (Proposition 3.1.15(i)):

(i) Suppose that α ∈ (0, 1), u0 ∈ D(A) as well as C−1 f , fA ∈ C([0, ∞) : X), fA(t) ∈
AC−1 f (t), t ≥ 0, and A is a closed subgenerator of a (gα, C)-regularized resolvent
family (R(t))t≥0. Then, the function u(t) := R(t)x + (R ∗ C−1 f )(t), t ≥ 0 is a unique
solution of the following abstract fractional Cauchy inclusion:

u ∈ C1((0, ∞) : X) ∩ C([0, ∞) : X),
Dα

t u(t) ∈ Au(t) +
(

g1−α ∗ f
)
(t), t ≥ 0,

u(0) = Cu0.

(ii) Suppose that α ∈ (1, 2), u0 ∈ D(A) as well as C−1 f , fA ∈ C([0, ∞) : X), fA(t) ∈
AC−1 f (t), t ≥ 0, and A is a closed subgenerator of a (gα, C)-regularized resolvent
family (R(t))t≥0. Set v(t) := (g2−α ∗ f )(t), t ≥ 0. If v ∈ C1([0, ∞) : X), then the
function u(t) := R(t)x + (R ∗ C−1 f )(t), t ≥ 0 is a unique solution of the following
abstract fractional Cauchy inclusion:

u ∈ C2((0, ∞) : X) ∩ C1([0, ∞) : X),
Dα

t u(t) ∈ Au(t) + d
dt
(

g2−α ∗ f
)
(t), t ≥ 0,

u(0) = Cu0, u′(0) = 0.

Keeping in mind this result, Lemma 2 and the second equality in [49] (1.21), we have
the following:

Theorem 10. Suppose that u0 ∈ D(A), C−1 f , fA ∈ C([0, ∞) : X), fA(t) ∈ AC−1 f (t), t ≥ 0,
and A is a closed subgenerator of a global (gα, C)-regularized resolvent family (R(t))t≥0 ⊆ L(X).
Define F0(t) := 0 for t ∈ [0, t1] and F0(t) := ∑m

s=1 Cys if t ∈ (tm, tm+1] for some integer m ∈ N.
Define also ω(t) := 0 for t ∈ [0, t1] and ω(t) := ∑l

s=1 R(t− ts)ys if t ∈ (tm, tm+1] for some
integer m ∈ N, and assume that y1, . . . , yl , . . . . ∈ D(A).
(i) Suppose that α ∈ (0, 1). Then, the function u(t) := R(t)u0 +

∫ t
0 R(t− s)(C−1 f )(s) ds +

ω(t), t ≥ 0 is piecewise continuous, and it is a unique strong solution of problem (10) on
[0, ∞) with B = I, a(t) = gα(t) and F (t) = Cu0 +

∫ t
0 f (s) ds +F0(t), t ≥ 0.

(ii) Suppose that α ∈ (1, 2) and the mapping t 7→ (g2−α ∗ f )(t), t ≥ 0 is continuously differ-
entiable. Then, the function u(t) := R(t)u0 +

∫ t
0 R(t− s)(C−1 f )(s) ds + ω(t), t ≥ 0 is

piecewise continuous, and it is a unique strong solution of problem (10) on [0, ∞) with B = I,
a(t) = gα(t) and F (t) = Cu0 +

∫ t
0 f (s) ds +F0(t), t ≥ 0.

Concerning the existence and uniqueness of the asymptotically almost periodic type
solutions of problem (10) on [0, ∞) with B = I and F (t) = Cu0 +

∫ t
0 f (s) ds + F0(t),

t ≥ 0, we will present the following extremely important situation in which all conclusions
established in the previous section continue to hold.
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Suppose that A is a densely defined, closed linear operator, 1 < α < 2, M > 0, ω < 0,
Ω ≡ (ω + {λ ∈ C \ {0} : arg(−λ) < θ})c ⊆ ρC(A) for some number θ ∈ [0, π(1− (α/2))),
‖(λ− A)−1C‖ ≤ M/|λ−ω|, λ ∈ Ω, and the mapping λ 7→ (λ− A)−1C is analytic in an
open neighborhood of the set Ω. Then, we know that the operator A is a subgenerator of
a global (gα, C)-regularized resolvent family (R(t))t≥0 satisfying that there exists M′ > 0
such that ‖R(t)‖ ≤ M′/(1 + |ω|tα), t ≥ 0; see, e.g., the proof of E. Cuesta’s result [15]
(Theorem 1) and [7] (Section 3.4) for many important generalizations of this result.

Suppose now that all requirements of Theorem 10 hold, the sequence (tk) has no
accumulation point (the separation condition δ0 > 0 is complete regardless here) and
∑k≥1(tα

k + 1)‖yk‖ < +∞. Then, the function ω(·) defined in the proof of Theorem 10(ii)
belongs to the space PCα;1([0, ∞) : X) ≡ { f ∈ PC([0, ∞) : X) ; ·α‖ f (·)‖ ∈ L∞([0, ∞) : X)}
since for each k ∈ N and t ∈ (tk, tk+1] we have

∥∥tαω(t)
∥∥ ≤ M′

k

∑
l=1

[
tα

1 + |ω|(t− tl)α
‖yl‖

]
≤ M′2α−1

k

∑
l=1

[
(t− tl)

α + tα
l

1 + |ω|(t− tl)α
‖yl‖

]

≤ M′2α−1
k

∑
l=1

[(
(1/|ω|) + tα

l

)
‖yl‖

]
≤ M′2α−1

∞

∑
l=1

[(
(1/|ω|) + tα

l

)
‖yl‖

]
. (12)

Concerning the function C−1 f (·), we can assume that there exists a bounded Stepanov-
p-almost periodic function g : R → X and a function q ∈ PC0([0, ∞) : X), for some
p ∈ [1, ∞), such that C−1 f (t) = g(t) + q(t) for all t ≥ 0. Then, the function t 7→ u(t)−ω(t),
t ≥ 0 will be asymptotically almost periodic in the usual sense; see, e.g., [7] (Proposition
2.6.11, Remark 2.6.12, Proposition 2.6.13). Observe also that the obtained conclusion
on the existence and uniqueness of asymptotically almost periodic solutions cannot be
established in the case that 0 < α < 1 since, in this case, the resolvent (R(t))t>0 is not
uniformly integrable; for example, in Figure 2 we have constructed the graph of the (g1/3, I)-
regularized resolvent family (R(t))t≥0 ≡ (E1/3(−2t1/3))t≥0 which satisfies an estimate of
the type ‖R(t)‖ ∼ ct−(1/3), t→ +∞; of course, here we have A = A = −2I and X = C.

20 40 60 80 100
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Figure 2. Graph of E1/3(−2t1/3), where E1/3(·) ≡ E1/3,1(·) is the Mittag–Leffler function.

All other results established in the previous section continue to hold, as marked
above. After a careful inspection of the proofs of [32] (Lemma 3.6, Theorem 3.7), it suffices
to observe that the uniform convergence in the corresponding part of the proof of [32]
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(Theorem 3.7; cf. (3.36), p. 14) is a consequence of the following simple computation, where
we assume that the sequence (yk) is bounded:

∥∥R(ti−k − t)yi−k
∥∥ ≤ N sup

i∈N

1
1 + |ω|(t− ti−k)α

≤ N sup
i∈N

1
1 + |ω|(t− ti)α + |ω|(ti − ti−k)α

≤ N
1

1 + |ω|(kδ0)α
,

for some finite real constant N > 0. In conclusion, we have the following: if (yk)k∈N is
an almost periodic sequence, the separation condition δ0 > 0 holds, and the family of
sequences (tj

k)k∈N, j ∈ N is equipotentially almost periodic. Then, the function ω(·) is
piecewise continuous almost periodic.

It should be noted that the obtained results can be applied to the abstract (non-coercive)
differential operators in Lp-spaces; cf. [50] (Section 2.5) for further information in this
direction.

Remark 9. Consider now the situation in which γ ∈ (0, 1), u0 ∈ D(A), and A satisfies con-
dition (P) analyzed in [51] and [7] (Subsection 2.9.1). If we consider the subordinated resolvent
families (Sγ(t))t>0 and (Rγ(t))t>0 from [7], then the function uh(t) := Sγ(t)x + (Rγ ∗ f )(t),
t ≥ 0 is a unique solution of the following abstract fractional Cauchy inclusion (under certain
reasonable assumptions): {

Dα
t uh(t) ∈ Auh(t) + f (t), t > 0,

uh(0) = u0.

Keeping in mind the second equality in [49] (1.21) and the initial condition u(0) = u0, we simply
conclude that the function uh(·) is a unique strong solution of the associated Volterra inclusion

uh(t) ∈ u0 +
(

gα ∗ f
)
(t) +A

(
gα ∗ uh

)
(t), t ≥ 0.

Suppose now that F0(t) := 0 for t ∈ [0, t1] and F0(t) := ∑m
s=1 ys if t ∈ (tm, tm+1] for some

integer m ∈ N, as well as that y1, . . . , yl , . . . . ∈ D(A). Define ω(t) := 0 for t ∈ [0, t1] and
ω(t) := ∑l

s=1 Sγ(t− ts)ys if t ∈ (tm, tm+1] for some integer m ∈ N, and assume that there exist
vectors z1, . . . , zl , . . . . from the continuity set of the resolvent operator family (Sγ(t))t>0 such that
zl ∈ Ayl for all l ∈ N; cf. also [25] (Example 2.5(i)). Then, the function ω(t) is a unique strong
solution of the abstract impulsive Volterra inclusion

ω(t) ∈ F0(t) +A
(

gα ∗ω
)
(t), t ∈ [0, ∞) \ {t1, t2, . . . , tl , . . .}.

Therefore, the function u(t) := uh(t) + ω(t), t ≥ 0 is a unique strong solution of the abstract
impulsive Volterra inclusion

u(t) ∈ u0 +
(

gα ∗ f
)
(t) +F0(t) +A

(
gα ∗ u

)
(t), t ∈ [0, ∞) \ {t1, t2, . . . , tl , . . .}. (13)

Concerning the existence and uniqueness of asymptotically almost periodic solutions of (13),
the situation is far from being simple because the operator family (Sγ(t))t>0 has an integrable
singularity at zero: we must impose certain extra assumptions in order for the proofs to work. This
can be simply completed for the analogues of the equations [32] ((3.27)–(3.28)) but, unfortunately,
this is almost impossible to be completed for the equation [32] (3.36) since the series ∑k≥1(kδ0)

−γ

diverges. Even the computation carried out in (12) cannot be so simply reconsidered in a newly
arisen situation.
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We continue by providing the following instructive example:

Example 6. Let α ∈ (0, 2) and θ = π − πα/2, and let us consider the following fractional
Cauchy problem

Dα
t u(t, x) = eiθuxx(t, x), 0 < x < 1, t ≥ 0;

cf. also [49] (Example 2.20). Suppose that X := L2[0, 1] and A := eiθ∆, where ∆ denotes the
Laplacian equipped with the Dirichlet boundary conditions. Then, we known that A is the integral
generator of an asymptotically almost periodic (gα, I)-resolvent family (R(t))t≥0 as well as that
(R(t))t≥0 is not almost periodic if α 6= 1; cf. [7] (Example 2.6.4).

Suppose now that u0, y1, y2, . . . , yl , . . . ∈ D(A) and ∑k≥1 ‖yk‖ < +∞. Define the function
ω(·) as in the formulation of Lemma 2(i), with k(t) ≡ 1 and C2 = I. Then, it can be simply
shown that the function u(t) := R(t)u0 + ω(t), t ≥ 0 is a unique strong solution of the abstract
Volterra Equation (10) with B = C = I, A = A, a(t) ≡ gα(t) and F (t) ≡ u0 + F0(t), where
F0(t) = y1 + . . . + yk if tk < t ≤ tk+1 for some k ∈ N0. By the assumption and the already
mentioned result about the extension of almost periodic functions [37], we know that for each
k ∈ N there exist an almost periodic function Rk

ap : R → X and a function Q ∈ C0([0, ∞) : X)

such that R(t − tk)yk = Rk
ap(t − tk) + Q(t − tk) for all t ≥ tk. Define Fk : [0, ∞) → X and

Qk : [0, ∞) → X by Fk(t) := Rk
ap(t − tk), t ≥ 0, Qk(t) := −Rk

ap(t − tk) for t ∈ [0, tk] and
Qk(t) := Q(t − tk) for t > tk. It can be simply shown that Fk(·) is almost periodic, Qk ∈
PC0([0, ∞) : X), ‖Fk(·)‖∞ ≤ ‖R(·)‖∞ · ‖yk‖, ‖Qk(·)‖∞ ≤ 3‖R(·)‖∞ · ‖yk‖ as well as that
χ[0,tk ]

(t)R(t − tk)yk = Fk(t) + Qk(t) for all t ≥ 0 and k ∈ N; cf. also [4] (Lemma 4.28,
Theorem 4.29). Since we have assumed that ∑k≥1 ‖yk‖ < +∞, the Weierstrass criterion implies
that the series ∑k≥1 Fk(t) =: F(t), t ≥ 0 and ∑k≥1 Qk(t) =: Q(t), t ≥ 0 are uniformly
convergent. Since PC0([0, ∞) : X) is a Banach space, it readily follows that Q ∈ PC0([0, ∞) : X);
on the other hand, it is clear that the function F(·) is almost periodic. Hence, the solution u(t) is
piecewise continuous asymptotically almost periodic since u(t) = F(t) + Q(t) for all t ≥ 0.

In [25], we have also considered the following Volterra integro-differential equation:

Bu(t) = f (t) +
∫ t

0
a(t− s)Au(s)ds, t ∈ [0, ∞) \ {t1, . . . , tl , . . .};

B(∆u)(tm) = CBym, m = 1, . . . , l, . . . , (14)

where t 7→ f (t), t ≥ 0 is a Lebesgue measurable mapping with values in X, a ∈ L1
loc([0, ∞)),

and A, B are closed linear operators with domain and range contained in X. The class
of exponentially bounded (a, k)-regularized C-resolvent family for (14) has recently been
introduced in [8] (Definition 2.2.2); cf. also [25] (Definition 4.4). We close this section with
the observation that we can similarly analyze, with the help of [25] (Theorem 4.6) and the
foregoing arguments, the existence and uniqueness of asymptotically almost periodic type
solutions of problem (14). Details can be left to the interested readers.

6. Conclusions and Final Remarks

In this research article, we have introduced and systematically analyzed several new
classes of piecewise continuous almost periodic type functions with values in complex
Banach spaces. The existence and uniqueness of almost periodic type solutions for certain
classes of the abstract impulsive Volterra integro-differential inclusions have been consid-
ered. In addition to the above, we have proposed many useful observations, illustrative
examples and open problems.

We close the paper by emphasizing a few important topics not considered in the
previous work:

1. As clearly marked in the final section of [35], the Levitan and Bebutov classes of
almost periodic type functions can be further generalized using the approaches of
Stepanov, Weyl and Besicovitch. The notion of a Stepanov 1-Levitan N-almost periodic
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function f : R → X has already been introduced in [27] (Definition 12, p. 402), and
the analogues of [27] (Lemmas 58 and 59) for Stepanov 1-Levitan N-almost periodic
functions have been clarified in [27] (Lemma 60). We will only note here that we
can similarly define the notion of a Stepanov p-Levitan N-almost periodic function
f : I → X, where 1 ≤ p < +∞. and prove an analogue of Theorem 1 for Stepanov
p-Levitan N-almost periodic functions. Details can be left to the interested readers.

2. The notion of a Bochner spatially almost automorphic sequence (tk)k∈Z has recently
been introduced by L. Qi and R. Yuan in [52] (Definition 3.1). Any Wekler sequence
(tk)k∈Z is Bochner spatially almost automorphic, while the converse statement is not
true in general. The authors have generalized the notion of piecewise continuous
almost periodicity by introducing and examining the classes of Bohr, Bochner and
Levitan piecewise continuous almost automorphic functions; in [52] (Theorem 4.8),
the authors have proved that these classes coincide. We will consider piecewise
continuous almost automorphic type functions and piecewise continuous almost
automorphic solutions to the abstract impulsive Volterra integro-differenital equations
somewhere else (cf. also the research article [16] by W. Dimbour and V. Valmorin for
the notion of S-almost automorphy).

3. The following notion is also meaningful (cf. Example 1): A function F : I × X → E
is said to be semi-(B, ω, c, (tk))-piecewise continuous periodic if and only if there
exists a sequence Fk : I × X → E in PPCω,c;(tk)

(I : X) which converges uniformly
to the function F(·; ·) on I × B for each set B ∈ B. The function F : I × X → E is
said to be semi-(B, ω, c)-piecewise continuous periodic if and only if F(·; ·) is semi-
(B, ω, c, (tk))-piecewise continuous periodic for some sequence (tk) constructed in the
same way as in Example 1; finally, we say that the function F : I × X → E is semi-
(B, c)-piecewise continuous periodic if and only if F(·; ·) is semi-(B, ω, c)-piecewise
continuous periodic for some number ω > 0.

Besides the class of semi-(B, ω, c)-piecewise continuous periodic functions, we can
also analyze many other classes of piecewise continuous almost periodic type functions
such as (S,B)-asymptotically (ω, ρ)-periodic functions, quasi-asymptotically (B, ρ)-almost
periodic (uniformly recurrent) functions, (B, ρ)-slowly oscillating functions and remotely
(B, ρ)-almost periodic (uniformly recurrent) functions; cf. [10] (Section 2.4) for more details
about these classes of functions with D = R or D = [0, ∞). Details and results will be given
somewhere else.

Let us finally note that some numerical results about impulsive integro-differential
equations are given in [53–55]; cf. also the references quoted therein.
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10. Kostić, M. Advances in Almost Periodicity; W. de Gruyter: Berlin, Germany, 2023.
11. Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Theory of Impulsive Differential Equations; World Scientific Publishing Co. Pte.

Ltd.: Singapore, 1989.
12. Levitan, M. Almost Periodic Functions; G.I.T.T.L.: Moscow, Russia, 1953. (In Russian)
13. Levitan, B.M.; Zhikov, V.V. Almost Periodic Functions and Differential Equations; University Publishing House: Moscow, Russia,

1978.
14. Bellow, A.; Losert, V. The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences. Trans.

Am. Math. Soc. 1985, 288, 307–345. [CrossRef]
15. Cuesta, E. Asymptotic behavior of the solutions of fractional integro-differential equations and some time discretizations. Discret.

Cont. Din. Syst. Suppl. 2007, 2007, 277–285.
16. Dimbour, W.; Valmorin, V. S-Almost Automorphic Functions and Applications. HAL Preprints (2020), hal-03014691. Available

online: https://hal.science/hal-03014691/ (accessed on 19 November 2020).
17. Ding, H.-S.; Long, W.; N’Guérékata, G.M. Almost periodic solutions to abstract semilinear evolution equations with Stepanov

almost periodic coefficients. J. Comput. Anal. Appl. 2011, 13, 231–242.
18. Haraux, A.; Souplet, P. An example of uniformly recurrent function which is not almost periodic. Fourier Anal. Appl. 2004, 10,

217–220. [CrossRef]
19. Nawrocki, A. Diophantine approximations and almost periodic functions. Demonstr. Math. 2017, 50, 100–104. [CrossRef]
20. Tkachenko, V. Almost periodic solutions of evolution differential equations with impulsive action. In Mathematical Modeling and

Applications in Nonlinear Dynamics; Nonlinear Systems and Complexity; Springer: Cham, Switzerland, 2016; Volume 14.
21. Stamov, G.T. Almost Periodic Solutions of Impulsive Differential Equations; Springer: Berlin/Heidelberg, Germany, 2012.
22. Xiao, T.-J.; Liang, J. The Cauchy Problem for Higher–Order Abstract Differential Equations; Springer: Berlin, Germany, 1998.
23. Zaidman, S. Almost-Periodic Functions in Abstract Spaces; Pitman Research Notes in Math; Pitman: Boston, MA, USA, 1985;

Volume 126.
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