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Abstract: In this paper, we investigate the existence and uniqueness of minimizers of a fractional
variational problem generalized from the energy functional associated with a cantilever beam under
a uniformly distributed load. We apply the fractional Euler–Lagrange condition to formulate the
minimization problem as a boundary value problem and obtain existence and uniqueness results in
both L2 and L∞ settings. Additionally, we characterize the continuous dependence of the minimizers
on varying loads in the energy functional. Moreover, an approximate solution is derived via the
homotopy perturbation method, which is numerically demonstrated in various examples. The results
show that the deformations are larger for smaller orders of the fractional derivative.

Keywords: cantilever beam; existence and uniqueness of minimizers; fractional boundary value
problem; Euler–Lagrange theorem; homotopy perturbation method

1. Introduction

Fractional calculus is a branch of mathematics concerned with derivatives and in-
tegrals of non-integer order. It has been applied in various fields including chemistry,
biology, engineering, epidemic modeling, and viscoelasticity [1–4]. Several researchers
have investigated differential equations of arbitrary order, beginning with the existence
and uniqueness of solutions and moving on to analytical and computational techniques to
find solutions [5–8].

Although there are several engineering applications for the construction of bridges and
buildings, attentive analyses of elastic beam equations are required to ensure the stability
of the structure. A cantilever beam is a rigid structural element that is rigidly fixed at a
single point on one side while the other side is free. In structural engineering, the behavior
of cantilever beams is often analyzed using classical beam theory, which is based on the
assumptions of small deformations and linear elastic material behavior. In the context
of a cantilever beam, fractional calculus can be used to analyze the response of the beam
to external loads and predict its dynamic behavior under different conditions [9,10]. For
example, the motion of a cantilever beam subjected to a harmonic load can be described
using fractional differential equations. In addition, fractional calculus can be used to study
the beam’s natural frequencies and mode shapes, which are important characteristics that
influence its behavior [11,12].

Overall, employing fractional calculus in the analysis of cantilever beams can provide
more accurate predictions of the behavior of these structures under various load condi-
tions. By considering the effects of fractional derivatives on the stiffness and strength of
a cantilever beam, it is possible to better understand and predict its response to external
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loads. This can be useful for the design and optimization of cantilever beams in a variety
of applications. For example, the existence and uniqueness of solutions to the boundary
value problem of the cantilever beam were studied in the framework of quantum calculus
in [13] and the ψ−Hilfer derivative in [14]. In addition, the deflection of the cantilever
beam based on fractional calculus was also studied in [15,16]. Moreover, there are several
methods available for solving fractional differential equations including integral transform
techniques such as the Laplace and Fourier transforms, fixed-point techniques, and the
Adomian decomposition method. These methods can be used to analyze the behavior of
cantilever beams with fractional calculus and obtain the corresponding solutions.

One significant method for determining an elastica’s equilibrium forms is to derive
the condition for stationary of the total energy. Then, the corresponding boundary value
problems associated with ordinary differential equations are used to determine the equilib-
rium shapes. Della et al. [17] analyzed the equilibrium configuration of an elastica with
one end clamped under a uniformly distributed load, which is depicted in Figure 1.

y

x

θ
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Deformed position

P

θ

Figure 1. Undeformed and deformed positions of a cantilever beam subjected to a uniformly dis-
tributed load.

They investigated the sufficient conditions for the stability and instability of the
equilibrium shape of the elastica obtained from the minimization problem of the total
energy functional described bymin E(θ) =

1
2

∫ L

0

∣∣θ′(s)
∣∣2ds− P

∫ L

0
(L− s) sin θ(s)ds,

θ(0) = θ′(L) = 0,
(1)

where P, L, s, and θ denote the concentrated load, the length of the beam, the arc length,
and the tangent angle, respectively.

It is possible to use fractional calculus to analyze the behavior of cantilever beams.
In this approach, the beam is modeled as a dynamic system with memory and the govern-
ing equations of motion are described by fractional calculus operators. The solutions of
these equations can provide insights into the response of the beam under various loading
conditions and can be used to design and optimize the beam’s structural performance.

Motivated by previous works, we consider the generalization of the potential en-
ergy associated with the cantilever beam under the framework of fractional calculus and
determine the shape that minimizes the functional E and satisfies the boundary conditions:min E(θ) =

1
2

∫ L

0

∣∣∣C0Dα
s θ(s)

∣∣∣2ds− P
Γ(α + 1)

∫ L

0
(L− s)α sin θ(s)ds,

θ(0) = C
0Dα

s θ(s)
∣∣∣
s=L

= 0,
(2)

where P > 0 and
1
2

< α < 1 is the order of the Caputo fractional derivative. The
properties of the minimizers of the total energy can be characterized by the corresponding
Euler–Lagrange conditions.
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The aim of this paper is to use Euler–Lagrange conditions for Problem (2) to character-
ize the boundary value problem. Then, the well-known fixed-point theorems of Schaefer
and Banach are used to establish the existence and uniqueness of the solutions for these
boundary value problems. Different load values are analyzed for continuous dependence.
Finally, we approximate the analytical solution for various loads and fractional orders to
demonstrate the theoretical results. The main contribution of this paper is to provide an
analysis of the deflection of the cantilever beam through the fractional energy functional
derived from the physical and geometrical aspects in terms of the tangent angle or cur-
vature, which is complementary to [8,16]. This technique can be applied to analyze the
deformation of the cantilever beam under different load types.

The rest of the paper is organized as follows. In Section 2, we introduce some no-
tations and essential theoretical results on fractional calculus and calculus of variations.
In Section 3, the total energy is reformulated as a boundary value problem using Eu-
ler–Lagrange conditions. The existence and uniqueness results are proved via fixed-point
techniques in Section 4. Based on techniques from nonlinear functional analysis, we ana-
lyze the continuous dependence of minimizers on the different loads in Section 5. Finally,
the analytical solution is approximated by the homotopy perturbation method in Section 6.
We also present numerical examples to support the validity of the analytical results.

2. Preliminary Background of Fractional Calculus and Calculus of Variations

In this section, we first give some essential definitions and properties of fractional
differential operators and fractional integral operators.

Further details on this subject and its applications can be found, in [3,18,19].

2.1. Fractional Calculus

Let u be a real valued function defined on the interval [a, b] and Re(α) > 0.

Definition 1 (Fractional integral in the sense of Riemann–Liouville, [3]). The left and right
Riemann–Liouville fractional integral operators of order α of function u are defined, respectively, by

(
aIα

x u
)
(x) =

1
Γ(α)

∫ x

a
(x− s)α−1u(s)ds

and

(
xIα

b u
)
(x) =

1
Γ(α)

∫ b

x
(s− x)α−1u(s)ds,

for all x ∈ [a, b].

Definition 2 (Fractional derivative in the sense of Riemann–Liouville [3]). The left and right
Riemann–Liouville fractional derivatives of order α of a function u are defined, respectively, by

(
aDα

xu
)
(x) =

1
Γ(1− α)

d
dx

∫ x

a
(x− s)−αu(s)ds

and

(
xDα

b u
)
(x) = − 1

Γ(1− α)
d

dx

∫ b

x
(s− x)−αu(s)ds,

for all x ∈ [a, b].

We denote by AC([a, b]) the space of the functions defined on [a, b], which are abso-
lutely continuous.
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Definition 3 (Fractional derivative in the sense of Caputo, [3]). Let u ∈ AC([a, b]). The left
and right Caputo fractional derivatives are defined, respectively, byÄ

C
aDα

xu
ä

(x) =
1

Γ(1− α)

∫ x

a
(x− s)−αu′(s)ds

and Ä
C
xDα

b u
ä

(x) = − 1
Γ(1− α)

∫ b

x
(s− x)−αu′(s)ds,

for all x ∈ [a, b].

Remark 1. For 0 < α < 1, the Riemann–Liouville and Caputo fractional derivatives satisfy the
following relations: Ä

C
aDα

xu
ä

(x) =
(

aDα
xu
)
(x)− u(a)

Γ(1− α)
(x− a)−α

and Ä
C
xDα

b u
ä

(x) =
(

xDα
b u
)
(x)− u(b)

Γ(1− α)
(b− x)−α.

Lemma 1 (Fundamental Theorem of Caputo Calculus, [3]). Let 0 < α < 1 and let f be a
differentiable function on [a, b]. We have

aIα
x

Ä
C
aDα

xu
ä

(x) = u(b)− u(a)

and

xIα
b

Ä
C
xDα

b u
ä

(x) = u(a)− u(b).

2.2. Fractional Calculus of Variations

The fractional calculus of variations involves finding a function y that optimizes (mini-
mizes or maximizes) a certain functional that depends on y and its fractional derivatives.
Consider the optimization problem for the functional given by

J
[
y
]
=
∫ b

a
L
Ä

x, y, C
aDα

xy
ä

dx (3)

with a Lagrangian L ∈ C1
Ä

[a, b]×R2
ä

depending on y, which is a function of the indepen-
dent variable x and its left Caputo fractional derivative of order 0 < α < 1. For ξa, ξb ∈ R
given, we impose the boundary conditions:

y(a) = ξa, y(b) = ξb. (4)

Notice that J becomes a functional for the classical calculus of variations when α = 1.
We next state the Euler–Lagrange equation for the above problem.

Theorem 1 (The Euler–Lagrange Equation for a Functional with Caputo Derivatives, [20]).
Consider the optimization problem of the functional (3), where the Lagrangian L belongs to
C2
Ä

[a, b]×R2
ä

under the boundary conditions (4). If y ∈ C1[a, b] is an optimal solution, the frac-
tional Euler–Lagrange condition

∂L
(
x, y, C

aDα
xy
)

∂y
+ C

xDα
b

∂L
(
x, y, C

aDα
xy
)

C
aDα

xy
= 0.
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holds.

3. Boundary Value Problem Associated with Minimizers

To reformulate the minimization problem (2), we apply the Euler–Lagrange condition
in Theorem 1, where the Lagrangian has the form

L
Ä

s, θ, C
0Dα

s θ
ä

:=
1
2

∣∣∣C0Dα
s θ(s)

∣∣∣2 − P
Γ(α + 1)

(L− s)α sin θ(s).

Then, the extremum of the energy functional in Equation (2) is as follows:

C
s Dα

L

Ä
C
0Dα

s θ(s)
ä
=

P
Γ(α + 1)

(L− s)α cos θ(s). (5)

To study the nonlinear problem (5), we first reformulate it into an integral equation in
the following section.

Lemma 2. The solution of (5) satisfies

θ(s) = θ(0) + P
Ä

C
0 Iα

s
C
s Iα

L(L− s)α cos θ(s)
ä

+
( s

L

)α
Å

θ(L)− θ(0)− P
Γ(α + 1)

(
C
0 Iα

s
C
s Iα

L(L− s)α cos θ(s)
∣∣∣
s=L

)ã
.

Moreover, if θ(0) = 0 and θ(L) = c, we have that

θ(s) =
P

Γ(α + 1)

(
C
0 Iα

s
C
s Iα

L(L− s)α cos θ(s)−
( s

L

)α C
0 Iα

s
C
s Iα

L(L− s)α cos θ(s)
∣∣∣
s=L

)
+
( s

L

)α
θ(L)

=
P

Γ(α + 1)

Ç
1

(Γ(α))2

∫ s

0
(s− x)α−1

∫ L

x
(τ − x)α−1(L− τ)α cos θ(τ)dτdt

−
( s

L

)α 1
(Γ(α))2

∫ L

0
(L− t)α−1

∫ L

x
(τ − x)α−1(L− τ)α cos θ(τ)dτdt

å
+
( s

L

)α
θ(L).

Proof. We integrate (5) twice by applying the right fractional integral operator followed by
the left fractional integral operator to obtain

C
0 Iα

s

Ä
C
s Iα

L

Ä
C
s Dα

L

Ä
C
0Dα

s θ(s)
äää
− P

Γ(α + 1)
C
0 Iα

s

Ä
C
s Iα

L(L− s)α cos θ(s)
ä
= 0.

Next, we apply the composition rule and property from Lemma 1 on [s, L] to obtain

C
0 Iα

s

(
C
0Dα

s θ(s)− C
0Dα

s θ(s)
∣∣∣
s=L

)
=

P
Γ(α + 1)

C
0 Iα

s

Ä
C
s Iα

L(L− s)α cos θ(s)
ä

.

Since the value C
0Dα

s θ(s)
∣∣∣
s=L

is a constant, this yields that

θ(s)− θ(0)− C
0Dα

s θ(s)
∣∣∣
s=L

sα

Γ(α + 1)
=

P
Γ(α + 1)

C
0 Iα

s

Ä
C
s Iα

L(L− s)α cos θ(s)
ä

. (6)

In the above equation, we see that the unknown value C
0Dα

s θ(s)
∣∣∣
s=L

can be determined
due to the boundary condition. We substitute s = L into (6) to give

C
0Dα

s θ(s)
∣∣∣
s=L

=
Γ(α + 1)

Lα

Å
θ(L)− θ(0)− P

Γ(α + 1)

(
C
0 Iα

s
C
s Iα

L(L− s)α cos θ(s)
∣∣∣
s=L

)ã
. (7)



Fractal Fract. 2023, 7, 141 6 of 17

As a consequence of (7) and (6), we obtain the integral form of (5) in the following:

θ(s) = θ(0) + P
Ä

C
0 Iα

s
C
s Iα

L(L− s)α cos θ(s)
ä

+
( s

L

)α
Å

θ(L)− θ(0)− P
Γ(α + 1)

(
C
0 Iα

s
C
s Iα

L(L− s)α cos θ(s)
∣∣∣
s=L

)ã
.

Hence, the proof is complete.

Corollary 1. The solution of (5) subject to θ(0) = C
0Dα

s θ(s)
∣∣∣
s=L

= 0 satisfies the integral equation

θ(s) =
P

Γ(α + 1)

∫ L

0
H(s, τ)(L− τ)α cos θ(τ)dτ,

where

H(s, τ) =
1

(Γ(α))2 ×


∫ τ

0
(s− x)α−1(τ − x)α−1dt, 0 ≤ τ ≤ s ≤ L,∫ s

0
(s− x)α−1(τ − x)α−1dt, 0 ≤ s ≤ τ ≤ L.

Proof. From Equation (6) in Lemma 2, we obtain

θ(s) =
P

Γ(α + 1)

Ä
C
0 Iα

s
C
s Iα

L(L− s)α cos θ(s)
ä

(8)

=
P

(Γ(α))2

∫ s

0
(s− σ)α−1

∫ L

σ
(σ′ − σ)α−1(L− σ′)α cos θ(σ′)dσ′dσ.

Applying the Fubini’s theorem, we obtain

θ(s) =
P

(Γ(α))2

∫ s

0

∫ τ

0
(s− x)α−1(τ − x)α−1(L− τ)α cos θ(τ)dxdτ

+
P

(Γ(α))2

∫ L

s

∫ s

0
(s− x)α−1(τ − x)α−1(L− τ)α cos θ(τ)dxdτ.

Then, we obtain its solution in terms of a Green function.

Remark 2. When the load P is small, we may consider the behavior of the solution of the following
boundary value problem

C
s Dα

L

Ä
C
0Dα

s θ(s)
ä
=

P
Γ(α + 1)

(L− s)α, 0 < s < L,

θ(0) = C
0Dα

s θ(s)
∣∣∣
s=L

= 0.

Here, we approximate cos θ by 1, which is a legitimate approximation when P is small. For this
problem, we obtain

θ(s) =
P

(Γ(α))2

∫ s

0
(s− σ)α−1

∫ L

σ
(σ′ − σ)α−1(L− σ′)αdσ′dσ

=
αP

Γ(2α + 1)

∫ s

0
(s− σ)α−1(L− σ)2αdσ.

Lemma 3. The functionH is continuous, non-negative and

H(s, τ) ≤ L2α−1

(2α− 1)(Γ(α))2 , for all s, τ ∈ [0, L].
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4. Existence and Uniqueness Results

This section is devoted to proving the existence and uniqueness of the solutions for
the following problem:

C
s Dα

L

Ä
C
0Dα

s θ(s)
ä
=

P
Γ(α + 1)

(L− s)α cos θ(s), 0 < s < L,

θ(0) = C
0Dα

s θ(s)
∣∣∣
s=L

= 0
(9)

where
1
2
< α < 1. We apply Corollary 1 to define the integral operator K from C[0, L] to

C[0, L] as

(Kθ)(s) =
P

Γ(α + 1)(Γ(α))2

∫ s

0
(s− x)α−1

∫ L

x
(τ − x)α−1(L− τ)α cos θ(τ)dτdx

=
P

Γ(α + 1)

∫ L

0
H(s, τ)(L− τ)α cos θ(τ)dτ. (10)

Theorem 2. The initial value problem (9) attains at least one solution θ in C[0, L] .

Proof. Schaefer’s fixed-point theorem is used to show that the operator K given by (10)
has a fixed point. We outline the proof in the following steps.

Step 1: K is a continuous operator.
Let {θm} be a convergent sequence with θm → θ in C[0, L]. For each s ∈ [0, L], we have

|(Kθm)(s)− (Kθ)(s)| ≤ P
Γ(α + 1)

∫ L

0
|H(s, τ)||(L− τ)α(cos θ(τ)− cos θm(τ))|dτ

≤ P
Γ(α + 1)

sup
τ∈[0,L]

|(L− τ)α(cos θ(τ)− cos θm(τ))|
∫ L

0
|H(s, τ)|dτ

≤ P
Γ(α + 1)

Lα sup
τ∈[0,L]

|θ(τ)− θm(τ)|
∫ L

0

L2α−1

(2α− 1)(Γ(α))2 dτ

≤ P
(2α− 1)Γ(α + 1)(Γ(α))2 L3α sup

τ∈[0,L]
|θ(τ)− θm(τ)|.

It follows that

‖Kθm −Kθ‖∞ ≤
P

(2α− 1)Γ(α + 1)(Γ(α))2 L3α‖θ − θm‖∞

which implies that

‖Kθm −Kθ‖∞ → 0 as m→ ∞.

Step 2: The image of a bounded set in C[0, L] under K is also a bounded set.
We show that there is a positive constant ` > 0 such that

∀θ ∈ Bη∗ = {θ ∈ C[0, L] : ‖θ‖∞ ≤ η∗},

and ‖Kθ‖∞ ≤ ` for η∗ > 0. Indeed, for any s ∈ [0, L], by the boundedness of the nonlinear
term we have

|(Kθ)(s)| ≤ P
Γ(α + 1)

∫ L

0
H(s, τ)(L− τ)α|cos θ(τ)|dτ

≤ PLα

Γ(α + 1)

∫ L

0
H(s, τ)dτ
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≤ PL3α

(2α− 1)Γ(α + 1)(Γ(α))2 ,

thus,

‖Kθ‖∞ ≤ `

where

` =
PL3α

(2α− 1)Γ(α + 1)(Γ(α))2 .

Step 3: The image of a bounded set in C[0, L] under K is an equicontinuous set.
Let s1, s2 ∈ [0, L] such that s1 < s2 and θ ∈ Bη∗ , which is a bounded set of C[0, L], as

above. Then, we see that

|(Kθ)(s2)− (Kθ)(s1)|

≤ P
Γ(α + 1)

∫ L

0
|(H(s2, τ)−H(s1, τ))(L− τ)α cos θ(τ)|dτ

≤ PLα

Γ(α + 1)

∫ L

0
|H(s2, τ)−H(s1, τ)|dτ

=
PLα

Γ(α + 1)

Å∫ s1

0
|H(s2, τ)−H(s1, τ)|dτ +

∫ s2

s1

|H(s2, τ)−H(s1, τ)|dτ

+
∫ L

s2

|H(s2, τ)−H(s1, τ)|dτ

ã
=

PLα

Γ(α + 1)(Γ(α))2

Å∫ s1

0

∣∣∣∣∫ τ

0

î
(s2 − t)α−1 − (s1 − t)α−1

ó
(τ − t)α−1dt

∣∣∣∣dτ

+
∫ s2

s1

∣∣∣∣∫ τ

0
(s2 − t)α−1(τ − t)α−1dt−

∫ s1

0
(s1 − t)α−1(τ − t)α−1dt

∣∣∣∣dτ

+
∫ L

s2

∣∣∣∣∫ s2

0
(s2 − τ)α−1(τ − t)α−1dt−

∫ s1

0
(s1 − τ)α−1(τ − t)α−1dt

∣∣∣∣dτ

ã
≤ PLα

Γ(α + 1)(Γ(α))2

Å∫ s1

0

∫ τ

0

Ä
(s1 − t)α−1 − (s2 − t)α−1

ä
(τ − t)α−1dtdτ

+
∫ L

s1

∫ s1

0

Ä
(s1 − t)α−1 − (s2 − t)α−1

ä
(τ − t)α−1dtdτ

+
∫ s2

s1

∫ τ

s1

(s2 − t)α−1(τ − t)α−1dtdτ

+
∫ L

s2

∫ s2

s1

(s2 − t)α−1(τ − t)α−1dtdτ

ã
≤ PLα

Γ(α + 1)(Γ(α))2

Ç
(1− α)(s2 − s1)s1

2α−1

(2α− 2)(2α− 1)
+

(1− α)(s2 − s1)(L− s1)s1
2α−2

2α− 2

+
(s2 − s1)2α−1(L− s2)

(2α− 1)
+

(s2 − s1)2α

2α(2α− 1)

å
.

As s1 → s2, the right-hand side of the above inequality tends to zero. Following Step 1
to Step 3 and the Arzelá–Ascoli theorem, K : C[0, L]→ C[0, L] is completely continuous.

Step 4: A priori bounds. Let ε = {θ ∈ C[0, L] : θ = λKθ for some 0 < λ < 1}. We claim
that ε is bounded. Let θ ∈ ε, then θ = λKθ for some 0 < λ < 1. Hence, ∀s ∈ [0, L],

θ = λKθ = λ

Å
P

Γ(α + 1)

∫ L

0
H(s, τ)(L− τ)α cos θ(τ)dτ

ã
.
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By the condition in Step 2, we obtain

|θ(s)| ≤ L3αP
(2α− 1)Γ(α + 1)(Γ(α))2

and hence for every s ∈ [0, L],

‖θ‖∞ ≤
L3αP

(2α− 1)Γ(α + 1)(Γ(α))2 := R.

This implies the boundedness of the set ε.
Consequently, Schaefer’s fixed-point theorem assures that K attains a fixed point,

which is a solution of the boundary value problem (9).

Theorem 3. Problem (9) has a unique solution θ in C[0, L] if

PL3α

Γ(2α + 1)
< 1.

Proof. We show that K is a contraction. For any θ, θ̃ ∈ C[0, L] and s ∈ [0, L], we have

|(Kθ) (s)−
(
Kθ̃
)
(s)
∣∣

=
P

Γ(α + 1)(Γ(α))2

∣∣∣∣∫ s

0
(s− x)α−1

∫ L

x
(τ − x)α−1(L− τ)α(cos θ(τ)− cos θ̃(τ)

)
dτdx

∣∣∣∣
≤ P

Γ(α + 1)(Γ(α))2

∫ s

0
(s− x)α−1

∫ L

x
(τ − x)α−1(L− τ)α

∣∣θ(τ)− θ̃(τ)
∣∣dτdx

≤ P
Γ(α + 1)(Γ(α))2

∥∥θ − θ̃
∥∥

∞

∫ s

0
(s− x)α−1

∫ L

x
(τ − x)α−1(L− τ)αdτdx

=
PB(α, α + 1)

Γ(α + 1)(Γ(α))2

∥∥θ − θ̃
∥∥

∞

∫ s

0
(s− x)α−1(L− t)2αdt

≤ αP
Γ(2α + 1)

∥∥θ − θ̃
∥∥

∞L2α
∫ s

0
(s− x)α−1dt

=
αP

Γ(2α + 1)

∥∥θ − θ̃
∥∥

∞L2α
Å

sα

α

ã
≤ PL3α

Γ(2α + 1)

∥∥θ − θ̃
∥∥

∞.

It follows that ‖Kθ − Kθ̃
∥∥

∞ ≤
PL3α

Γ(2α + 1)

∥∥θ − θ̃
∥∥

∞.

We also establish the existence and uniqueness results with respect to the L2 norm.

Theorem 4. Problem (9) has a unique solution θ in L2[0, L] if

PL3α

2αΓ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

2(2α− 1)Γ(4α)
< 1. (11)

Proof. It is obvious that K is self-mapping on L2[0, L]. We show that K is a contraction.
For any θ, θ̃ ∈ L2[0, L] and s ∈ [0, L], we use Hölder’s inequality to obtain

|(Kθ) (s)−
(
Kθ̃
)
(s)
∣∣

=
P

Γ(α + 1)(Γ(α))2

∣∣∣∣∫ s

0
(s− x)α−1

∫ L

x
(τ − x)α−1(L− τ)α(cos θ(τ)− cos θ̃(τ)

)
dτdx

∣∣∣∣
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≤ P
Γ(α + 1)(Γ(α))2

∫ s

0
(s− x)α−1

∫ L

x
(τ − x)α−1(L− τ)α

∣∣θ(τ)− θ̃(τ)
∣∣dτdx

≤ P
Γ(α + 1)(Γ(α))2

∫ s

0
(s− x)α−1

Å∫ L

x
(τ − x)2α−2(L− τ)2αdτ

ã 1
2

×
Å∫ L

x

∣∣θ(τ)− θ̃(τ)
∣∣2dτ

ã 1
2

dx

≤
P
∥∥θ − θ̃

∥∥
L2[0,L]

Γ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

Γ(4α)

∫ s

0
(s− x)α−1(L− t)2α− 1

2 dx

≤
P
∥∥θ − θ̃

∥∥
L2[0,L]

Γ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

Γ(4α)

Å∫ s

0
(s− x)2α−2dx

ã 1
2
Å∫ s

0
(L− x)4α−1dx

ã 1
2

=
P

Γ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

Γ(4α)

Ç
L4α

4α

å 1
2
Ç

s2α−1

2α− 1

å 1
2 ∥∥θ − θ̃

∥∥
L2[0,L].

It follows that

‖Kθ − Kθ̃
∥∥

L2[0,L]

=

Å∫ L

0

∣∣(Kθ)(s)−
(
Kθ̃
)
(s)
∣∣2ds
ã 1

2

≤

Ö∫ L

0

∣∣∣∣∣∣ P
Γ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

Γ(4α)

Ç
L4α

4α

å 1
2
Ç

s2α−1

2α− 1

å 1
2 ∥∥θ − θ̃

∥∥
L2[0,L]

∣∣∣∣∣∣
2

ds

è 1
2

=
PL2α

Γ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

4αΓ(4α)

Ç∫ L

0

s2α−1

2α− 1
ds

å 1
2 ∥∥θ − θ̃

∥∥
L2[0,L]

=
PL2α

Γ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

4αΓ(4α)

Ç
L2α

(2α− 1)2α

å 1
2 ∥∥θ − θ̃

∥∥
L2[0,L]

=
PL3α

2αΓ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

2(2α− 1)Γ(4α)

∥∥θ − θ̃
∥∥

L2[0,L].

This implies that K is a contraction satisfying (11). Hence, the uniqueness of a fixed point
of the map K in L2[0, L] follows from the Banach contraction principle.

5. Continuous Dependence of Minimizers on Varying Loads

To study the continuity of minimizers when the load P changes, we begin with a
definition in terms of the branch of solutions.

Definition 4. Let us denote by θP̄ a solution of (5) with P = P̄, θ(0) = 0 and C
0Dα

s θ(s)
∣∣∣
s=L

= 0.
We say that the set of minimizers θP for P ∈ [0, B], with B > 0 is a branch of solutions if the maps
from [0, B] to L2[0, L] given by P 7→ θP and P 7→ C

0Dα
s θP are continuous functions of P.

According to the defined problem of the cantilever beam subjected to the downward
uniformly distributed load, the deflection shape of the beam is a concave down. Conse-

quently, the angle on [0, L] will be in the range of 0 to
π

2
according to the deflection shape.

Then, we obtain the following results.

Lemma 4. Let θP be a minimizer of the energy functional (explicitly depends on P). The function
P 7→ EP(θP) is a decreasing function.
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Proof. Let be P2 > P1. Then, we have

EP2

(
θP2

)
− EP1

(
θP1

)
= EP2

(
θP2

)
− EP2

(
θP1

)
+ EP2

(
θP1

)
− EP1

(
θP1

)
≤ P1 − P2

Γ(α + 1)

∫ L

0
(L− s)α sin θP1 (s)ds.

which implies that EP2

(
θP2

)
− EP1

(
θP1

)
is negative because sin θP1 is positive on [0, L] (see

Figure 1).

Proposition 1. The set of minimizers for the functional (2) forms a branch of solutions.

Proof. By Theorem 4, there exist P and P0, which satisfy (11) and provide the existence
and uniqueness of the minimizers for EP and EP0 , respectively. We prove that {θP} is a
minimizing sequence for EP0 if P→ P0.

For every ψ such that ψ and C
0Dα

s ψ in L2[0, L], we have

EP(ψ)− EP0 (ψ) =
P− P0

Γ(α + 1)

∫ L

0
(L− s)α sin ψ(s)ds ≤ Lα+1

(α + 1)Γ(α + 1)
|P− P0|.

Since θP is the minimizer of EP, it follows that

EP0 (ψ) = EP(ψ) + EP0 (ψ)− EP(ψ)

≥ EP(θP)− Lα+1

(α + 1)Γ(α + 1)
|P− P0|

= EP(θP)− EP0 (θP) + EP0 (θP)− Lα+1

(α + 1)Γ(α + 1)
|P− P0|

≥ EP0 (θP)− 2Lα+1

(α + 1)Γ(α + 1)
|P− P0|.

As the result holds for every ψ such that ψ and C
0Dα

s ψ in L2[0, L], this yields that

EP0 (θP) ≤ EP0

(
θP0

)
+

2Lα+1

(α + 1)Γ(α + 1)
|P− P0|

or equivalently,

EP0 (θP)− EP0

(
θP0

)
≤ 2Lα+1

(α + 1)Γ(α + 1)
|P− P0|.

It follows that {θP} is a minimizing sequence for EP0 .
Now, we consider the difference EP0 (θP)− EP0

(
θP0

)
and C

0Dα
s θP(s)− C

0Dα
s θP0 (s) as

EP0 (θP)− EP0

(
θP0

)
=

1
2

∫ L

0

Å∣∣∣C0Dα
s θP(s)

∣∣∣2 − ∣∣∣C0Dα
s θP0 (s)

∣∣∣2ãds− P0

Γ(α + 1)

∫ L

0
(L− s)α

(
sin θP(s)− sin θP0 (s)

)
ds

and

C
0Dα

s θP(s)− C
0Dα

s θP0 (s)

=
1

Γ(α + 1)

Ä
C
s Iα

L(L− s)α
(
P cos θP(s)− P0 cos θP0 (s)

)ä
=

P− P0

Γ(α + 1)

Ä
C
s Iα

L(L− s)α(cos θP(s))
ä
+

P0

Γ(α + 1)

Ä
C
s Iα

L(L− s)α
(
cos θP(s)− cos θP0 (s)

)ä
=

P− P0

Γ(α + 1)Γ(α)

∫ L

s
(τ − s)α−1(L− τ)α cos θP(τ)dτ
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+
P0

Γ(α + 1)Γ(α)

∫ L

s
(τ − s)α−1(L− τ)α

(
cos θP(τ)− cos θP0 (τ)

)
dτ.

Then, by direct calculation and using the dominated convergence theorem, we obtain∥∥∥C
0Dα

s
(
θP − θP0

)∥∥∥2

L2[0,L]

= 2
(
EP0 (θP)− EP0

(
θP0

))
− 2

∫ L

0

Ä
C
0Dα

s θP0 (s)
äÄ

C
0Dα

s
(
θP − θP0

)ä
ds

+
2P0

Γ(α + 1)

∫ L

0
(L− s)α

(
sin θP(s)− sin θP0 (s)

)
ds

≤ 4Lα+1

(α + 1)Γ(α + 1)
|P− P0|

− 2
Γ(α + 1)

∫ L

0

Ä
C
0Dα

s θP0 (s)
äÄ

C
s Iα

L(L− s)αP cos θP(s)− C
s Iα

L(L− s)αP0 cos θP0 (s)
ä

ds

+
2P0

Γ(α + 1)

∫ L

0
(L− s)α

(
sin θP(s)− sin θP0 (s)

)
ds→ 0

as P→ P0, which completes the proof.

6. Approximate Solutions and Numerical Examples

The homotopy perturbation method (HPM) was pioneered and developed by He [21].
This technique involves the introduction of an expanding parameter, which serves as an
alternative approach. Let A be a differential operator and B be a boundary operator. In
general, the HPM can be applied to nonlinear differential equations of the form

A(u)− f (r) = 0, r ∈ Ω (12)

with boundary conditions

B
Å

u(r),
∂u(r)

∂n

ã
= 0, r ∈ Γ

where Γ denotes the boundary of the domain Ω and f is a given analytical function.
The basic idea of the HPM is to split the operator A into linear and nonlinear parts

denoted by L and N, respectively, so that (12) can be rewritten as

L(u)(r) + N(u)(r)− f (r) = 0, r ∈ Ω.

Consider a homotopy v(r, p) : Ω× [0, 1]→ R satisfying

H(v, p) = p[A(v)− f (r)] + (1− p)[L(v)− L(u0)] = 0 (13)

or

H(v, p) = p[N(v)− f (r)] + L(v)− L(u0) + pL(u0) = 0 (14)

where u0 is the first approximation of (12) in correspondence with the boundary conditions
and p ∈ [0, 1] is an embedding parameter. It can be readily seen from (13) or (14) that

H(v, 0) = L(v)− L(u0) = 0

H(v, 1) = A(v)− f (r) = 0.

Clearly, when p = 0, (13) or equivalently, (14), is a linear equation, whereas when
p = 1, it is the original nonlinear problem. Hence, changing the embedding parameter p



Fractal Fract. 2023, 7, 141 13 of 17

from 0 to 1 is equivalent to L(v)− L(u0) = 0 with A(v)− f (r) = 0. The basic idea of the
HPM is thus to continuously deform a simpler problem into the more difficult original one.

We write the solution of (13) or (14) in terms of a power series in p :

v = v0 + pv1 + p2v2 + · · · (15)

By choosing p = 1, we obtain an approximate solution of Equation (12):

u = lim
p→1

v = v0 + v1 + v2 + · · · .

The power series (15) converges in most circumstances. Nonetheless, the rate of
convergence depends on the nonlinear operator A(v).

To illustrate this method, we solve the boundary value problem (9) with L = 1. We set
the following homotopy:

C
s Dα

1

Ä
C
0 Dα

s θ(s)
ä
− p
ï

P
Γ(α + 1)

(L− s)α cos θ(s)
ò
= 0. (16)

If we expand the nonlinear term in (16) using the Taylor series, we obtain

cos θ = 1− θ2

2!
+

θ4

4!
− θ6

6!
+

θ8

8!
− · · ·

and

(1− s)α+1 = 1− (α + 1)s +
(α + 1)α

2!
s2 − (α + 1)α(α− 1)

3!
s3

+
(α + 1)α(α− 1)(α− 2)

4!
s4 + · · ·

Hence, we can approximate (16) as follows:

C
s Dα

1

Ä
C
0 Dα

s θ(s)
ä
= p

ñ
P

Γ(α + 1)
(1− s)α

Ç
1− θ2

2!
+

θ4

4!
− θ6

6!

åô
.

Substituting (15) into the homotopy (16) and applying the initial conditions, we obtain
a set of linear differential equations from the coefficients of terms with equal powers of
p as follows:

p0 : C
s Dα

1

Ä
C
0 Dα

s θ0(s)
ä
= 0, θ0(0) = C

s Dα
1 θ0(1) = 0,

p1 : C
s Dα

1

Ä
C
0 Dα

s θ1(s)
ä
=

P
Γ(α + 1)

(1− s)α
Å

1− 1
2

θ2
0 +

1
24

θ4
0 −

1
720

θ6
0

ã
, θ1(0) = C

s Dα
1 θ1(1) = 0,

p2 : C
s Dα

1

Ä
C
0 Dα

s θ2(s)
ä
=

P
Γ(α + 1)

(1− s)α
Å
−θ0θ1 +

1
6

θ3
0θ1 −

1
120

θ5
0θ1

ã
,

θ2(0) = C
s Dα

1 θ2(1) = 0,

p3 : C
s Dα

1

Ä
C
0 Dα

s θ3(s)
ä
=

P
Γ(α + 1)

(1− s)α
Å
−1

2
θ2

1 +
1
4

θ2
0θ2

1 −
1
48

θ4
0θ1 − θ0θ2 +

1
6

θ3
0θ2 −

1
120

θ5
0θ2

ã
,

θ3(0) = C
s Dα

1 θ3(1) = 0,

p4 : C
s Dα

1

Ä
C
0 Dα

s θ4(s)
ä
=

P
Γ(α + 1)

(1− s)α
Å

1
6

θ0θ3
1 −

1
36

θ3
0θ3

1 − θ1θ2 +
1
2

θ2
0θ1θ2 −

1
24

θ4
0θ1θ2

−θ0θ3 +
1
6

θ3
0θ3 −

1
120

θ5
0θ3

ã
, θ4(0) = C

s Dα
1 θ4(1) = 0,

...



Fractal Fract. 2023, 7, 141 14 of 17

By applying Corollary 1 to the above equation, we obtain

θ0 = 0,

θ1 =
Psα

Γ(2α + 1)
Hypergeometric2F1(1,−2α; α + 1; s)

θ2 = 0

θ3 = − P
2(Γ(α))2Γ(α)

∫ s

0
(s− σ)α−1

∫ 1

σ
(σ′ − σ)α−1(1− σ′)α

(
θ1(σ′)

)2dσ′dσ

θ4 = 0 . . . ,

so that the approximate solution of the problem is given by

θ(s) = lim
p→1

∞

∑
i=0

piθi(s)

=
Psα

Γ(2α + 1)
Hypergeometric2F1(1,−2α; α + 1; s)

− P
2(Γ(α))2

∫ s

0
(s− σ)α−1

∫ 1

σ
(σ′ − σ)α−1(1− σ′)αθ1(σ′)dσ′dσ + · · ·

From the tangent angle θ of a cantilever beam, we can calculate the deflection shape of a
cantilever beam at the equilibrium position in xy-coordinates based on the following equations:

dx
ds

= cos θ and
dy
ds

= sin θ.

Example 1. Consider Problem (9), with L = 1, P = 0.73, and taking values of α1 = 0.6,
α2 = 0.75, and α3 = 0.95.

This example corresponds to a cantilever beam with a uniformly distributed load P = 0.73.

Then, we obtain for ϕα =
L3α

Γ(2α + 1)
and γα =

L3α

2αΓ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

2(2α− 1)Γ(4α)
as fol-

lows:

Pϕα1 ≈ 0.6626 < 1,

Pϕα2 ≈ 0.5491 < 1,

Pϕα3 ≈ 0.3995 < 1,

Pγα3 ≈ 0.9795 < 1,

Pγα2 ≈ 0.3827 < 1,

Pγα3 ≈ 0.1772 < 1.

Then, by Theorems 2 and 3, we conclude that there is a unique tangent angle θ(s) in C[0, 1]
that minimizes the energy functional of the beam. Furthermore, in light of Theorem 4, the boundary
value problem has a unique solution in L2[0, 1].

Applying the HPM, the approximate solution for the tangent angle is shown in Figure 2.
Furthermore, the deflection shape of the beam under a uniformly distributed load at the equilibrium
position can be depicted, as shown in Figure 3. It is highlighted that the curvature of the beam is
larger for smaller orders of the fractional derivative.
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Figure 2. Approximated solutions for θ (tangent angle) of a cantilever beam with a uniformly
distributed load P = 0.73 for α = 0.6, 0.75, and 0.95.
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Figure 3. Deflection shapes of a cantilever beam under a uniformly distributed load P = 0.73 at the
equilibrium position for α = 0.6, 0.75, and 0.95.

Example 2. Consider Problem (9) with L = 1, α = 0.85, and P taking the values P1 = 0.5,
P2 = 1.6, P3 = 1.7, P4 = 1.8, and P5 = 2.8.

This example corresponds to a cantilever beam with a uniformly distributed load with α = 0.85.

We obtain γα =
L3α

2αΓ(α + 1)(Γ(α))2

 
Γ(2α + 1)Γ(2α− 1)

2(2α− 1)Γ(4α)
as follows:

P1γα ≈ 0.1742 < 1,

P2γα ≈ 0.5574 < 1,

P3γα ≈ 0.5923 < 1,

P4γα ≈ 0.6271 < 1,

P5γα ≈ 0.9755 < 1.

It follows from Theorem 4 that there is a unique tangent angle θ(s) in L2[0, 1] that minimizes
the energy functional of the beam. Applying the homotopy perturbation method, the approximate
solution of the tangent angle can be determined, as shown in Figure 4. Furthermore, the deflection
shape of the beam subjected to a uniformly distributed load at the equilibrium position can be
depicted, as shown in Figure 5. It can be seen that the minimizers behave continuously when the
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loads P2 and P4 are close to P3, inducing continuous dependence on the loads, which is in agreement
with Proposition 1. It is highlighted that the curvature of the beam depends on the load.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
P = 0.5

P = 1.6

P = 1.7

P = 1.8

P = 2.8

Figure 4. Approximated solutions for θ (tangent angle) of a cantilever beam with a uniformly
distributed load P = 0.5, 1.7, and 2.8 when α = 0.85.
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Figure 5. Deflection shapes of a cantilever beam under a uniformly distributed load P = 0.5,
1.6, 1.7, 1.8, and 2.8 at the equilibrium position when α = 0.85.

7. Conclusions

We apply the Euler–Lagrange condition for the minimization problem of the energy
functional describing the deflection shape of a cantilever beam at the equilibrium position in
the fractional calculus framework. By considering boundary value problems, we represent
the minimizers in an integral form involving a Green’s function and prove the existence and
uniqueness of the minimizers using the Banach contraction principle and Schaefer’s fixed-
point theorem. When the load parameters in the energy functional are varied, the set of
minimizers forms a branch of solutions with continuous dependence on the load parameters.
Finally, the analytical solution is numerically approximated by the homotopy perturbation
method to illustrate the deflection shape of cantilever beams at the equilibrium position
when various loads and fractional orders are applied. Moreover, the results illustrate that
the deformations are larger for smaller orders of the fractional derivative, which is in
agreement with [16].

Author Contributions: W.C. was the project leader. S.C. and C.A. introduced the problem and
provided the physical and engineering explanations. The main idea of this paper was proposed and
partially proved by P.S.N. and A.S. performed the main proofs and provided some examples. W.C.
performed the literature review. D.S. worked on the numerical examples. W.C. and P.S.N. reviewed



Fractal Fract. 2023, 7, 141 17 of 17

the final draft of the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was financially supported by the FSci Highly Impact Research project,
Faculty of Science and Faculty of Engineering, King Mongkut’s University of Technology Thonburi,
Bangkok, Thailand.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the referees for their valuable comments, which
helped to improve the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993.
2. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
3. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam,

The Netherlands, 2006; Volume 204.
4. Chen, W.; Sun, H.; Li, X. Fractional Derivative Modeling in Mechanics and Engineering; Springer: Singapore, 2022.
5. Furati, K.M.; Kassim, M.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput.

Math. Appl. 2012, 64, 1616–1626. [CrossRef]
6. Khaminsou, B.; Sudsutad, W.; Thaiprayoon, C.; Alzabut, J.; Pleumpreedaporn, S. Analysis of impulsive boundary value

Pantograph problems via Caputo proportional fractional derivative under Mittag–Leffler functions. Fractal Fract. 2021, 5, 251.
[CrossRef]

7. Owolabi, K.M. Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative. Eur. Phys. J.
Plus 2018, 133, 15. [CrossRef]

8. Valério, D.; Da Costa, J.S. Variable-order fractional derivatives and their numerical approximations. Signal Process. 2011,
91, 470–483. [CrossRef]

9. Stempin, P.; Sumelka, W. Dynamics of space-fractional Euler–Bernoulli and Timoshenko beams. Materials 2021, 14, 1817.
[CrossRef] [PubMed]

10. Hao, Y.; Zhang, M.; Cui, Y.; Cheng, G.; Xie, J.; Chen, Y. Dynamic analysis of variable fractional order cantilever beam based on
shifted Legendre polynomials algorithm. J. Comput. Appl. Math. 2023, 423, 114952. [CrossRef]

11. Bahraini, S.M.S.; Eghtesad, M.; Farid, M.; Ghavanloo, E. Large deflection of viscoelastic beams using fractional derivative model.
J. Mech. Sci. Technol. 2013, 27, 1063–1070. [CrossRef]

12. Sumelka, W.; Blaszczyk, T.; Liebold, C. Fractional Euler–Bernoulli beams: Theory, numerical study and experimental validation.
Eur. J. Mech.-A/Solids 2015, 54, 243–251. [CrossRef]

13. Etemad, S.; Hussain, A.; Imran, A.; Alzabut, J.; Rezapour, S.; Selvam, A.G.M. On a fractional cantilever beam model in the
q-difference inclusion settings via special multi-valued operators. J. Inequalities Appl. 2021, 2021, 174. [CrossRef]

14. Kotsamran, K.; Sudsutad, W.; Thaiprayoon, C.; Kongson, J.; Alzabut, J. Analysis of a nonlinear ψ-Hilfer fractional integro-
differential equation describing cantilever beam model with nonlinear boundary conditions. Fractal Fract. 2021, 5, 177. [CrossRef]

15. Villa-Morales, J.; Rodríguez-Esparza, L.J.; Ramírez-Aranda, M. Deflection of Beams Modeled by Fractional Differential Equations.
Fractal Fract. 2022, 6, 626. [CrossRef]

16. Lazopoulos, K.; Lazopoulos, A. On fractional bending of beams. Arch. Appl. Mech. 2016, 86, 1133–1145. [CrossRef]
17. Della Corte, A.; dell’Isola, F.; Esposito, R.; Pulvirenti, M. Equilibria of a clamped Euler beam (Elastica) with distributed load:

Large deformations. Math. Model. Methods Appl. Sci. 2017, 27, 1391–1421. [CrossRef]
18. Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999.
19. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon

Yverdon-les-Bains, Switzerland, 1993; Volume 1.
20. Lazo, M.J.; Torres, D.F. The DuBois–Reymond fundamental lemma of the fractional calculus of variations and an Euler–Lagrange

equation involving only derivatives of Caputo. J. Optim. Theory Appl. 2013, 156, 56–67. [CrossRef]
21. He, J.H. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.camwa.2012.01.009
http://dx.doi.org/10.3390/fractalfract5040251
http://dx.doi.org/10.1140/epjp/i2018-11863-9
http://dx.doi.org/10.1016/j.sigpro.2010.04.006
http://dx.doi.org/10.3390/ma14081817
http://www.ncbi.nlm.nih.gov/pubmed/33916946
http://dx.doi.org/10.1016/j.cam.2022.114952
http://dx.doi.org/10.1007/s12206-013-0302-9
http://dx.doi.org/10.1016/j.euromechsol.2015.07.002
http://dx.doi.org/10.1186/s13660-021-02708-6
http://dx.doi.org/10.3390/fractalfract5040177
http://dx.doi.org/10.3390/fractalfract6110626
http://dx.doi.org/10.1007/s00419-015-1083-7
http://dx.doi.org/10.1142/S0218202517500221
http://dx.doi.org/10.1007/s10957-012-0203-6
http://dx.doi.org/10.1016/S0096-3003(01)00312-5

	Introduction
	Preliminary Background of Fractional Calculus and Calculus of Variations
	Fractional Calculus
	 Fractional Calculus of Variations

	Boundary Value Problem Associated with Minimizers
	Existence and Uniqueness Results
	 Continuous Dependence of Minimizers on Varying Loads
	Approximate Solutions and Numerical Examples
	Conclusions
	References

