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Abstract: The LLCL-filter-based grid-tied inverter performs better than the LCL-type grid-tied
inverter due to its outstanding switching-frequency current harmonic elimination capability, but
the positive resonance peak must be suppressed by passive or active damping methods. This paper
proposes a class of fractional-order LLCL (FOLLCL) filters, which provides rich features by adjusting
the orders of three inductors and one capacitor of the filter. Detailed analyses are performed to reveal
the frequency characteristics of the FOLLCL filter; the orders must be selected reasonably to damp
the positive resonance peak while reserving the negative resonance peak to attenuate the switching-
frequency harmonics. Furthermore, the control system of the grid-tied inverter based on the FOLLCL
filter is studied. When the positive resonance is suppressed by the intrinsic damping effect of the
FOLLCL filter, the passive or active damper can be avoided; the grid current single close-loop is
adequate to control the grid-tied inverter. For low-frequency applications, proportional-resonant (PR)
controller is more suitable for the FOLLCL-type grid-tied inverter compared with the proportional-
integral (PI) and fractional-order PI controllers due to its overall performance. Simulation results are
consistent with theoretical expectations.

Keywords: LLCL filter; active damping; fractional-order; grid-tied inverter; proportional-resonant
(PR) control

1. Introduction

The grid-tied inverter is widely used in renewable energy generation; the voltage-
source inverter (VSI) interfaces with the grid through a low-pass filter to limit the excessive
current harmonics. A third-order LCL filter is the most popular solution over a first-order
L filter due to its smaller size, lower cost, and better harmonic attenuation capability [1–5].
However, large inductance should be selected for an LCL filter in low-frequency applica-
tions to suppress the more abundant current harmonics. To solve this problem, a high-order
LLCL filter has been proposed in [6] and further developed in [7–15]. Based on the LCL
filter, a small inductor is inserted in series with the capacitor to form a series resonant
branch. The series resonant frequency is thus designed to further attenuate the switching
harmonics. The total harmonic distortion (THD) of the grid current will be much lower
with LLCL-type inverters compared with LCL-type ones in low-frequency applications.

However, the LLCL filter retains the positive resonant feature of the LCL filter, which
causes system instability. Passive or active dampers are used to mitigate the impact of
the positive resonance, leading to power loss or control complexity. It is even worse that
the capacitor current feedback, the most commonly used active damping method, may
introduce a negative resistance and cause instability due to the control delay [8].

In recent years, the fractional-order modeling of power converters has been paid much
attention because the inductors and capacitors, the key components of power converters,
have fractional-order characteristics, or can be specially designed as fractional-order com-
ponents. The research of fractional-order power converters began from the modeling of
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DC–DC converters. In [16], fractional calculus and the circuit-averaging technique are
used to model the buck converter. This technique is also used to build the model of the
fractional-order magnetic coupled boost converter [17]. The fractional-order model of the
buck converter based on the Caputo–Fabrizio derivative is presented in [18]. The Riemann–
Liouville derivative is also used to obtain more accurate models of the fractional-order buck
converter [19] and fractional-order buck–boost converter [20]. Instead of considering the
complex definitions of fractional calculus, the harmonic balance principle and equivalent
small parameter method are used to describe the fractional-order DC–DC converters [21].
Different from the above studies, time domain expressions for fractional-order DC–DC con-
verters are derived in [22]. The modeling methods for fractional-order DC–AC converters
are also reported in the literature. In [23], the Caputo derivative method is used to build the
model of the voltage source converter, and small-signal analysis and averaging state-space
model-based analysis are developed. The fractional-order model of the three-phase voltage
source PWM rectifier is constructed in [24]; the Caputo fractional calculus operator is used
to describe the fractional-order characteristics of the inductor and capacitor. In addition, the
influence of the orders of the inductors and the capacitor on the operating characteristics
of the PWM rectifier is studied. In [25], an LCαL filter-based grid-connected inverter is
modeled and a filter design example is given. However, the above literature only focuses
on the modeling methods; the control strategies are not considered.

On the other hand, fractional-control theories are developed to control the power
converters. The fractional-order PID control method is employed to regulate DC–DC
converters [26,27]; the results show that the method achieves less overshoot and a faster
recovery time compared to the integer-order PID regulator. In [28], the factional-order adap-
tive sliding mode control approach is proposed for fractional-order buck–boost converters,
which shows stronger robustness under various disturbances. For LCL-type grid-tied
inverters, an active damping method based on fractional-order proportional-derivative
(PD) grid current feedback is presented in [29], which shows better performance com-
pared to the integer-order PD damping method. In [30], a capacitive current fractional
proportional-integral feedback strategy is proposed to increase the limit of the damping
region of the LCL grid-tied inverter under the weak grid condition. A fractional-order LCL
(FOLCL) filter-based grid-tied inverter is studied in [31]; the capacitor current feedback
loop can be omitted by only changing the orders of the passive components. Especially, PI
and fractional-order PI controllers especially are designed for this grid-tied inverter.

Considering the advantages of fractional-order converters, this paper proposes a
fractional-order LLCL-type grid-tied inverter, which can avoid the use of an active damper.
The contributions of this paper include the following points:

i. The characteristics of the FOLLCL filter is analyzed, including the condition of
resonance, magnitude–frequency characteristic, phase–frequency characteristic, and
the impacts of inductor and capacitor orders on the characteristics.

ii. The control system of the FOLLCL-type grid-tied inverter is given. Active damping
can be avoided, thus improving the ease of control and saving the cost of the
control system.

iii. The performances of the FOLLCL-type grid-tied inverter based on PI, PIλ, and PR
control are analyzed through four cases. Among these three control methods, the
most suitable one for the FOLLCL-type grid-tied inverter without an active damper
is determined.

The remainder of the paper is organized as follows: Section 2 introduces the integer-
order LLCL (IOLLCL) filter and makes a comparison between the IOLLCL filter and the
IOLCL filter. Section 3 analyzes the characteristics of the FOLLCL filter, including resonant
frequency, magnitude–frequency characteristic, and phase–frequency characteristic. In
Section 4, the structure of the control system of the FOLLCL-type grid-tied inverter is
described. Based on the expression of loop gain, the system performance is analyzed.
Four cases are presented to discuss the performance of the FOLLCL-type grid-tied inverter.
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The simulation results are given in Section 5 to validate the theoretical analysis. Finally,
Section 6 concludes this paper.

2. Integer-Order LLCL Filter

An VSI can connect the power grid through an LLCL filter to form a grid-tied inverter.
The equivalent circuit of a single-phase integer-order LLCL-filter-based grid-tied inverter
is shown in Figure 1, where L1 and L2 are the inverter-side and grid-side inductors, a
small inductor Lf and a capacitor Cf composing a series resonant circuit, ui and i1 are the
inverter output voltage and current, ug and ig are the grid voltage and current, and ic is the
capacitor current.
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Figure 1. Equivalent circuit of a single-phase integer-order LLCL-filter-based grid-tied inverter.

The transfer function ig(s)/ui(s) of the IOLLCL filter can be derived as

GIO =
ig(s)
ui(s)

∣∣∣∣
ug(s)=0

=
L f C f s2 + 1(

L1L2C f + (L1 + L2)C f L f

)
s3 + (L1 + L2)s

(1)

Figure 2 illustrates the bode diagrams of ig(s)/ui(s) for both the IOLLCL filter and
IOLCL filter while all the other parameters are the same except for Lf. The specific pa-
rameters of the filters are given in Table 1. Unlike the IOLCL filter, the IOLLCL filter has
two resonance peaks: a negative one and a positive one; the resonance frequencies are
f rp1 (ωrp1) and f rp2 (ωrp2), respectively. When the VSI operates under the condition of the
dual-carrier sine-wave PWM, the uppermost harmonics of ig are around the switching
frequency 2f s. Therefore, f rp1 is designed to be equal to 2f s to attenuate such harmonics.
The positive resonance peak at f rp2, as in the resonance peak at f rp for the IOLCL filter,
would lead to system instability in grid-tied inverter applications and should be damped
by passive or active methods.
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Table 1. Filter Parameters.

Parameter Symbol Value

inverter-side inductor L1 600 µH
grid-side inductor L2 150 µH

series resonant circuit inductor Lf 70.362 µH
series resonant circuit capacitor Cf 10 µF

The negative resonant frequency of the IOLLCL filter is

ωrp1 =
√

1
L f C f

(2)

The positive resonant frequency of the IOLLCL filter is

ωrp2 =

√
L1+L2

L1L2C f +L f C f (L1+L2)
(3)

It can also be seen from Figure 2 that the IOLLCL and IOLCL filters have similar low-
frequency magnitude characteristics, while the IOLCL filter exhibits a better attenuation
ability at a high-frequency band than the IOLLCL filter. However, overall, compared
with the IOLCL filter, the grid current can obtain lower total harmonic distortion with the
IOLLCL filter.

3. Fractional-Order LLCL Filter

The IOLLCL filter in the grid-tied inverter can be replaced by an FOLLCL filter
to achieve better performance. The FOLLCL filter consists of four components: three
inductors and a capacitor, as shown in Figure 3. In this paper, an LLCL filter can be called a
fractional-order LLCL filter, with all or part of its components being fractional-order ones.
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The transfer function from input (inverter output voltage ui) to output (grid current
ig) is expressed as

GFO =
ig(s)
ui(s)

=
L f C f sα f +β f + 1

L1L2C f sα1+α2+β f + C f L f L1sα1+α f +β f + C f L f L2sα2+α f +β f + L1sα1 + L2sα2
(4)

where α1, α2, αf, and βf are the orders of L1, L2, Lf, and Cf, respectively. The magnitude–
frequency and phase–frequency characteristic expressions obtained from (4) are quite
complex. To simplify the analysis, set α1 = α2 = α; (4) is rewritten as

GFO =
ig(s)
ui(s)

=
L f C f sα f +β f + 1

L1L2C f s2α+β f + C f L f (L1 + L2)s
α+α f +β f + (L1 + L2)sα

=
L f C f sα f +β f + 1

L1L2C f sα
[
sα+β f + Bsα f +β f + A

] (5)
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where A = (L1 + L2)/(L1L2Cf) and B = Lf (L1 + L2)/(L1L2). Substitute (jω)α = ωαcos(απ/2) +
jωαsin(απ/2) into (5); the mathematical model in frequency domain can be obtained as

GFO(jω) =

L f C f ωα f +β f

[
cos (α f +β f )π

2 + j sin (α f +β f )π

2

]
+ 1

L1L2C f ωα
(
cos απ

2 + j sin απ
2
)[

ωα+β f cos (α+β f )π

2 + A + jωα+β f sin (α+β f )π

2 + Bωα f +β f cos (α f +β f )π

2 + jBωα f +β sin (α f +β f )π

2

] (6)

The magnitude–frequency characteristic of GFO is expressed as

|GFO(jω)| = 1
L1L2C f ωα

√[
L f C f ωα f +β f cos (α f +β f )π

2 + 1
]2

+

(
sin (α f +β f )π

2

)2

√(
ωα+β f cos (α+β f )π

2 + A + Bωα f +β f cos (α f +β f )π

2

)2
+

(
ωα+β f sin (α+β f )π

2 + Bωα f +β sin (α f +β f )π

2

)2
(7)

3.1. Resonant Frequencies

Define angular frequency ωr1 as follows:

ωr1 =

[
− 1

L f C f cos[(α f +β f )π/2]

] 1
α f +β f (8)

Then, the numerator of (7) can be expressed as

num(|GFO|) =

√[
−
(

ω
ωr1

)α f +β f
+ 1
]2

+

(
sin (α f +β f )π

2

)2
(9)

When ω = ωr1, (9) can be reduced to

num(|GFO|) =
∣∣∣∣sin (α f +β f )π

2

∣∣∣∣ (10)

If αf + βf = 2n (n is an integer), sin[(αf + βf) nπ/2] = 0, and |GFO(jωr1)| as shown
in (7) is zero. It means that the magnitude–frequency characteristic of the FOLLCL filter
has a negative resonance (series resonance) peak at ω = ωr1. According to the present
literature, the orders of the actually realizable fractional-order inductors and capacitors are
greater than 0 and less than 2, so n is set to 1 in this research. Therefore, to attenuate the
switching-frequency current ripple in grid-tied inverter applications, the sum of αf and βf
must equal 2. Substitute αf + βf = 2 back into (8); the negative resonant frequency can be
obtained as

ωrp1 =
√

1
L f C f

(11)

It can be seen from (8) that the series resonance peak of the FOLLCL filter has the same
form as the IOLLCL filter when αf + βf = 2. Series resonance is the most critical feature for
the FOLLCL filter, so the following analysis is based on the relationship of αf + βf = 2.

Substitute αf + βf = 2 to (7); the denominator of (7) is expressed as

den(|GFO|) = L1L2C f ωα

√(
ωα+β f cos (α+β f )π

2 + A− Bω2
)2

+

(
ωα+β f sin (α+β f )π

2

)2
(12)

Define angular frequency ωr2 as follows:

ωr2 =

[
− A−Bω2

cos[(α+β f )π/2]

] 1
α+β f (13)

Therefore, (12) can be expressed as
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den(|GFO|) = L1L2C f ωα

√[
−
(

ω
ωr2

)α+β f
(A− Bω2) + A− Bω2

]2
+

(
ωα+β f sin (α+β f )π

2

)2
(14)

When ω = ωr2, (14) can be reduced to

den(|GFO|) = L1L2C f ωα

√(
ω

α+β f
r2 sin (α+β f )π

2

)2
(15)

If α + βf = 2, sin[(α + βf)π/2] = 0, and |GFO(jωr2)| as shown in (7) is positive infinity.
It means that the magnitude–frequency characteristic of the FOLLCL filter has a positive
resonance peak at ω = ωr2. Substitute α + βf = 2 back into (13); the positive resonant
frequency can be obtained as

ωrp2 =

√
L1 + L2

L1L2C f + L f C f (L1 + L2)
(16)

It can be seen from (16) that the FOLLCL filter has the same expression of positive
resonance peak as the IOLLCL filter when αf + βf = 2 and α + βf = 2.

Theorem 1. When α1 = α2 = α, the negative resonance (series resonance) peak of the FOLLCL filter
exists only when αf + βf = 2; the resonant frequency is ωrp1 =

√
1/L f C f . The positive resonance

peak of the FOLLCL filter exists only when αf + βf = 2 as well as α + βf = 2; the resonant frequency

is ωrp2 =

√
(L1 + L2)/

[
L1L2C f + L f C f (L1 + L2)

]
. The positive resonant frequency ωrp2 is

always less than the negative resonant frequency ωrp1.

Theorem 1 essentially reveals the resonant conditions for FOLLCL filters and provides
a criterion to estimate whether an FOLLCL filter has resonance peaks. Orders α, αf, and βf of
a conventional IOLLCL filter are all equal to 1. Both conditions αf + βf = 2 and α + βf = 2 are
satisfied; therefore, the IOLLCL filter is just a special case of the FOLLCL filter. Moreover,
the positive resonance peak can be avoided according to Theorem 1 by choosing reasonable
orders for the inverter-side inductor L1, grid-side inductor L2, and capacitor Cf. Passive or
active damping approaches used in an IOLLCL filter can be omitted for an FOLLCL filter.

3.2. Magnitude–Frequency Characteristic

As previously mentioned, αf + βf = 2 must be satisfied for the FOLLCL filter, so (7) can
be arranged as

|GFO(jω)| = 1
L1L2C f ωα

∣∣∣−L f C f ω2 + 1
∣∣∣√(

ωα+β f + (A− Bω2) cos (α+β f )π

2

)2
+ (A− Bω2)2 sin2 (α+β f )π

2

(17)

(1) When ω << ωrp2, LfCfω
2 << 1, and A − Bω2 ≈ A, (17) can be further expressed as

|GFO(jω)| = 1
L1L2C f ωα

1√(
ωα+β f + A cos (α+β f )π

2

)2
+ A2 sin2 (α+β f )π

2
(18)
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Define intermediate variables ωt1 and ωt2 as follows:

ωt1 =

∣∣∣∣A cos (α+β f )π

2

∣∣∣∣ 1
α+β f (19)

ωt2 =

∣∣∣∣A sin (α+β f )π

2

∣∣∣∣ 1
α+β f (20)

Substitute (19) and (20) into (18); the magnitude–frequency characteristic can be
derived as

|GFO(jω)| = 1
L1L2C f ωα

1√(
ωα+β f + τω

α+β f
t1

)2
+ ω

2(α+β f )

t2
(21)

where τ = 1 (α + βf ∈ (0, 1] ∪ [3, 4)) or τ = −1 (α + βf ∈ (1, 3)).

When ω << ωt1, (ω/ωt1)
α+β f ≈ 0 and τ2 = 1, (21) can be simplified as

|GFO(jω)| =
1

L1L2C f ωαω
α+β f
t1

1√(
(ω/ωt1)

α+β f +τ
)2

+(ωt2/ωt1)
2(α+β f )

≈ 1
L1L2C f ωα

1√
ω

2(α+β f )

t1 + ω
2(α+β f )

t2

=
1

L1L2C f Aωα

(22)

The log magnitude–frequency characteristic and the slope of its asymptote are ex-
pressed as (23) and (24).

L(ω) ≈ −20lg(L1L2C f A)− 20αlgω (23)

dL(ω)

dlgω
≈ −20α dB/dec, ω << ωt1 (24)

(2) When ω >> ωrp1, LfCfω
2 >> 1, and A − Bω2 ≈ Bω2, (17) can be expressed as

|GFO(jω)| = 1
L1L2C f ωα

L f C f ω2√(
ωα+β f + Bω2 cos (α+β f )π

2

)2
+ B2ω4 sin2 (α+β f )π

2

(25)

ωt3 =

∣∣∣∣B cos (α+β f )π

2

∣∣∣∣ 1
α+β f (26)

Define intermediate variables ωt3 and ωt4 as follows:

ωt4 =

∣∣∣∣B sin (α+β f )π

2

∣∣∣∣ 1
α+β f (27)

Substitute (26) and (27) into (25); the magnitude–frequency characteristic can be
derived as

|GFO(jω)| = 1
L1L2C f ωα

L f C f ω2√(
ωα+β f + τω2ω

α+β f
t3

)2
+ ω4ω

2(α+β f )

t4

(28)

When ω >> ωrp1 and α + βf ∈ [2, 4), ω2(ωt3/ω)α+β f ≈ 0, and ω2(ωt4/ω)α+β f ≈ 0,
(17) can be expressed as
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|GFO(jω)| = 1

L1L2C f ω2α+β f

L f C f ω2√(
1 + τω2(ωt3/ω)α+β f

)2
+ ω4(ωt4/ω)2(α+β f )

≈
L f

L1L2ω2α+β f−2 (29)

The log magnitude–frequency characteristics and the slope of its asymptote are ex-
pressed as (30) and (31).

L(ω) ≈ 20lgL f − 20lg(L1L2)− 20
(

2α + β f − 2
)

lgω (30)

dL(ω)

dlgω
≈ −20

(
2α + β f − 2

)
dB/dec, ω >> ωrp1 (31)

Similarly, when ω >> ωrp1 and α + βf ∈ (0,2), the slope of the asymptote is−20α dB/dec.

Theorem 2. For FOLLCL, when ω << ωrp2, the asymptote slope of the low-frequency log
magnitude–frequency characteristic is −20α dB/dec. When ω >> ωrp1, α + βf ∈ [2, 4), the asymp-
tote slope of the high-frequency log magnitude–frequency characteristics is−20 (2α + βf − 2) dB/dec;
if α + βf ∈ (0, 2), the asymptote slope is −20α dB/dec.

3.3. Phase–Frequency Characteristic

According to (6), when αf + βf = 2, the phase model can be expressed as

∠GFO(jω) = −arctan
(

tan
πα

2

)
− arctan

ωα+β f sin

(
α + β f

)
π

2

ωα+β f cos

(
α + β f

)
π

2
+ A− Bω2

(32)

(1) When ω <<ωt1,A−Bω2≈Aand ωα+β f sin[
(

α + β f

)
π/2]<<ωα+β f cos[

(
α + β f

)
π/2]

+ A , so the low-frequency phase is expressed as

∠GFO(jω) ≈ −arctan
(
tan πα

2
)
− arctan

ω
α+β f sin

(
α + β f

)
π

2

ω
α+β f cos

(
α + β f

)
π

2
+A

≈ −πα
2 (33)

(2) When ω >> ωrp1, A− Bω2 ≈ −Bω2 and Bω2 << |ωα+β f cos[
(

α + β f

)
π/2]|. More-

over, when α + βf ∈ [2, 4), arctan
{

tan[
(

α + β f

)
π/2]

}
=
(

α + β f

)
π/2− 2π, so the high-

frequency phase is expressed as

∠GFO(jω) ≈ π − arctan
(
tan πα

2
)
− arctan

ωα+β f sin

(
α + β f

)
π

2

ωα+β f cos

(
α + β f

)
π

2
− Bω2

≈ π − arctan
(

tan
πα

2

)
− arctan

ω
α+β f sin

(
α + β f

)
π

2

ω
α+β f cos

(
α + β f

)
π

2

= −π
(

α + β f /2
)
+ π

(34)
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When α + βf ∈ (0,2), ωα+β f sin[
(

α + β f

)
π/2] <<

∣∣∣ωα+β f cos[
(

α + β f

)
π/2]− Bω2

∣∣∣,
so the high-frequency phase can be expressed as

∠GFO(jω) ≈ −arctan
(
tan πα

2
)
− arctan

ω
α+β f sin

(
α + β f

)
π

2

ω
α+β f cos

(
α + β f

)
π

2
−Bω2

≈ −πα
2 (35)

Theorem 3. For FOLLCL, when ω << ωrp2, the low-frequency phase is −πα/2. When ω >> ωrp1, if
α + βf ∈ [2, 4), the high-frequency phase is −π (α + βf/2) + π; if α + βf ∈ (0, 2), the high-frequency
phase is −πα/2.

It can be seen from Theorem 2 and Theorem 3 that the low-frequency characteristics
only depend on the orders of L1 and L2, and are independent of the orders of Lf and
Cf. The high-frequency characteristics are determined by the orders of L1, L2, and Cf
when α + βf ∈ [2, 4), and only depend on the orders of L1 and L2 when α + βf ∈ (0, 2).

3.4. Simulation Analyses

The bode plots of the FOLLCL filter are shown in Figure 4. The specific parameters of
the FOLLCL filter are given in Table 1. Two cases are considered, namely, α + βf ≤ 2 and
α+βf ≥ 2. The values of the asymptote slopes and phases are marked in the plots; it can be
seen that the results are consistent with the theoretical analyses. In particular, the positive
resonance peak is suppressed when α + βf 6= 2. Furthermore, it is shown in Figure 4b that
when α + βf > 2, the phase–frequency characteristic curves do not pass through −180◦,
which means that the phase crossover frequency does not exist. Therefore, α + βf must be
less than or equal to 2 to guarantee the stability.
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4. Grid-Tied Inverter Based on Fractional-Order LLCL Filter

An FOLLCL filter and a VSI can be combined to form a grid-tied inverter. Figure 5
shows the single-phase FOLLCL-type grid-tied inverter and its control system. The primary
objective of the grid-tied inverter is to control the grid-side current ig to be synchronized
with the grid voltage, which is denoted by ug. I* is the reference amplitude of the grid-
side current, θ is the phase of grid voltage obtained by the phase-locked loop (PLL), and
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i∗g is the reference of the grid-side current. ig is sensed with the sensor gain of Hig and
compared with i∗g. The current error is sent to the current regulator Gi; Gi = Kp + Ki/sλ,
and Kp, Ki, and λ are the proportional coefficient, integral coefficient, and order of the
integrator, respectively. For the FOLLCL filter with α + βf equaling or very close to 2, an
active damping method is used to attenuate the positive resonance. The output of Gi is sent
to the PWM generator after subtracting the capacitor current iC, which is sensed with the
sensor gain of HiC. For the FOLLCL filter with α + βf deviating from 2, the output of Gi is
sent to the PWM generator directly; the active damping can be avoided.
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Figure 5. Single-phase FOLLCL-type grid-tied inverter and its control system.

4.1. Structure of the Control System

According to Figure 5, the control block diagram of the single-phase FOLLCL-type
grid-tied inverter when α + βf equals to or is very close to 2 is shown in Figure 6, where
KPWM is the transfer function from the modulation signal to the inverter output voltage,
expressed as KPWM = udc/Vtri, and Vtri is the amplitude of triangular carrier. ZL1(s), ZL2(s),
ZLf(s), and ZCf(s) are the impedance of L1, L2, Lf, and Cf, respectively, which are expressed as

ZL1(s) = sαL1, ZL2(s) = sαL2, ZL f (s) = sα f L1, ZC f (s) = 1/sβ f C f (36)
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Figure 6. Control block diagram of single-phase FOLLCL-type grid-tied inverter when α + βf equals
or very close to 2.

The control block diagram of the single-phase FOLLCL-type grid-tied inverter when
α+βf deviates from 2 is shown in Figure 7. Compared with Figure 6, the capacitor current
feedback loop is removed.
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Figure 7. Control block diagram of single-phase FOLLCL-type grid-tied inverter when α + βf deviates
from 2.

The control block diagrams in Figures 6 and 7 can be equivalently transformed into the
block diagram in Figure 8. The transfer functions Gx1 and Gx2 are expressed as (37) and (38),
respectively:

Gx1(s) =
KPWMGi(s)

[
ZL f (s) + ZC f (s)

]
ZL1(s) + ZL f (s) + ZC f (s) + HiCKPWM

(37)

Gx2(s) =
ZL1(s) + ZL f (s) + ZC f (s) + HiCKPWM

ZL1(s)ZL2(s) + [ZL1(s) + ZL2(s)]
[

ZL f (s) + ZC f (s)
]
+ HiCKPWMZL2(s)

(38)

where HiC = 0 when α + βf 6= 2.
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According to the equivalent block diagram in Figure 8 and (36)~(38), the expression 

of the loop gain can be derived as 
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The grid current ig can be expressed as 

𝑖𝑔(𝑠) =
1

𝐻𝑖𝑔

𝑇𝐴(𝑠)

1 + 𝑇𝐴(𝑠)
𝑖𝑔

∗(𝑠) −
𝐺𝑥2(𝑠)

1 + 𝑇𝐴(𝑠)
𝑢𝑔(𝑠) = 𝑖𝑔1(𝑠) + 𝑖𝑔2(𝑠)  (41) 

It can be seen from (41) that ig(s) consists of two parts: the reference tracking compo-

nent ig1(s) and the disturbance component ig2(s) caused by the grid voltage, which can be 

expressed as (42) and (43), respectively. 

𝑖g1(𝑠) =
1

𝐻𝑖𝑔

𝑇𝐴(𝑠)

1 + 𝑇𝐴(𝑠)
𝑖𝑔

∗(𝑠)  (42) 

𝑖g2(𝑠) = −
𝐺𝑥2(𝑠)

1 + 𝑇𝐴(𝑠)
𝑢𝑔(𝑠)  (43) 

4.2. System Performance Analysis 

The loop gain at the fundamental frequency is often much greater than one, so 1 + 

TA(s) ≈ TA(s), and (42) can be rewritten as 𝑖g1(𝑠) ≈ 𝑖𝑔
∗(𝑠)/𝐻𝑖𝑔. Therefore, ig1(s) and 𝑖𝑔

∗(𝑠) are 
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lator, Gi(j2πfo) ≈ Ki/(j2πfo), so we have 

Figure 8. Equivalent block diagram of Figures 6 and 7.

According to the equivalent block diagram in Figure 8 and (36)~(38), the expression of
the loop gain can be derived as

TA(s) = Gx1(s)Gx2(s)Hig(s) =
HigKPWMGi(s)

(
L f C f sα f +β f + 1

)
L1L2C f s2α+β f + (L1 + L2)L f C f sα+α f +β f + L2C f HiCKPWMsα+β f + (L1 + L2)sα

(39)

As discussed in Part 3, αf + βf = 2 must be satisfied in grid-tied inverter applications,
so (39) is rewritten as

TA(s) =
HigKPWMGi(s)

(
L f C f s2 + 1

)
L1L2C f s2α+β f + (L1 + L2)L f C f sα+2 + L2C f HiCKPWMsα+β f + (L1 + L2)sα

(40)

The grid current ig can be expressed as

ig(s) =
1

Hig

TA(s)
1 + TA(s)

i∗g(s)−
Gx2(s)

1 + TA(s)
ug(s) = ig1(s) + ig2(s) (41)

It can be seen from (41) that ig(s) consists of two parts: the reference tracking compo-
nent ig1(s) and the disturbance component ig2(s) caused by the grid voltage, which can be
expressed as (42) and (43), respectively.

ig1(s) =
1

Hig

TA(s)
1 + TA(s)

i∗g(s) (42)
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ig2(s) = −
Gx2(s)

1 + TA(s)
ug(s) (43)

4.2. System Performance Analysis

The loop gain at the fundamental frequency is often much greater than one, so
1 + TA(s) ≈ TA(s), and (42) can be rewritten as ig1(s) ≈ i∗g(s)/Hig. Therefore, ig1(s) and
i∗g(s) are almost in phase. For f ≤ f c, the Lf − Cf branch can be considered open. According
to (38) and (40), the expression of Gx2(s) and TA(s) at the fundamental frequency can be
obtained as follows:

Gx2(j2π fo) ≈
1

(j2π fo)
α(L1 + L2)

(44)

TA(j2π fo) ≈
HigKPWMGi(j2π fo)

(j2π fo)
α(L1 + L2)

(45)

where f o is the fundamental frequency. Substitute (44) and (45) into (43), and for PI regulator,
Gi(j2πf o) ≈ Ki/(j2πf o), so we have

ig2 ≈ −
ug

HigKPWMGi(j2π fo)
≈ −

j2π foug

HigKPWMKi
(46)

From (46), it can be seen that ig2 lags behind ug by 90◦; a small ig2 is expected to reduce
the amplitude and phase tracking errors for ig. From (45) and (46), the RMS value of ig2 can
be expressed as

Ig2 ≈
Ug

HigKPWM|Gi(j2π fo)|
≈

Ug

(2π fo)
α(L1 + L2)|TA(j2π fo)|

(47)

The magnitude of the loop gain at f o is expressed as

Tfo = 20lg

∣∣∣∣∣TA(j2π fo)

∣∣∣∣∣≈ 20lg
Ug

(2π fo)
α(L1 + L2)Ig2

(48)

where the unit of Tfo is dB. Thus, the steady-state error requirement for Ig2 is converted
to the requirement for Tfo. Obviously, for a given value of Ig2, a smaller-order α means
bigger Tfo.

Compared to the PI regulator, the PR regulator can significantly increase Tfo, and thus
decrease the steady-state error of the grid current. The expression of the PR regulator is

Gi(s) = Kp +
2Krωis

s2 + 2ωis + ω2
o

(49)

where Kp is the proportional coefficient, Kr is the resonant coefficient, ωi is the bandwidth
concerning the –3 dB cutoff frequency of the resonant compensator, and ωo = 2πf o is the
fundamental angular frequency. The design criteria of the PR regulator have been reported
in many works in the literature and will not be repeated here.

In order to demonstrate the control system design criteria of the FOLLCL-type
grid-tied inverter, four cases are presented based on the system parameters listed in
Tables 1 and 2.

Case I (α + βf = 2, PI control): For α + βf = 2 (taking (α, αf, βf) = (1.2, 1.2, 0.8) and
(α, αf, βf) = (1.1, 1.1, 0.9) as examples), the bode diagrams of the loop gain before compensa-
tion (Gi(s) = 1) are drawn in Figure 9 according to (40), where f c is the cut-off frequency of
the loop gain. As shown in Figure 9, the capacitor current feedback can effectively suppress
the positive resonance peak of the FOLLCL filter, and the resonance damping capabil-
ity becomes stronger with the increase of HiC. As with the application in conventional
IOLCL-type grid-tied inverters, this well-known active damping method only changes the
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magnitude–frequency characteristics around the resonant frequency f rp2. However, the
phase–frequency characteristics vary observably; they decrease from –(90α)◦ when f < f rp2.

Table 2. System Parameters.

Parameter Symbol Value

DC voltage udc 360 V
grid voltage (RMS) Ug 220 V

fundamental frequency f o 50 Hz
switching frequency f s 3 kHz

amplitude of the triangular carrier Vtri 3.05 V
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The control system parameter design principles for IOLCL-type grid-tied inverters
are adopted here to control the FOLLCL-type grid-tied inverter with α + βf = 2. The bode
diagrams of the loop gain after compensation (Gi(s) = Kp + Ki/s) are shown in Figure 10.
The frequency characteristics without active damping and compensation (green dotted
lines) when (α, αf, βf) = (1.2, 1.2, 0.8) are also plotted in the same figure for comparison
purpose. HiC = 0.1, Hig = 0.15, Kp = 0.45, and Ki = 2200 are designed in this case to yield
a satisfactory overall system performance. Compared with the original system (green
dotted lines), the loop gain at the fundamental frequency (Tfo) after compensation (blue
solid lines) increases and the high-frequency (f > f rp1) magnitude characteristics move
down, which can guarantee the fundamental current tracking and high-frequency harmonic
attenuation capabilities. It can also be seen from Figure 10 that a lower α can guarantee
better performance under the condition of α + βf = 2. When α = 1.1, the system has a
sufficient gain margin (GM = 5.04 dB) and an acceptable phase margin (PM = 38.1◦, while
PM > 45◦ is required for a well-designed system), as well as a reasonable cut-off frequency
(f c = 948 Hz) and a sufficient fundamental loop gain (Tfo = 49.5 dB), while when α = 1.2,
although there is a slightly higher gain margin (GM = 5.74 dB), the PM, f c, and Tfo all
decrease. The low phase margin (PM = 17.1◦) especially threatens the system stability.

Case II (α + βf 6= 2, PI control): For α + βf 6= 2 (taking α = 1.1, αf = 1.2, βf = 0.8 as an
example), the bode diagrams of the loop gain before compensation (Gi(s) = 1) are drawn
in Figure 11. HiC = 0 is set in this case to avoid active damping. The positive resonance
peak is damped effectively by selecting appropriate values for orders α and βf to make
their sum unequal to 2. When Hig = 0.15, the same value as in case I, the cut-off frequency
is very close to the equivalent switching frequency 2f s (6 kHz), which is not acceptable
for a grid-tied inverter. Moreover, when Hig = 0.1 or 0.15, the magnitude plot has three
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cut-off frequencies and the system behaves as a conditionally stable system. For a large
Hig, even if the system can be stable after compensation, it is not easy to obtain a sufficient
gain margin. If we keep decreasing Hig to 0.05, the magnitude plot has only one cut-off
frequency. Therefore, Hig = 0.05 is chosen for the compensated system in the next step.
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Figure 11. Bode diagrams of the loop gain before compensation when α + βf 6= 2.

The bode diagrams of the loop gain after compensation (Gi(s) = Kp + Ki/sλ, λ = 1)
are shown in Figure 12. As seen from (46), the decrease of Hig will increase ig2, so Ki
should be increased to meet the steady-state error requirement. However, the phase margin
when Ki = 2200 is only 22.7◦, and after increasing Ki from 2200 to 4000, the phase margin
decreases to 14.6◦, and a sufficient phase margin cannot be guaranteed.
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Figure 12. Bode diagrams of the loop gain after compensation with a PI controller when α + βf 6= 2
(varying Ki).

Case III (α + βf 6= 2, PIλ control): In this case, (α, αf, βf) = (1.1, 1.2, 0.8), HiC = 0,
Hig = 0.05, and a fractional-order PIλ regulator is used to try to improve the phase margin.
When Kp = 0.45, Ki = 2200, and λ increases from 0.8 to 1.4, the bode diagrams of the loop
gain are shown in Figure 13. The phase margin increases with λ, so λ = 1.4 is selected to
leave enough room for Ki adjustment.
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(varying λ).

The bode diagrams of the loop gain with varying Ki when λ = 1.4 are shown in
Figure 14. With the increase of Ki, the phase margin decreases, but it is still sufficient
even Ki = 6000 (PM = 49.2◦). However, each curve in Figures 13 and 14 has a small Tfo, so
the steady-state error requirement is still not guaranteed according to (47) and (48). The
contradiction between Tfo and PM cannot be balanced by a PIλ regulator.
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Case IV (α + βf 6=2, PR control): In this case, (α, αf, βf) = (1.1, 1.2, 0.8), HiC = 0, Hig = 0.05,
and a PR regulator is used to control the grid current. The values of the parameters are
Kp = 0.45, ωo = 2π × 50 rad/s, and ωi = π rad/s, and Kr increases from 100 to 300; the bode
diagrams of the compensated system are shown in Figure 15. It can be seen that each curve
has a large enough Tfo to eliminate the steady-state error of ig. However, PM decreases
with the increase of Kr, when Kr = 100, GM = 11.3 dB, PM is 59.3◦, and the f c also has a
good value, so Kr = 100 will be selected in the simulation section.
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Based on the four cases discussed previously, it can be concluded that: 

(1) If α + βf = 2, the FOLLCL-type grid-tied inverter can be damped by a capacitor current 

feedback loop. Under PI control, a lower α can achieve a larger PM but a higher fc. 

(2) If α + βf ≠ 2, the system is stable under the grid current feedback; the capacitor current 

feedback is avoided. Under PI control, a large Ki should be chosen to reduce the 

steady-state error of ig, but the PM decreases significantly. 

(3) A PIλ regulator can also make the system stable, but there is a contradiction between 

Tfo and PM. 

(4) A PR regulator can simultaneously obtain good Tfo, GM, PM, and fc, which is suitable 

for controlling the FOLLCL-type grid-tied inverter if α + βf ≠ 2. 

5. Simulations 

To verify the characteristics of the FOLLCL-type grid-tied inverter and the effective-

ness of the control methods, simulations are conducted with the parameters presented in 

Tables 1 and 2. In each simulation, the reference grid current 𝑖𝑔
∗  is set to 50sin(ωt) A; ig is 

magnified three times for observation in the waveform diagram. The fractional-order in-

ductors and capacitor are equivalent to the fractance circuit using the Oustaloup approx-

imation method.In the first simulation, an IOLCL-type grid-tied inverter is studied. As 

shown in Figure 16, a large amount of harmonics, which is mainly around 2fs (6 kHz), 

exists in the grid current. The THD of ig is 14.46%, which is not acceptable in the applica-

tion. The result indicates that the LCL-type grid-tied inverter has little advantage in low-

frequency applications. 

u
g
/V

, 
i g

/A

ug

ig

THD = 14.46%

t/s

harmonics around 
2fs (6kHz)

M
a
g
n
it
u
d
e

(%
 o

f 
fu

n
d
a
m

e
n
ta

l)

×104

Frequency(Hz)

PF = 0.998

 

Figure 16. Simulation results of the IOLCL-type grid-tied inverter. 

Figure 15. Bode diagrams of the loop gain after compensation with a PR controller when α + βf 6= 2
(varying Kr).

Based on the four cases discussed previously, it can be concluded that:

(1) If α + βf = 2, the FOLLCL-type grid-tied inverter can be damped by a capacitor current
feedback loop. Under PI control, a lower α can achieve a larger PM but a higher f c.

(2) If α + βf 6= 2, the system is stable under the grid current feedback; the capacitor current
feedback is avoided. Under PI control, a large Ki should be chosen to reduce the
steady-state error of ig, but the PM decreases significantly.

(3) A PIλ regulator can also make the system stable, but there is a contradiction between
Tfo and PM.
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(4) A PR regulator can simultaneously obtain good Tfo, GM, PM, and f c, which is suitable
for controlling the FOLLCL-type grid-tied inverter if α + βf 6= 2.

5. Simulations

To verify the characteristics of the FOLLCL-type grid-tied inverter and the effective-
ness of the control methods, simulations are conducted with the parameters presented in
Tables 1 and 2. In each simulation, the reference grid current i∗g is set to 50sin(ωt) A; ig
is magnified three times for observation in the waveform diagram. The fractional-order
inductors and capacitor are equivalent to the fractance circuit using the Oustaloup approx-
imation method.In the first simulation, an IOLCL-type grid-tied inverter is studied. As
shown in Figure 16, a large amount of harmonics, which is mainly around 2f s (6 kHz),
exists in the grid current. The THD of ig is 14.46%, which is not acceptable in the appli-
cation. The result indicates that the LCL-type grid-tied inverter has little advantage in
low-frequency applications.
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In the second simulation, an FOLLCL-type grid-tied inverter with α + βf = 2 and
αf + βf = 2 (α = 1.1, αf = 1.1, βf = 0.9) under PI control is investigated. As shown in Figure 17,
when the capacitor current feedback loop is effective before 0.1 s, the system is stable, the
grid current has a very low THD (only 0.26%), and the power factor is high (0.998). The
FOLLCL-type grid-tied inverter exhibits excellent harmonic suppression ability. However,
instability arises after 0.1 s due to the removal of the capacitor current feedback loop, which
causes positive resonance.
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Moreover, an FOLLCL-type grid-tied inverter with α + βf 6= 2 and αf + βf = 2 (α = 1.1,
α = 0.2, βf = 0.8) is studied. The inverter is regulated by a PI controller; the control parame-
ters are Kp = 0.45 and Ki = 2200, respectively. As with the analysis in Section 4 (case II), the
capacitor current feedback is eliminated and Hig = 0.05. As shown in Figure 18, the system
is stable without active damping and the grid current is close to the ideal sine, which has
a THD of 0.72%. However, to obtain a sufficient phase margin, Ki cannot be too large,
resulting in a certain phase error between ug and ig; the power factor is only 0.989.
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Furthermore, in Figure 19, the simulation results of the FOLLCL-type grid-tied inverter
with α + βf 6= 2 and αf + βf = 2 (α = 1.1, αf = 1.2, βf = 0.8) controlled by a PIλ regulator are
shown. According to the analysis in Section 4 and case III, when λ = 1.4 and Ki = 6000,
although PM > 45◦, the Tfo is very small, as can be seen in Figure 14. Therefore, as shown
in Figure 19, both the amplitude error and phase error between i∗g and ig are very large, and
the power factor is only 0.906.
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Finally, a PR regulator is used to control the FOLLCL-type grid-tied inverter with
α + βf 6= 2 and αf + βf = 2 (α = 1.1, αf = 1.2, βf = 0.8). Kp = 0.45, ωi = π, and Kr = 100 are
the parameters of the regulator, and Hig = 0.05. The results are shown in Figure 20. The
grid current is in strict in-phase with the grid voltage; the power factor is 1. In addition,
the amplitude error is close to 0. The results are consistent with the previous analysis in
Section 4.

The above simulation results prove that the analyses in previous sections are correct
and PR regulator is superior to PI and PIλ regulators to control an FOLLCL-type grid-tied
inverter with α + βf 6= 2.
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6. Conclusions

In this paper, the fractional-order LLCL filter and the grid-tied inverter based on it
are studied. By correctly selecting the orders of the components, the positive resonance
can be suppressed and the negative resonance is reserved. Therefore, the passive or
active damping can be avoided for the FOLLCL-type grid-tied inverter. Meanwhile, the
switching-frequency harmonics in the grid current can be attenuated. For low-frequency
applications, it is difficult for the PI controller and fractional-order PI controller to balance
all performances simultaneously. PR controllers can guarantee good fundamental frequency
loop gain, cut-off frequency, gain margin, and phase margin at the same time. The FOLLCL-
type grid-tied inverter without active damping under PR control achieves excellent tracking
accuracy and low grid current THD. Simulations are conducted to verify the correctness of
the theoretical analyses.
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