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Abstract: Herein, we adduce, analyze, and come up with spectral collocation procedures to iron out a
specific class of nonlinear singular Lane–Emden (LE) equations with generalized Caputo derivatives
that appear in the study of astronomical objects. The offered solution is approximated as a truncated
series of the normalized shifted Jacobi polynomials under the assumption that the exact solution
is an element in L2. The spectral collocation method is used as a solver to obtain the unknown
expansion coefficients. The Jacobi roots are used as collocation nodes. Our solutions can easily be a
generalization of the solutions of the classical LE equation, by obtaining a numerical solution based
on new parameters, by fixing these parameters to the classical case, we obtain the solution of the
classical equation. We provide a meticulous convergence analysis and demonstrate rapid convergence
of the truncation error concerning the number of retained modes. Numerical examples show the
effectiveness and applicability of the method. The primary benefits of the suggested approach are that
we significantly reduce the complexity of the underlying differential equation by solving a nonlinear
system of algebraic equations that can be done quickly and accurately using Newton’s method and
vanishing initial guesses.

Keywords: Generalized Caputo type fractional derivative; fractal-fractional derivative; normalized
Jacobi polynomials; collocation method

1. Introduction

The Lane–Emden equation appears in astrophysics and is a dimensionless form of Pois-
son’s equation for the gravitational potential of a Newtonian self-gravitating, spherically
symmetric, polytropic fluid. This equation was first named in 1870 after astrophysicists
Jonathan Homer Lane and Robert Emden [1]. The classical form of the LE equations is

θ′′(ξ) + 2 ξ−1 θ′(ξ) + θn(ξ) = 0,

subject to the standard boundary conditions

θ(0) = 1, θ′(0) = 0,

where ξ is an independent variable representing the dimensionless radius, θ(ξ) is the
density function, and thus the pressure ρ = ρc θn is the central density, and the number n
denotes the polytropic index. This equation has no closed-form solution in general; for the
three cases n = 0, 1, and 5, we have the following closed-form solutions

θ(ξ) = θ0(ξ) = 1− ξ2

6
, θ(ξ) = θ1(ξ) =

sin ξ

ξ
, θ(ξ) = θ5(ξ) =

1√
1 + 1

3 ξ2
.
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The LE equation describes the dimensionless density distribution in an isothermal
gas sphere and plays an important role in galactic dynamics and in the theory of stellar
structure and evolution [2]. The LE equation was further investigated with more general
nonlinear terms of the form f (ξ, θ) in both classical and fractional cases, and recently,
many numerical and analytical methods have been applied to handle this LE equation,
for instance, the high-order wavelets method [3], the Bernoulli wavelets method [4], the
Monte Carlo method [5], the Taylor series method [6], the Morlet wavelets neural network
method [7], the Bessel polynomials method [8], the neuro-evolution approach [9], the power
series method [10], the implicit method [11], the composite Chebyshev finite difference
method [12], the computational approximate method [13], the collocation method [14], and
the tau and Galerkin methods [15,16]. Within our study, we use the typical shifted Jacobi
collocation method; the collocation method is very important in solving many types of
differential problems [17–20].

The study of the calculus of nonintegral order generalizes the concept of differentiation
and integration in the classical sense; it takes into consideration the memory effect of
the phenomena, which extensively helps to manipulate real-life phenomena that cannot
be precisely characterized by the classical differentiation definition. For the purpose of
establishing a formula for the fractional order, Riemann used a generalization of a Taylor
series and invented an arbitrary complementary function. This idea motivated Caputo, in
1967, to precisely define the most significant definition of the fractional derivatives, which
was named Caputo fractional derivative [21]. Later, some seminal textbooks discussed in-
depth these definitions in the theory of fractional differential equations, for instance, [22,23].

Recently, a more general helpful generalization of fractional integral operators was
introduced and used to describe the derivatives with more nonlocality properties by intro-
ducing a fractional-order integral of a given function related to another function [24–26].
This definition and its promising properties allowed researchers to study the availability of
spectral methods to handle the LE equation in a more general form by replacing the term θ′

with the fractional derivative in the fractal–fractional sense and replacing the term θn with
a nonlinear quadratic function in θ.

Orthogonal Jacobi polynomials [27–29] have many lucrative fixtures that make them
very important in the numerical solution of different kinds of differential problems, pri-
marily via spectral methods. The most important features of Jacobi polynomials are
orthogonality, exponential accuracy, and the existence of two parameters that may affect
the variety of the approximate solutions, which make these polynomials appropriate for
solving diverse problems. In our work, we use the orthonormal Jacobi polynomials, which
help us construct a spectral collocation algorithm to handle the nonlinear fractal–fractional
LE equation.

It is worth reporting that, within this study, we handled a more general form of the
LE equation with a generalized fractional derivative, which helps the interpretation of
the solutions with a wide temporal capture of the phenomena of astronomical objects.
As far as we know, this is the first time in the literature that the orthonormal shifted
Jacobi polynomials are used as basis functions to solve spectrally the LE equation with
generalized a fractal–fractional derivative with a detailed study of the truncation error. The
main advantages of the proposed methods are that we drastically convert the underlying
problem to that of solving a nonlinear system of algebraic equations that can be easily
solved via Newton’s method with vanishing initial guesses, with stunted computational
time; for recent advances in the field of numerical treatment of related models, the interested
readers are referred to [30–32].

In bullet points, the main contributions of this study are as follows:

• We suggest orthonormal Jacobi polynomials as the basis of the solution.
• We build and prove all derivatives needed within the algorithm.
• We construct and implement a collocation scheme to handle the nonlinear LE equation

with a generalized fractional derivative.
• We study in detail the truncation error of the method.
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• We perform some numerical examples with comparisons, when possible, with other
existing methods.

This manuscript is organized as follows: in Section 2, we report all needed definitions,
and state and prove very essential lemmas and theorems. Section 3 is devoted to the
structure of the spectral collocation algorithm for handling the generalized fractal–fractional
LE equation. In Section 4, we give an upper estimate of the truncation error. In Section 5,
we perform some numerical experiments with comparisons to test and validate the method;
some concluding remarks are reported in Section 6.

2. Preliminaries

In this section, the essential definitions of the generalized Caputo fractional opera-
tors and some relevant properties of the orthonormal normalized Jacobi polynomials are
reported, which are subsequently of important use.

2.1. Generalized Caputo Type Fractional Derivative

Definition 1 ([24]). Let ρ be a positive constant, the generalized fractional integral of a continuous
function ϕ(z) of order α > 0 is defined by

Iα,ρ ϕ(z) =
ρ1−α

Γ(α)

∫ z

0
nρ−1(zρ − nρ)α−1 ϕ(n) dn.

Definition 2 ([24]). Let ρ > 0, s− 1 < α < s, and s = dαe; the generalized Caputo fractional
derivative of order α of a function ϕ(z) ∈ Cs[0, 1] is defined as

Dα,ρ ϕ(z) =
ρα−s+1

Γ(s− α)

∫ z

0
nρ−1(zρ − nρ)s−α−1

(
n1−ρ d

dn

)s
ϕ(n) dn.

The generalized Caputo fractional derivative satisfies:

Dα,ρconst. = 0,

if α ∈ (s− 1, s), ` > s− 1, then

Dα,ρzρ ` =

{
ρα Γ(`+1)

Γ(`+1−α)
zρ (`−α), ` ∈ N0, ` ≥ dαe,

0, ` ∈ N0, ` < dαe.

It should be noted here that, in Definition 2, if we set ρ = 1, we directly obtain the usual
Caputo derivative.

2.2. An Account of Shifted Orthonormal Normalized Jacobi Polynomials

The shifted normalized Jacobi polynomials on the interval [0, 1] associated with the
real parameters (a, b > −1, ) are a sequence of polynomials {φ(a,b)

m (2 t− 1) : m = 0, 1, 2, . . . }
that can be defined as

φ
(a,b)
m (2 t− 1) =

m! Γ(a + 1)
Γ(a + m + 1)

P(a,b)
m (2 t− 1), (1)

where P(a,b)
m (2 t− 1) are the shifted classical Jacobi polynomials.

Suppose that
ψ
(a,b)
m (t) =

√
hm φ

(a,b)
m (2 t− 1), (2)

where

hm =
(a + b + 2m + 1) Γ(a + m + 1) Γ(a + b + m + 1)

m! Γ(a + 1)2 Γ(b + m + 1)
. (3)
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The orthonormality relation of ψ
(a,b)
m (t) is given by∫ 1

0
ψ
(a,b)
n (t)ψ

(a,b)
m (t)ω(t)dt = δn,m, (4)

where ω(t) = (1− t)a tb and

δn,m =

{
1, if n = m,
0, if n 6= m.

(5)

The power-form representation of ψ
(a,b)
m (t) can be represented as

ψ
(a,b)
j (t) =

j

∑
r=0

(−1)j+r (a + b + 2 j + 1) Γ(a + b + j + r + 1)√
hj r! Γ(a + 1) (j− r)! Γ(b + r + 1)

tr. (6)

Moreover, the inversion formula of ψ
(a,b)
m (t) is

tp =
p

∑
r=0

Br,p ψ
(a,b)
r (t), (7)

where

Br,p =
(a + b + 2 r + 1) (a + 1)r Γ(b + p + 1) (p− r + 1)r Γ(a + b + r + 1)√

hr r! Γ(b + r + 1) Γ(a + b + p + r + 2)
. (8)

Lemma 1. For all nonnegative integers i and j, the following linearization formula is valid [33]

ψ
(a,a+1)
i (t)ψ

(a,a+1)
j (t) =

i+j

∑
p=|i−j|

√
hi hj

hp
χp,a,i,j ψ

(a,a+1)
p (t), (9)

where

χp,a,i,j =
22 a+1 i! j! Γ(a + 1)

√
π Γ
(
a + 3

2
)

Γ(i + 2 a + 2) Γ(j + 2 a + 2)

×


Γ( 1

2 (i+j−p+3)+a) Γ( 1
2 (i−j+p+3)+a) Γ( 1

2 (−i+j+p+3)+a) Γ( 1
2 (i+j+p+4a+4))

Γ( 1
2 (i+j−p+2)) Γ( 1

2 (i−j+p+2)) Γ( 1
2 (−i+j+p+2)) Γ( 1

2 (i+j+p+3)+a)
, if (i + j− p) even

− Γ( 1
2 (i+j−p)+a+1) Γ( 1

2 (i−j+p+2)+a) Γ( 1
2 (−i+j+p+2)+a) Γ( 1

2 (i+j+p+4a+5))
Γ( 1

2 (i+j−p+1)) Γ( 1
2 (i−j+p+1)) Γ( 1

2 (−i+j+p+1)) Γ( 1
2 (i+j+p+4)+a)

, otherwise.

(10)

The generalized hypergeometric function is defined by

rFs

(
p1, p2, · · · , pr
q1, q2, · · · , qs

∣∣∣∣t) =
∞

∑
n=0

(p1)n (p2)n · · · (pr)n

(q1)n (q2)n · · · (qs)n

tn

n!
. (11)

Theorem 1 ([34]). The qth derivative of φ
(a,b)
n (t) is given explicitly by

Dqφ
(a,b)
n (t) =

n−q

∑
i=0

λ
(a,b)
i,n,q φ

(a,b)
i (t), (12)

where
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λ
(a,b)
i,n,q =

2−q n! Γ(a + b + i + 1) (a + b + n + 1)q (a + i + q + 1)−i+n−q (a + b + n + q + 1)i

i! (−i + n− q)! Γ(a + b + 2 i + 1) (a + i + 1)n−i

× 3F2

(
i− n + q, a + b + i + n + q + 1, a + i + 1

a + i + q + 1, a + b + 2 i + 2

∣∣∣∣1).
(13)

Corollary 1. The first derivative of ψ
(a,b)
i (t) is given explicitly by

d ψ
(a,b)
i (t)
d t

=
i−1

∑
s=0

θ
(a,b)
s,i ψ

(a,b)
s (t), (14)

where

θ
(a,b)
s,i =

i!
√

hi Γ(1 + a + b + s) (a + b + i + 1) (a + s + 2)−s+i−1 (a + b + i + 2)s

s!
√

hs (−s + i− 1)! Γ(1 + a + b + 2 s) (a + s + 1)i−s

× 3F2

(
a + s + 1, s− i + 1, a + b + s + i + 2

a + s + 2, a + b + 2 s + 2

∣∣∣∣1).
(15)

Corollary 2. The second derivative of ψ
(a,b)
i (t) is given explicitly by

d2 ψ
(a,b)
i (t)
d t2 =

i−2

∑
s=0

µ
(a,b)
s,i ψ

(a,b)
s (t), (16)

where

µ
(a,b)
s,i =

i!
√

hi Γ(a + b + s + 1) (a + b + i + 1)2 (a + s + 3)−s+i−2 (a + b + i + 3)s

s!
√

hs (−s + i− 2)! Γ(a + b + 2 s + 1) (a + s + 1)i−s

× 3F2

(
a + s + 1, s− i + 2, a + b + s + i + 3

a + s + 3, a + b + 2 s + 2

∣∣∣∣1).
(17)

Proof. The proof of Corollaries 1 and 2 are a direct result from using the definition of
ψ
(a,b)
i (t) along with Theorem 1.

Corollary 3. The following relation is valid for ρ > 0 and 0 < β < 1

Dβ,ρtm = ρβ
Γ
(

m
ρ + 1

)
Γ
(

m
ρ − β + 1

) tm−β ρ, ∀m ≥ 1. (18)

Proof. Putting ϕ(t) = tm and s = 1 in Definition 2, one has

Dβ,ρ tm =
m ρβ

Γ(1− β)

∫ t

0
(tρ − nρ)−β nm−1 dn.

Integrating the right-hand side of the previous equation, we get

Dβ,ρ tm =
m ρβ−1

Γ(1− β)
β

(
1− β,

m
ρ

)
tm−β ρ,

where β(., .) is the well-known beta function. Hence, the last equation can be simplified
and written alternatively in the following form
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Dβ,ρtm = ρβ
Γ
(

m
ρ + 1

)
Γ
(

m
ρ − β + 1

) tm−β ρ.

This completes the proof of this corollary.

Theorem 2. The following formula holds for 0 < β < 1,

Dβ,ρψ
(a,b)
i (t) = t−ρ β

(
i

∑
p=0

i

∑
r=p

Ar,i Bp,r ψ
(a,b)
p (t)− (B0,0 A0,i)ψ

(a,b)
0 (t)

)
. (19)

Proof. Using Corollary 3 along with the power form of ψ
(a,b)
i (t), one has

Dβ,ρψ
(a,b)
i (t) =

i

∑
p=dβe

Ap,i tp−ρ β, (20)

where

Ap,i =
ρβ (−1)i+p (a + b + 2 i + 1) Γ

(
p
ρ + 1

)
Γ(a + b + i + p + 1)

p! Γ(a + 1)
√

hi (i− p)! Γ(b + p + 1) Γ
(

p
ρ − β + 1

) . (21)

Now, tp−ρ β can be written with the aid of the inversion formula (7) as

tp−ρ β = t−ρ β
p

∑
r=0

Br,p ψ
(a,b)
r (t). (22)

Inserting Equation (22) into Equation (20) yields

Dβ,ρψ
(a,b)
i (t) = t−ρ β

i

∑
p=dβe

p

∑
r=0

Ap,i Br,p ψ
(a,b)
r (t). (23)

After expanding and rearranging the right-hand side of the last equation, we get the desired
result. This completes the proof of the theorem.

3. Collocation Approach for the Nonlinear Generalized Fractional LE Equation

Consider the following nonlinear generalized fractional LE equation:

utt(t) +
2
t

Dβ,ρu(t) + a0 u2(t) + a1 u(t) = f (t), t ∈ (0, 1), (24)

subject to the initial conditions

u(0) = y0, u′(0) = y1, (25)

where 0 < β ≤ 1, a0, a1, y0, y1 are known constants, and f (t) is a known continuous source
term.
As we know, the set {ψ(a,b)

i (t), i : 0, . . . , ∞} forms an orthonormal basis function in the
space function L2

ω(t)(0, 1). Consequently, any function u(t) ∈ L2
ω(t)(0, 1) can be written as

u(t) =
∞

∑
i=0

ci ψ
(a,b)
i (t), (26)

and approximated as

u(t) ≈ uN(t) =
N

∑
i=0

ci ψ
(a,b)
i (t). (27)
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Now, we present our technique when b = a + 1 for the following two cases:

1. The case in which 0 < β < 1 and ρ > 0.
2. The case in which β = 1 and ρ = 1.

3.1. The Case in Which 0 < β < 1 and ρ > 0

The application of Lemma 1 and Corollary 2 along with Theorem 2 enables us to write
the residual R(t) of Equation (24) as

R(t) =
d2 uN(t)

d t2 +
2
t

Dβ,ρuN(t) + a0 uN
2(t) + a1 uN(t)− f (t)

=
N

∑
i=0

i−2

∑
s=0

ci µ
(a,a+1)
s,i ψ

(a,a+1)
s (t) + 2 t−ρ β−1

N

∑
i=0

(
i

∑
p=0

i

∑
r=p

ci Ar,i Bp,r ψ
(a,a+1)
p (t)− (B0,0 A0,i)ψ

(a,a+1)
0 (t)

)

+ a0

N

∑
i,j=0

i+j

∑
p=|i−j|

ci

√
hi hj

hp
χp,a,i,j ψ

(a,a+1)
p (t) + a1

N

∑
i=0

ci ψ
(a,a+1)
i (t)− f (t).

(28)

Multiplying the last equation by t1+ρ β, we get

R̄(t) = t1+ρ β
N

∑
i=0

i−2

∑
s=0

ci µ
(a,a+1)
s,i ψ

(a,a+1)
s (t) + 2

N

∑
i=0

(
i

∑
p=0

i

∑
r=p

ci Ar,i Bp,r ψ
(a,a+1)
p (t)− (B0,0 A0,i)ψ

(a,a+1)
0 (t)

)

+ a0 t1+ρ β
N

∑
i,j=0

i+j

∑
p=|i−j|

ci

√
hi hj

hp
χp,a,i,j ψ

(a,a+1)
p (t) + a1 t1+ρ β

N

∑
i=0

ci ψ
(a,a+1)
i (t)− t1+ρ β f (t),

(29)

Now, equations t, t1+ρ β, and t1+ρ β f (t) may be approximated as

t =
1

∑
m=0

am ψ
(a,a+1)
m (t),

t1+ρ β =
M

∑
n=0

bn ψ
(a,a+1)
n (t),

t1+ρ β f (t) =
M

∑
l=0

gl ψ
(a,a+1)
l (t),

(30)

where M is an arbitrary positive number and

am =
∫ 1

0
t ψ

(a,a+1)
m (t)ω(t) dt, ∀m = 0, 1,

bn =
∫ 1

0
t1+ρ β ψ

(a,a+1)
n (t)ω(t) dt,

gl =
∫ 1

0
t1+ρ β f (t)ψ

(a,a+1)
l (t)ω(t) dt.

(31)

Inserting Equation (30) into Equation (29), R̄(t) can be obtained. Hence, the application of
the collocation method [35–37] enables us to get the following (N + 1) nonlinear algebraic
system of equations in the unknown expansion coefficients ci

R̄(ti) = 0, i = 1, 2, . . . , N − 1,

uN(0) = y0, u′N(0) = y1,
(32)

where {ti : i = 1, 2, . . . , N − 1} are the first (N − 1) distinct roots of ψ
(a,a+1)
N+1 (t). Hence, the

system (32) can be solved with the aid of the well-known Newton iterative method.
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3.2. The Case in Which β = 1 and ρ = 1

Using similar steps as those given in the previous case along with Lemma 1, Corollary 1,
and Corollary 2, we get the (N + 1) nonlinear algebraic system of equations in the unknown
expansion coefficients ci that can be solved using Newton’s iterative method.

Remark 1. Algorithm 1 shows all the steps required to obtain the numerical solution of
Equation (24) governed by the conditions (25).

Algorithm 1: Coding algorithm for the proposed scheme.

Input β, a, ρ, a0, a1, y0, y1, N, M and f (t).
Step 1. Assume an approximate solution uN(t) as in (27).
Step 2. Compute R̄(t) as in (29).
Step 3. Apply the collocation method to obtain the system in (32).
Step 4. Use FindRoot command with initial guess {ci = 10−i, i : 0, 1, ..., N},

to solve the system in (32) to get ci.
Output uN(t)

4. Error Bound

We first define the following error norms:

L2[0, 1] = {u : ‖u‖2 =

(∫ 1

0
u2tb(1− t)a dt

) 1
2

< ∞},

L∞[0, 1] = {u : ‖u‖∞ = max
t∈[0,1]

|u| < ∞}.

Consider the following space functions

V(a,b)
N = span{ψ(a,b)

i (t) : i = 0, 1, . . . , N} (33)

and assume that uN(t) ∈ V(a,b)
N is the best approximation of u(t); then, by the definition of

the best approximation, we have

||u(t)− uN(t)||∞ ≤ ||u(t)− vN(t)||∞, ∀vN(t) ∈ V(a,b)
N . (34)

It turns out that the previous inequality is also true if vN(t) denotes the interpolating poly-
nomial for u(t) at points ti, where ti are the roots of ψ

(a,b)
i (t). Then, by similar procedures

as in [38]

u(t)− vN(t) =
dN+1 uN(η)

d tN+1 (N + 1)!

N

∏
i=0

(t− ti), (35)

where η ∈ [0, 1] and hence, one has

||u(t)− vN(t)||∞ ≤ max
t∈[0,1]

∣∣∣∣dN+1 uN(η)

d tN+1

∣∣∣∣ ||∏N
i=0(t− ti)||∞
(N + 1)!

. (36)

Since u(t) is a smooth function on [0, 1], then there exist a constant k, such that

max
t∈[0,1]

∣∣∣∣dN+1 uN(t)
d tN+1

∣∣∣∣ ≤ k (37)

To minimize the factor ||∏N
i=0(t− ti)||∞, let us use the one-to-one mapping t = 1

2 (z + 1)
between the intervals [−1, 1] and [0, 1] to deduce that
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min
ti∈[0,1]

max
t∈[0,1]

∣∣∣∣∣ N

∏
i=0

(t− ti)

∣∣∣∣∣ = min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣∣ N

∏
i=0

1
2
(z− zi)

∣∣∣∣∣
=

(
1
2

)N+1
min

zi∈[−1,1]
max

z∈[−1,1]

∣∣∣∣∣ N

∏
i=0

(z− zi)

∣∣∣∣∣
=

(
1
2

)N+1
min

zi∈[−1,1]
max

z∈[−1,1]

∣∣∣∣∣∣ψ
(a,a+1)
N+1 (z)

y(a,a+1)
N

∣∣∣∣∣∣,
(38)

where y(a,a+1)
N =

2−N (N+1)
√

hN+1 Γ(a+1) Γ(2 a+2 N+2)
Γ(a+N+2) Γ(2 a+N+2) is the leading coefficient of ψ

(a,a+1)
N+1 (z)

and zi are the roots of ψ
(a,a+1)
N+1 (z).

It is known that
max

z∈[−1,1]

∣∣∣ψ(a,a+1)
N+1 (z)

∣∣∣ = ψ
(a,a+1)
N+1 (1) =

√
hN+1 (39)

Therefore, inequality (37) along with Equations (38) and (39) enable us to get the following
desired result

||u(t)− uN(t)||∞ ≤ k
√

hN+1

2N+1 y(a,a+1)
N (N + 1)!

= k
Γ(a + N + 2) Γ(2 a + N + 2)

2 (N + 1) (N + 1)! Γ(a + 1) Γ(2 a + 2 N + 2)
.

(40)

Hence, an upper bound of the absolute error is obtained for the approximate and exact
solutions.

5. Illustrative Examples and Comparisons

Before providing the following examples, we would like to mention that all codes
were written and debugged using Mathematica 11 on an HP Z420 workstation, with an
Intel (R) Xeon(R) CPU E5-1620 3.6 GHz processor, 16 GB RAM DDR3, and 512 GB storage.

Example 1 ([39]). Consider the following nonlinear generalized fractional LE equation

utt(t) +
2
t

Dβ,ρu(t) + u(t) = 0, t ∈ (0, 1), (41)

subject to the initial conditions
u(0) = 1, u′(0) = 0, (42)

where u(t) = sin(t)
t is the exact solution when β = 1. Figure 1 shows that the approximate solutions

have smaller variations for values of ρ and β near the value ρ = β = 1 when N = 12, M = 20,
and a = 2. Table 1 presents a comparison of the L∞ error between our method at ρ = β = a = 1,
M = 20 and the methods in [39–43].

Table 1. Comparison of L∞ error of Example 1.

N = 64

EADM [40] EHWCM [41] EHWAGM [42] EHWCAM [43] ECWCQM [39] Our method at N = 12

8.0733× 10−3 3.2854× 10−7 9.1857× 10−8 9.7345× 10−6 7.2153× 10−12 3.33067× 10−16
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=1.5, =0.6
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Figure 1. Different solutions of Example 1.

Example 2. Consider the following nonlinear generalized fractional LE equation

utt(t) +
2
t

Dβ,ρu(t) + u2(t) + u(t) = f (t), t ∈ (0, 1), (43)

subject to the initial conditions
u(0) = 1, u′(0) = −β, (44)

where f (t) is chosen such that the exact solution is u(t) = e−β t. Table 2 shows the L2 and L∞
errors at different values of ρ, β, a, and N when M = 20. Figure 2 illustrates the absolute error
(left) and approximate solution (right) at ρ = 1, β = 0.8, a = 1, N = 12, and M = 20.

Table 2. L2 and L∞ errors of Example 2.

a N
ρ = 1.2, β = 0.1 ρ = 0.9, β = 0.5 ρ = 0.7, β = 0.9

L2 Error L∞ Error L2 Error L∞ Error L2 Error L∞ Error

4 2.63416 × 10−10 1.53419 × 10−9 3.56771 × 10−7 4.94507 × 10−6 5.18941 × 10−6 7.99767 × 10−5

1 8 1.61411 × 10−15 6.39142 × 10−14 7.61436 × 10−14 3.64833 × 10−13 9.68827 × 10−12 1.42884 × 10−10

12 1.76776 × 10−15 1.01641 × 10−13 5.56363 × 10−16 3.31957 × 10−14 2.09734 × 10−16 8.46545 × 10−15

4 1.69006 × 10−10 1.42379 × 10−9 2.37063 × 10−7 5.65026 × 10−6 3.3588 × 10−6 9.01696 × 10−5

2 8 1.20331 × 10−17 1.94289 × 10−16 7.22686 × 10−14 6.96721 × 10−13 9.06465 × 10−12 2.20747 × 10−10

12 1.19946 × 10−17 1.76942 × 10−16 1.57298 × 10−17 1.94289 × 10−16 2.76152 × 10−17 5.82867 × 10−16

4 9.71126 × 10−11 1.75633 × 10−11 1.41421 × 10−7 5.98682 × 10−6 1.99222 × 10−6 9.46116 × 10−5

3 8 5.09106 × 10−18 1.11022 × 10−16 5.46102 × 10−14 1.07617 × 10−12 6.80349 × 10−12 3.10428 × 10−10

12 1.77111 × 10−17 2.89699 × 10−16 2.21721 × 10−17 3.88578 × 10−16 4.23896 × 10−18 6.38378 × 10−16

Example 3. Consider the following nonlinear generalized fractional LE equation

utt(t) +
2
t

Dβ,ρu(t) + u2(t) + u(t) = t2

2 ρβ
Γ
(

1 + 4
ρ

)
Γ
(
−β + 4

ρ + 1
) t1−ρ β + t6 + t2 + 12

, t ∈ (0, 1), (45)

subject to the initial conditions
u(0) = 0, u′(0) = 0, (46)

where u(t) = t4 is the exact solution. Figure 3 illustrates the absolute errors at different values of
β when ρ = 1.01, a = 2, N = 4, and M = 20. Table 3 shows the L2 and L∞ errors at different
values of ρ, β, and N at a = 1 and M = 20. Moreover, we have reported the CPU running times in
Table 3.
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Figure 2. The absolute error (left) and approximate solution (right) of Example 2.
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Figure 3. The absolute errors of Example 3.

Table 3. L2 and L∞ errors of Example 3.

N
ρ = 0.8, β = 0.85 ρ = 0.5, β = 0.95

L2 Error CPU Time L∞ Error CPU Time L2 Error CPU Time L∞ Error CPU Time

4 0 8.97 2.78666 × 10−14 8.923 0 7.847 4.32987 × 10−15 7.831
6 3.86623 × 10−18 8.441 3.19189 × 10−15 8.051 3.50141 × 10−18 9.983 8.88178 × 10−16 9.437

Example 4. Consider the following nonlinear generalized fractional LE equation

utt(t) +
2
t

Dβ,ρu(t) + 2 u2(t) + 3 u(t) = f (t), t ∈ (0, 1), (47)

subject to the initial conditions
u(0) = 0, u′(0) = 0, (48)

where f (t) is chosen such that the exact solution is u(t) = ln
(
1 + t2). Figure 4 shows the

maximum absolute errors when β = 0.95 at different values of ρ, a, and N when M = 20, while
Figure 5 illustrates the absolute errors at different values of β, ρ, and a when N = 20 and M = 20.
It can be seen that the approximate solution is quite near to the precise one.
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Figure 4. The maximum absolute errors of Example 4.

Example 5. Consider the following nonlinear generalized fractional LE equation

utt(t) +
2
t

Dβ,ρu(t) + u2(t) + 3 u(t) = 0, t ∈ (0, 1), (49)

subject to the initial conditions
u(0) = 0, u′(0) = 0. (50)

Since the exact solution is not available, we define the following error norm

E = max
t∈[0,1]

∣∣∣t uNtt(t) + 2 Dβ,ρuN(t) + t uN
2(t) + 3 t uN(t)

∣∣∣. (51)

We applied our technique with when N = 8 and M = 20. The values of E at various values of ρ, β,
and a are listed in Table 4. Moreover, we report the CPU running times in that table.

β 0.1,a 2,ρ 1.6

t
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Figure 5. The absolute errors of Example 4.
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Table 4. Residual error of Example 5.

a
ρ = 0.5, β = 0.5 ρ = 0.7, β = 0.7 ρ = 0.9, β = 0.9

E CPU Time E CPU Time E CPU Time

1 4.14113 × 10−24 15.132 5.24048 × 10−25 10.872 3.75029 × 10−11 16.706
3 2.99225 × 10−17 15.881 2.20543 × 10−20 16.693 7.55597 × 10−25 16.069

6. Closing Remarks

Within this research work, we presented and analyzed an accurate collocation solver
for a specific nonlinear LE equation with a generalized fractal–fractional Caputo derivative.
We also discussed the truncation error of the suggested approximate orthonormal Jacobi
solution. Some numerical results and comparisons were exhibited to check and verify the
validity and the accuracy of the proposed algorithm. We believe that the offered scheme can
be extended to more general models in different disciplines in engineering, mathematics,
and physics. As an expected future work, we aim to employ the developed theoretical
results in this paper along with suitable spectral methods to treat numerically some other
types of generalized fractional differential equations; see, e.g., [44,45].
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