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Abstract: This paper describes a new fractional predator–prey discrete system of the Leslie type.
In addition, the non-linear dynamics of the suggested model are examined within the framework
of commensurate and non-commensurate orders, using different numerical techniques such as
Lyapunov exponent, phase portraits, and bifurcation diagrams. These behaviours imply that the
fractional predator–prey discrete system of Leslie type has rich and complex dynamical properties
that are influenced by commensurate and incommensurate orders. Moreover, the sample entropy
test is carried out to measure the complexity and validate the presence of chaos. Finally, nonlinear
controllers are illustrated to stabilize and synchronize the proposed model.
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1. Introduction

In recent years, biological models have been receiving an increasing amount of atten-
tion from researchers. Predator–prey models play a crucial role in the study of biology.
The dynamics of predator–prey interactions have been widely investigated in the fields of
mathematical biology and ecology. The analyses of these models found several rich dynam-
ics, such as bifurcations, limit cycle, and chaotic behaviors. Although numerous studies
have explored the dynamic behaviors of continuous-time systems, discrete-time systems
have received comparatively less attention. Discrete-time models possess their own distinct
dynamical properties and a variety of practical problems can be represented through these
systems in the real biological world. Owing to these characteristics, the study of discrete
systems is crucial and has led to significant advancements in engineering, mathematics,
ecology, biology and other fields.

In the last two decades, discrete fractional calculus has attracted the attention of
numerous mathematicians, who were intrigued by its applications in different domains,
such as hardware implementation, image encryption, and secure communication. Recently,
a flurry of articles has been published on this hot issue, where the authors offer a variety of
discrete-time fractional operators, stability analyses, and several theoretical results [1–3].
These have led to the proposal of more commensurate discrete fractional chaotic systems,
such as [4–7], and more incommensurate discrete fractional chaotic systems, such as [8–12],
along with a variety of control strategies and synchronization schemes between different
fractional chaotic maps, such as [13–16].

In recent years, a significant number of scholars have analyzed the dynamics of discrete
models; nonetheless, only a few papers have examined the dynamical behaviour of discrete-
time predator–prey models of the Leslie type. For instance, the dynamics of the predator–prey

Fractal Fract. 2023, 7, 120. https://doi.org/10.3390/fractalfract7020120 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7020120
https://doi.org/10.3390/fractalfract7020120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-6394-1452
https://orcid.org/0000-0003-3172-3204
https://doi.org/10.3390/fractalfract7020120
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7020120?type=check_update&version=2


Fractal Fract. 2023, 7, 120 2 of 14

discrete model of Holling and Leslie type were studied by Hu and Cao in [17]. The bifurcation
analysis of the predator–prey discrete-time system with harvesting was analyzed by Lio
and Jiang [18]. In [19], the authors explored the discrete prey–predator model of Leslie type
with a simplified Holling type IV. The global dynamics and hybrid control in Leslie’s prey–
predator discrete-time model were investigated by Khan et al. [20], while Chen et al. [21]
discussed the chaos in a discrete prey–predator model of Leslie type with Michaelis–Menten
prey harvesting. The majority of the aforementioned discrete memristor research is of
classical integer order; unfortunately, as far as we know, no research contributions have
studied the dynamic behaviours of a fractional-order predator–prey discrete-time system
of Leslie type. Consequently, the investigation of the chaotic dynamics of predator–prey
discrete-time system of Leslie type based on fractional differences with commensurate and
incommensurate order, as well as their synchronization and control, is an attractive subject.

Motivated by the aforementioned discussion, we intend, in this article, to explore
and study the dynamic behaviors of the new fractional predator–prey discrete system of
Leslie type using both commensurate and non-commensurate orders. The basic properties
of this fractional map will be studied using certain theoretical and numerical analyses.
Furthermore, we will use the sample entropy test to measure the complexity and validate
the presence of chaos in the proposed system using commensurate and incommensurate
orders. In addition, we propose a nonlinear controller that enables the suggested model to
be stabilized and synchronized by forcing the states to asymptotically converge toward
zero. Finally, we will conclude the study by summarizing the most significant findings
obtained in the article.

2. Mathematical Model

In [19], the authors introduced the following predator–prey discrete system of Leslie type:

xm+1 = xm + δxm

[
(1− xm)−

ym

x2
m + c

]
,

ym+1 = ym + δym

[
a− bym

xm

]
,

(1)

where a, b, c and δ are non-negative parameters. The first-order difference of the model is
designed as follows:

∆x(m) = δx(m)

[
(1− x(m))− y(m)

x2(m) + c

]
,

∆y(m) = δy(m)

[
a− by(m)

x(m)

]
.

(2)

Then, the fractional version of the proposed discrete model (2) can be given as follows:

C∆γ
d x(m) = δx(m + γ− 1)

[(
1− x(m + γ− 1)

)
− y(m + γ− 1)

x2(m + γ− 1) + c

]
,

C∆γ
d y(m) = δy(m + γ− 1)

[
a− by(m + γ− 1)

x(m + γ− 1)

]
,

(3)

where 0 < γ ≤ 1, m ∈ Nd+1−γ, Nd = {d, d + 1, d + 2, . . . } such that d ∈ R. C∆γ
d is the

Caputo-like difference operator which is defined, according to [3], as:

C∆γ
d χ(m) = ∆−(k−γ)

d ∆kχ(m)

=
1

Γ(k− γ)

m−(k−γ)

∑
ν=k

(m− ν− 1)(k−1−γ)∆kχ(ν),
(4)

where m ∈ (N)d+k−γ and k = dγe+ 1. ∆−γ
d is the γ− th fractional sum which, according

to [1], can be given by:
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∆−γ
d χ(m) =

1
Γ(γ)

m−γ

∑
ν=γ

(m− ν− 1)(γ−1)χ(ν), m ∈ (N)k+γ, γ > 0 (5)

To discuss the complex dynamics of model (3), we shall give the theorem below,
which enables us to acquire the numerical formula of the new fractional predator–prey
discrete system:

Theorem 1 ([22]). The solution of the initial value problem IVP{
C∆γ

d χ(m) = g(m + γ− 1, χ(m + γ− 1))
∆kχ(d) = χk, n = dγe+ 1, k = 0, 1, . . . , n− 1,

(6)

is written as

χ(m) = χ0(d) +
1

Γ(γ)

m−γ

∑
ν=d+n−γ

(m− 1− ν)(γ−1)g(ν− 1 + γ, χ(ν− 1 + γ)), m ∈ Nd+n, (7)

where

χ0(d) =
n−1

∑
k=0

(m− d)k

Γ(k + 1)
∆kχ(d). (8)

Remark 1. Take d = 0, since (m− 1− ν)(γ−1) = Γ(m−ν)
Γ(m+1−ν−γ)

and for l = ν + γ− 1 and n = 1,
the numerical formula (7) can be designed for γ ∈ (0, 1] as follows:

χ(m) = χ(0) +
1

Γ(γ)

m−1

∑
l=0

Γ(m− 1− l + γ)

Γ(m− l)
g(l, χ(l)). (9)

As a result of this theorem, the numerical formula of the fractional predator–prey
discrete system (3) is given by:

x(m) = x(0) +
1

Γ(γ)

m−1

∑
l=0

Γ(m− l − 1 + γ)

Γ(m− l)

(
δx(l)

[(
1− x(l)

)
− y(l)

x2(l) + c

])
,

y(m) = y(0) +
1

Γ(γ)

m−1

∑
l=0

Γ(m− l − 1 + γ)

Γ(m− l)

(
δy(l)

[
a− by(l)

x(l)

])
, m = 1, 2, . . . .

(10)

3. Commensurate Fractional Discrete System

The dynamics of the commensurate fractional predator–prey discrete system of Leslie
type (3) will be investigated in this part, using numerical analysis tools such as phase
portraits, bifurcation charts, and the estimation of maximum Lyapunov exponents (MLE).
It should be noted that the system with commensurate order is a system of equations
generated with identical orders. The maximum Lyapunov exponents of the attractors of
the fractional map (3) will be determined using the Jacobian matrix approach [23].

The variation in the dynamic behaviour of the proposed predator–prey map from
periodic states to chaotic states is illustrated with the help of bifurcations. The commen-
surate fractional order of the map (3) is regarded as the bifurcation parameter, which
ranges from 0 to 1. The initial values were fixed as (x(0), y(0)) = (0.9, 0.56), and the other
parameters were a = 2.5, b = 5, c = 5.5, δ = 1.05. The maximum Lyapunov exponents of
the fractional parameter γ and the bifurcation chart of the state variable x were computed
numerically via MATLAB, and the results are presented in Figure 1. We can observe that
when the order γ < 0.66, the trajectories diverge toward infinity. When γ ∈ [0.66, 0.904],
chaotic behaviors can be obtained, where the values of MLE are positive. Moreover, when
γ grows larger and approaches 1, the MLEs are negative or equal to zero, meaning that the
commensurate fractional discrete system (3) is stable and periodic windows appear. To
obtain a better understanding of these characteristics, we frew different phase attractors
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to suitably support the MLE and the bifurcation diagram in Figure 1. Figure 2 depicts the
results for γ = 0.67, γ = 0.7, γ = 0.8, γ = 0.85, γ = 0.9 and γ = 0.95. It is clear that the
suggested commensurate fractional predator–prey discrete system exhibits chaotic motions
when the order γ decreases, and periodic orbits when the commensurate order γ takes
higher values. These numerical simulations demonstrate that the commensurate fractional
predator–prey discrete system (3) has a variety of interesting dynamical properties.

(a) (b)
Figure 1. (a) Bifurcation of (3) versus γ for a = 2.5, b = 5, c = 5.5, δ = 1.05, (b) The correspond-
ing MLE.

(a) (b)

(c) (d)

(e) (f)
Figure 2. Phase portraits of (3) for a = 2.5, b = 5, c = 5.5, δ = 1.05 and with (a) γ = 0.67, (b) γ = 0.7,
(c) γ = 0.8, (d) γ = 0.85, (e) γ = 0.9, (f) γ = 0.95.
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Considering δ as the critical parameter, we plotted the bifurcation diagrams of (3)
versus δ ∈ [0.75, 1.12], as shown in Figure 3, which correspond to the fractional values
γ = 0.7, γ = 0.8, and γ = 0.9. According to Figure 3a, the trajectories of the system
gradually change from periodic to chaotic states through a period-doubling bifurcation
when the parameter δ increases. When δ ∈ (0.98, 1.054), the system is chaotic, with a small
periodic region shown in δ ∈ (1.027, 1.039). However, as shown in Figure 3b,c, when
the commensurate order increases, the chaotic region shifts to the right. Basically, when
γ = 0.8, the states are chaotic in δ ∈ (1.014, 1.09), while, when γ = 0.9, the chaotic region is
shown in δ ∈ (1.055, 1.118).

(a) (b)

(c)
Figure 3. Bifurcation diagrams of (3) versus δ for (a) γ = 0.7, (b) γ = 0.78, (c) γ = 0.9.

4. Incommensurate Fractional Discrete System

This section explores the behaviour of the predator–prey discrete system of Leslie type
with incommensurate fractional order values. The incommensurate order system refers
to the idea of using distinct fractional orders for each equation in the system. The incom-
mensurate fractional discrete fractional predator–prey discrete system of Leslie type is
represented as follows:

C∆γ1
d x(m) = δx(m− 1 + γ1)

[(
1− x(m− 1 + γ1)

)
− y(m− 1 + γ1)

x2(m− 1 + γ1) + c

]
, m ∈ Nd+1−γ1

C∆γ2
d y(m) = δy(m− 1 + γ2)

[
a− by(m− 1 + γ2)

x(m− 1 + γ2)

]
, m ∈ Nd+1−γ2 .

(11)

Employing Theorem 1, the numerical model of the incommensurate fractional discrete
system (11) is signed as follows:

x(m) = x(0) +
1

Γ(γ1)

m−1

∑
l=0

Γ(m− l − 1 + γ1)

Γ(m− l)

(
δx(l)

[(
1− x(l)

)
− y(l)

x2(l) + c

])
,

y(m) = y(0) +
1

Γ(γ2)

m−1

∑
l=0

Γ(m− l − 1 + γ2)

Γ(m− l)

(
δy(l)

[
a− by(l)

x(l)

])
, m = 1, 2, . . . .

(12)
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The bifurcation diagrams in Figure 4 reflect the system behaviors (11) by varying
δ ∈ (0.75, 1.15) with the values of parameters a = 2.5, b = 5, c = 5.5 and initial values
(x(0), y(0)) = (0.9, 0.56). It is plain to observe that the change in orders γ1 and γ2 influences
the states of the incommensurate fractional predator–prey discrete system of Leslie type.
For instance, when we fix γ2 = 1 and increase γ1 from 0.1 to 1, we can observe that the
chaotic region expands, and when we fix γ1 = 0.9 and increase γ2 from 0.7 to 1, we see
that the region in which chaos exists shrinks. Additionally, when the system parameter
δ increases, the trajectories of the incommensurate map gradually evolve from a periodic
states with a one-period orbit to a chaotic ones by means of period-doubling bifurcations.
Furthermore, we investigate the following two cases for a more accurate illustration of
the influence of incommensurate orders on the behaviours of the fractional predator–prey
discrete system (11):

(a) (b)

(c) (d)
Figure 4. Bifurcations of (11) versus δ for (a) (γ1, γ2) = (0.7, 0.9), (b) (γ1, γ2) = (1, 0.9), (c) (γ1, γ2) = (0.9,
0.7), (d) (γ1, γ2) = (0.9, 1).

Case 1. We vary the order γ1 from 0.3 to 1 with step size ∆γ1 = 0.001. Figure 5a,b illustrates
the bifurcation and its corresponding MILEs for γ2 = 0.8, the parameter values
a = 2.2, b = 55, c = 5.5, δ = 1.05 and initial conditions (x(0), y(0)) = (0.9, 0.56).
It is clear from Figure 5 that the state of the incommensurate map (11) displays
chaotic behavior for larger γ1 values, as reflected by positive Lyapunov exponents,
as seen in Figure 5b. The obtained MLE is 0.383. The Lyapunov exponent shown in
Figure 5b is negative for the fractional order value γ1 < 0.654. This result means
that a small periodic region is seen for γ1 ∈ [0.3, 0.654]. Moreover, when γ1 grows
larger and approaches 1, the incommensurate fractional map possesses a complex
chaotic attractor as its MLEs reach their maximum values.
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(a) (b)
Figure 5. (a) Bifurcation of (11) versus γ1 for a = 2.5, b = 5, c = 5.5, δ = 1.05 and γ2 = 0.8, (b) The
corresponding MLE.

Case 2. The bifurcation and its MLE are drawn for γ1 = 1 to examine the dynamic
behaviours of the incommensurate fractional predator–prey discrete system of
the Leslie type (11) when γ2 is an adjasable parameter, as displayed in Figure 6.
These results are obtained by varying γ2 in the range (0.5, 1) and with order
γ1 = 1. The initial conditions (x(0), y(0)) = (0.9, 0.56), and the parameter values
a = 2.2, b = 55, c = 5.5, δ = 1.05 have remained unchanged. We can observe that
when the order γ2 has small values, the trajectories will diverge toward infinity.
When γ2 ∈ [0.528, 0.93], chaotic behaviors can be obtained, where the MLE values
are positive. A small periodic region is also seen for γ2 ∈ [0.7701, 0.7756], where
the MLEs have negative values. Moreover, when γ2 grows larger and approaches 1,
the MLEs are negative, meaning that the incommensurate fractional predator–prey
discrete system of Leslie type (11) is stable and periodic windows appear. Accord-
ing to these findings, changes in the incommensurate orders affect the dynamical
properties of a fractional predator-prey discrete system of Leslie type. This also
suggests that the behaviors of the system may be more accurately represented by
incommensurate orders, which is supported by the phase portraits of the state
variables of the incommensurate fractional system (11) seen in Figure 7.

(a) (b)
Figure 6. (a) Bifurcation of (11) versus γ2 for a = 2.5, b = 5, c = 5.5, δ = 1.05 and γ1 = 1. (b) The
corresponding MLE.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Phase portraits of (11) for a = 2.5, b = 5, c = 5.5, δ = 1.05 and with different fractional or-
ders (a) (γ1, γ2) = (0.65, 0.8) (b) (γ1, γ2) = (0.7, 0.8) (c) (γ1, γ2) = (0.9, 0.8) (d) (γ1, γ2) = (1, 0.55)
(e) (γ1, γ2) = (1, 0.6) (f) (γ1, γ2) = (1, 0.931).

5. The Sample Entropy Test (SampEn)

Here, we used the sample entropy (SampEn) method to measure the complexity of
the commensurate fractional predator–prey discrete system of Leslie type (3) and the
incommensurate fractional predator–prey discrete system of Leslie type (11). Sample
entropy, unlike approximate entropy, can quantify the irregularity of time series regardless
of the similarity coefficient r and the embedding dimension m. As a result, SampEn is
fairly consistent and eliminates the bias of ApEn [24]. The higher-complexity time series
are those that have larger SampEn values [25]. The SampEn is calculated as follows:

SampEn = − log
Ψj+1(r)

Ψj(r)
, (13)
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where Ψj(r) is expressed as

Ψj(r) =
1

m− j + 1

m−j+1

∑
i=1

log Cj
i (r). (14)

and r = 0.2std(C) is the tolerance defined and std(C) represents the standard deviation.
After setting the parameters a = 2.2, b = 5, c = 5.5, δ = 1.05 and the initial condi-

tions (x(0), y(0)) = (0.9, 0.56), the sample entropy results of the commensurate fractional
predator–prey discrete system (3) and the incommensurate fractional predator–prey dis-
crete system (11) are given in Table 1 and Figure 8. It is clear that, in order to acquire larger
SampEn values, the time series has a higher level of complexity. As a consequence, these
findings are in accordance with the MLE results that were shown previously, validating the
pressence of chaos in the proposed fractional system.

Table 1. The sample entropy results of the fractional predator–prey discrete system.

γ1 γ2 SampEn γ1 γ2 SampEn

0.67 0.67 0.6179 0.8 0.8 0.4407
0.95 0.95 0.0116 1 0.6 0.4715
0.65 0.8 0.0665 0.9 0.8 0.4407

1 0.55 0.5017 1 0.8 0.3878

(a) γ1 = γ2 (b) γ2 = 0.8

(c) γ1 = 1
Figure 8. The sample entropy (SampEn) of the fractional predator-prey discrete system of Leslie type
for a = 2.2, b = 5, c = 5.5, δ = 1.05 and initial conditions (x(0), y(0)) = (0.9, 0.56).

6. Control of Fractional Predator–Prey Discrete System

In the following, we suggest a stabilization controller to stabilize the chaotic trajectories
of the proposed fractional predator–prey discrete system of Leslie type. The goal of the
stabilization control problem is to design a good adaptive controller that makes all of the
system’s states tend asymptotically towards zero. To this aim, we first recall the theorem of
the stability of the fractional map
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Theorem 2 ([26]). Let z(m) = (z1(m), . . . , zn(m))T and B ∈ Mn(R). The zero fixed-point of
the linear fractional order discrete system

C∆γ
d z(m) = B z(m− 1 + γ), (15)

∀ m ∈ Nd+1−γ is asymptotically stable if

λι ∈
{

ϑ ∈ C : |ϑ| <
(

2 cos
|arg ϑ| − π

2− γ

)γ

and |arg ϑ| > γ π

2

}
, (16)

where λι are the eigenvalues of the matrix B.

The controlled fractional predator–prey discrete system is given by:

C∆γ
d x(m) = δxm + γ− 1)

[(
1− x(m + γ− 1)

)
− y(m + γ− 1)

x2(m + γ− 1) + c

]
+ C1(m + γ− 1),

C∆γ
d y(m) = δy(m + γ− 1)

[
a− by(m + γ− 1)

x(m + γ− 1)

]
+ C2(m + γ− 1),

(17)

where C = (C1, C2)
T is the adaptive controller. The next theorem describes the control law

to stabilize the suggested new fractional predator–prey discrete system.

Theorem 3. The fractional predator–prey discrete system of Leslie type is the stabilized subject to
the following control lawC1(m) = δx2(m)− (1 + δ)x(m) + δx(m)y(m)

x2(m)+c ,

C2(m) = δby2(m)
x(m)

− (1 + δa)y(m).
(18)

Proof. Substituting the control law (18) into (17) yields the following linear system

C∆γ
d Z(m) = BZ(m− 1 + γ), (19)

where Z = (x, y)T and

B =

(
−1 0
0 −1

)
(20)

It is clear that the eigenvalues of the matrix B satisfy

|λj| = 1 <

(
2 cos

|arg λj| − π

2− γ

)γ

and |arg λj| = π >
γ π

2
, j = 1, 2, 3. (21)

Therefore, by employing Theorem 2, the system (19) is asymptotically stable.

A numerical simulation was carried out to verify the results of Theorem 3.
Figures 9 and 10 illustrate the time series of the controlled fractional predator–prey discrete
system of Leslie type (17) for γ = 0.8 and γ = 0.67, respectively. We observe that the sys-
tem’s states asymptotically converge towards zero, which confirms the stabilization results.
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Figure 9. Time evolution of the controller fractional predator–prey discrete system of Leslie type (17)
for γ = 0.8, a = 2.2, b = 5, c = 5.5, δ = 1.05 and (x(0), y(0)) = (0.9, 0.56).

Figure 10. Time evolution of the controller fractional predator–prey discrete system of Leslie type
(17) for γ = 0.67, a = 2.2, b = 5, c = 5.5, δ = 1.05 and (x(0), y(0)) = (0.9, 0.56).
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7. Synchronization Scheme

This section illustrates nonlinear controllers that enable synchronization of the frac-
tional predator–prey discrete system of Leslie type. The aim of the synchronization process
is to force the error between the master system and slave system to converge toward zero.
Let us define the master system as the commensurate fractional predator–prey discrete
system (3), and define the slave system as

C∆γ
d xs(m) = δxs(m + γ− 1)

[(
1− xs(m + γ− 1)

)
− ys(m + γ− 1)

x2
s (m + γ− 1) + c

]
+ U1(m + γ− 1),

C∆γ
d ys(m) = δys(m + γ− 1)

[
a− bys(m + γ− 1)

xs(m + γ− 1)

]
+ U2(m + γ− 1),

(22)

where the functions U1 and U2 are synchronization controllers. The fractional error system
is given by

C∆γ
d e1(m) =δxs(m + γ− 1)

[(
1− xs(m + γ− 1)

)
− ys(m + γ− 1)

x2
s (m + γ− 1) + c

]
+ U1(m + γ− 1)

− δx(m + γ− 1)
[(

1− x(m + γ− 1)
)
− y(m + γ− 1)

x2(m + γ− 1) + c

]
,

C∆γ
d e2(m) =δys(m + γ− 1)

[
a− bys(m + γ− 1)

xs(m + γ− 1)

]
+ U2(m + γ− 1)

− δy(m + γ− 1)
[

a− by(m + γ− 1)
x(m + γ− 1)

]
.

(23)

To establish the synchronization scheme, the theorem presented below outlines the
proposed control law.

Theorem 4. Subject toU1(m) = −λ1e1(m) + δ(x2
s (m)− x2(m)) + δ

(
xs(m)ys(m)

x2
s (m)+c

− x(m)y(m)
x2(m)+c

)
,

U2(m) = −λ2e2(m) + δb
(

y2
s (m)

xs(m)
− y2(m)

x(m)

)
,

(24)

Where λ1 = 2 and λ2 = 3. Then, the master system (3) and slave system (22) are synchronized.

Proof. By substituting the control law (24) into the fractional error system (23), we obtain

C∆γ
d
(
e1(m), e2(m)

)T
= B× (e1(m + γ− 1), e2(m + γ− 1)

)T , (25)

where

B =

(
−0.95 0

0 −0.69

)
(26)

It is not difficult to show that the eigenvalues of B fulfill the stability condition
in Theorem 2. Hence, the zero solution of the fractional error system (23) is asymptotically
stable and, consequently, the master system (3) and the slave system (22) are synchronized.

In order to verify this result, numerical simulations are performed using MATLAB.
We chose γ = 0.9, a = 2.2, b = 5, c = 5.5, δ = 1.05 and the initial values (e1(0),
e2(0)) = (0.5, 0.2). Figure 11 reports the time evolution of states of the fractional error
system (23). It is evident that the errors approach zero, which proves that the synchroniza-
tion discussed earlier is effective.
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Figure 11. Time evolution of the fractional error system (23) (e1 (blue) and e2 (red)).

8. Conclusions

In this article, we described a new fractional predator–prey discrete system of Leslie
type depending on commensurate and incommensurate orders. The model revealed that
there are different and rich dynamical characteristics. The behaviours of the suggested
fractional predator–prey discrete system of the Leslie type for commensurate and incom-
mensurate orders were discussed by calculating the Lyapunov exponent and plotting
phase portraits and bifurcation diagrams. Furthermore, the sample entropy algorithm was
applied to estimate the complexity of the proposed model. The results show that when
the incommensurate orders are varied, the fractional predator–prey discrete system of
Leslie type produces chaotic behavior with a higher degree of complexity and a broader
range of chaotic regions. Finally, successful control laws were suggested that enable the
suggested model to be stabilized and synchronized by compelling the states to asymptoti-
cally converge toward zero. Numerical simulations using MATLAB were used to validate
our results.
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