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Abstract: For a fractionally integrated Brownian motion (FIBM) of order α ∈ (0, 1], Xα(t), we
investigate the decaying rate of P(τα

S > t) as t → +∞, where τα
S = inf{t > 0 : Xα(t) ≥ S} is the

first-passage time (FPT) of Xα(t) through the barrier S > 0. Precisely, we study the so-called persistent
exponent θ = θ(α) of the FPT tail, such that P(τα

S > t) = t−θ+o(1), as t → +∞, and by means of
numerical simulation of long enough trajectories of the process Xα(t), we are able to estimate θ(α)

and to show that it is a non-increasing function of α ∈ (0, 1], with 1/4 ≤ θ(α) ≤ 1/2. In particular,
we are able to validate numerically a new conjecture about the analytical expression of the function
θ = θ(α), for α ∈ (0, 1]. Such a numerical validation is carried out in two ways: in the first one,
we estimate θ(α), by using the simulated FPT density, obtained for any α ∈ (0, 1]; in the second
one, we estimate the persistent exponent by directly calculating P(max0≤s≤t Xα(s) < 1). Both ways
confirm our conclusions within the limit of numerical approximation. Finally, we investigate the
self-similarity property of Xα(t) and we find the upper bound of its covariance function.

Keywords: fractional integrals; first-passage time; decaying rate; tail distribution

1. Introduction

The study of integrals with respect to the time-parameter of assigned stochastic pro-
cesses constitutes one of the main chapters of stochastic calculus and one of the main tools
for designing phenomenological models (see, for instance, [1–3] and references therein).
Fractionally integrated stochastic processes are the natural extensions of the above pro-
cesses in the context of the fractional calculus applied to the stochastic one (see, for in-
stance, [4,5]). They are a rather new topic which appears to be of interest both from a
theoretical point of view and for application (see [1] and references therein). Here, in partic-
ular, we focus on the (Liouville) fractionally integrated Brownian motion (FIBM) of order
α ∈ (0, 1], denoted by Xα(t) rigorously defined below. Our aim is to study the distribution
of τα

S = inf{t > 0 : Xα(t) ≥ S}, also denoted only by τ if there is no ambiguity about the
specified boundary S. This is the first-passage time (FPT) of Xα(t) through a boundary
(otherwise called a barrier or threshold) S > 0. We specifically address the problem of
studying the decaying rate of P(τα

S > t) as t→ +∞.
The study of the distribution of the FPT τ of a stochastic process through a boundary

is a classic problem in probability theory; generally, it is difficult to obtain an explicit
expression of this law. However, it has been observed that in many interesting cases, the
survival function has a polynomial decay which does not depend on the boundary:

P(τ > t) = t−θ+o(1), as t→ +∞, (1)

or, equivalently:

lim
t→+∞

log P(τ > t)
log t

= −θ, (2)
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where θ is a positive constant called persistence exponent and characterizes the profile of
the tail of the distribution of τ for large t values. The computation of this exponent
turns out to have connections with various problems in probability and mathematical
physics. In general, for self-similar processes, the persistent exponent θ does not depend
on the boundary, so this fact is natural in our case, since Xα(t) is actually self-similar (see
Section 4.1).

A well-known result concerns Brownian motion: in this case, the persistence exponent
turns out to be equal to 1/2; another important result is that of Goldman-Sinai, regarding
the case of integrated Brownian motion (see [6,7]), for which the persistence exponent
is θ = 1/4. A generalization of this result regards the study of the persistence exponent
for twice integrated, or more generally n-th time integrated, Brownian motion (see [3,8]
and the references therein). Another example is the study of the persistence exponent for
integrated fractional Brownian motion with Hurst parameter H (it was conjectured in [9]
that θ should be H(1− H)). Moreover, the persistence exponent for the integrated stable
Lévy process was studied in [8].

Furthermore, the persistence exponent was studied for an α−fractionally integrated
centered Lévy process; in [10], it was proved that the corresponding persistence exponent
is a non-increasing function of the fractional order α; the class of processes considered
includes FIBM.

1.1. The Motivation

To our knowledge, none of the known results in the literature regard the theoretical
computation of the persistence exponent for FIBM Xα(t), nor have numerical estimates of
θ(α) been previously obtained. Thus, the aim of the present article is to numerically estimate
θ(α) as a function of α ∈ (0, 1) by using simulated trajectories of Xα(t). In particular, we
are able to validate the following conjecture numerically:

for α ∈ [0, 1] the persistence exponent of FIBM Xα(t) is given by θ(α) =
1

2(α + 1)
. (3)

Note that this formula agrees with the known results in the cases α = 0 and α = 1,
and it is also a non-increasing function of α, according to results in [10]. The idea and
some motivations of the conjecture are given in Section 2; the numerical validation of the
conjecture will be illustrated in detail in Section 3. Note that our validation is strongly based
on numerical simulations of long enough trajectories of the process Xα(t), which require
a lot of computation time; so, our analysis could be improved by using a more powerful
computer dedicated to the purpose. Unfortunately, we cannot compare our results with
those of other authors, since to our knowledge no numerical result of this kind is actually
present in the literature.

We emphasize that our study about the persistent exponent of Xα(t) with regard only
to the values of α ∈ [0, 1]; actually, (3) is only a local conjecture, holding for α belonging
to the unit interval. We have not considered extensions of the process Xα(t) to negative
values of α or to α > 1, nor have we studied the persistent exponent for these values of α.
In fact, the conjecture (3) cannot hold for negative α (see [3]) and for α > 1 (see [11]). The
reason we have limited ourselves to study the process Xα(t) and its persistent exponent for
α ∈ [0, 1] is due to the fact that we are mainly interested in stochastic processes, such as the
FIBM, that model neuronal activities, for which the appropriate range of the fractionally
integration parameter α is the unit interval.

The mathematical interest of a such study relies essentially on the need to further
investigate the probability laws of Xα(t) and its FPT in order to refine and complete
the mathematical setting of the FIBM. Furthermore, this study presents the possibility
of shedding light upon a wider class of fractionally integrated stochastic processes and
their applications. Indeed, the FIBM has interesting applications in the description of
the time evolution of stochastic systems: it appears, e.g., in the framework of certain
diffusion models for neuronal activity (see [1], but also [12] for similar models with different
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processes), where one expects that the inter-spike instants will have a heavy tail distribution,
i.e., a power-law decaying rate. The specific choice of fractionally integrated stochastic
processes (or, specifically, diffusions) in neuronal modeling allows us to devise models that
are more adherent to phenomenological evidence, such those affecting the neuronal spike
activity “with memory”for which, after a sequence of short inter-spike times, sequences of
long inter-spike times are detected, due to a sort of “adaptation ”([12]).

We can essentially remark that this article is motivated by the aim to study the behavior
of the persistent exponent for stochastic processes “with memory” such as the FIBM, by
varying the order α ∈ [0, 1] of fractional integration.

1.2. The Results

Our study of the decaying rate of the tail distribution of τα
S (namely its persistence

exponent) is essentially based on numerical simulations. Indeed, by using an ad hoc
algorithm implemented in an R-script, we perform simulations of long enough trajectories
of the process Xα(t), and the results confirm that for α = 0 (i.e., case of BM), one has
θ(α) = θ = 1/2, while for α = 1 (case of integrated BM ), one has θ = θ(α) = 1/4
(see [6,7]).

For 0 < α < 1, our numerical investigation shows that the exponent θ(α) decreases
as α increases (cf., for instance [3], in which the persistence exponent is revealed to be as a
non-increasing function of α). We provide numerical estimates and comparisons by means
of graphs and tables (see Section 3 for details and discussion of results).

1.3. In Summary

The paper is organized as follows. In the next section, we give the essential ingredi-
ents of our study and the main known results from which it starts, and we explain our
conjecture, successively supported by simulation results. In Section 3, we describe the
specialized algorithm for the simulation paths of the process Xα(t) and of its FPT. We
provide graphic results in some figures in order to show and compare the profiles of the
FPT density approximations for different values of fractional order α. We explain our
method to obtain the estimation of the persistence exponent for the simulated cases. Our
results are in agreement with the well-known result for the case of α = 1, and they provide
quantitative approximations for cases of α = 0.75, 0.5, 0.25, suitably justified under our
conjecture. Additionally, we also provide numerical estimates of the probability in (1) in
order to show the agreement between the study of the density and of the distribution of
the FPT under the conjecture assumption. In Section 4, we highlight some properties of the
fractionally integrated processes such as self-similarity that can be useful for implementa-
tion purposes of numerical simulations, and long-range dependence that, together with
the magnitude of persistence exponent, makes such processes suitable tools for modeling
biological dynamics with “memory”. In Section 5, we discuss the possible strategy to be
adopted for special Gaussian processes, including Gauss–Markov (GM) processes such as
Ornstein–Uhlenbeck (OU). Indeed, thanks to the fact that a GM can be transformed into an
OU process (which in turn can be written in terms of BM), one finds that the FPT of a GM
process is finite with probability one, and information about the tail behavior of the FPT
may be analytically obtained.

2. The Persistence Exponent for Integrated BM: Known Results and a Conjecture

Now, we recall the definition of the fractional integral of order α ∈ (0, 1) of Brownian
motion (FIBM):

Xα(t) =
1

Γ(α)

∫ t

0
(t− s)α−1B(s)ds, (4)

where Bt = B(t) is a standard Brownian motion (BM), and Γ denotes the Gamma Euler
function, i.e., Γ(z) =

∫ +∞
0 tz−1e−tdt , z > 0.

Taking the limit for α → 0+, one finds that X0(t) is BM itself, while for α = 1, one
obtains the ordinary integral of BM. The process Xα(t) starts from zero at t = 0 with
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probability 1 (w.p.1) and turns out to be Gaussian with mean zero (cf. [4]); its covariance
function as well its variance were studied at length in [1]. Actually, in [1] we have also
performed numerical simulations of trajectories of Xα(t), and the probability distribution
of τα

S was numerically studied.
As the case of BM is concerned, it is well-known that its FPT through the barrier S,

say τB
S , is finite with probability one, though the expectation E(τB

S ) = +∞ and the exact
formula holds (see, e.g., [13]):

P(τB
S ≤ t) = 2(1−Φ(S/

√
t)) (5)

where Φ denotes the cumulative distribution function of a standard Gaussian variable.
Then (see also [14]):

P(τB
S > t) ∼

√
2
π

S√
t
, as t→ ∞, (6)

i.e., the persistence exponent is θ = 1/2 (see also Example 2.2.2. in [12]). Instead, for
non-Markov Gaussian processes such as Xα(t) is, very few results are known about the
FPT through a barrier S.

Actually, there is an objective difficulty in numerically estimating the FPT distribution
using simulated trajectories of the process, since detecting the instant of the first passage
through the barrier S can be an arduous task, because the trajectory considered could
hit the barrier, but only after a number of simulation time steps which possibly exceed
the maximum allowed by the computer algorithm. Therefore, this kind of trajectory is
disregarded in the computation of those crossing the boundary within that maximum time
of simulation.

Now, we recall the behavior of the tail of the FPT τα of Xα(t) through the boundary S
for well-known cases.

CASE α = 0

This is the case when X(t) := X0(t) = B(t). From Formula (2), it follows that:

P(τB > t) = 2Φ
(

S√
t

)
− 1;

then, as easily seen by using the Hospital rule, one gets:

lim
t→+∞

P(τB > t)
√

t = lim
t→+∞

√
t
(

2Φ
(

S√
t

)
− 1
)
= S

√
2
π

,

that is P(τB > t) ∼ c/
√

t, as t→ +∞, and the persistence exponent is θ = 1/2.

CASE α = 1

Now, we have X(t) := X1(t) =
∫ t

0 B(s)ds i.e., the ordinary integral of BM. The
exact result (see, specifically, [6,15]) is that θ = 1/4. Actually, the estimation of the FPT
of integrated BM through the barrier S, numerically obtained by computer simulation,
indicates that its probability density behaves as c · t−5/4, as t→ +∞, that is, the persistence
exponent is θ = 1/4. According to this, we find that the tail of the FPT distribution of
integrated BM is heavier than that of τB, which behaves as t−1/2.

The constant c in front of t−5/4 was exactly calculated in [15] (see the last formula at
pg. 1292), and it is:

c =
S1/6325/12Γ(5/12)

265/12π
√

π
2F1(5/12; 7/4; 3/2; 3/4). (7)

This is the product of the result of Goldman ([6]) and 1/6. We also evaluated it by R
functions; for the case of S = 1, we obtained the value c = 0.1795595.
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Remark 1. One can observe that X(t) ∼ N (0, t3/3),; so, for fixed t, X(t) has the same distribu-
tion as X̃(t) = B(t3/3). Note that X(t) is different by X̃(t), which is a time-changed BM. Indeed,
if τ̃ denotes the FPT of X̃(t), then τ̃3/3 = inf{r > 0 : Br > S} = τB, and so:

P(τ̃ > t) = P(τ̃3/3 > t3/3) = P(τB > t3/3) ∼ c
t3/2 , as t→ +∞. (8)

This is expected, since the process X̃(t) reaches the barrier S more quickly than in the case of BM
(being t3/3 much greater than t, for t large).

CASE α ∈ (0, 1): a conjecture

For the other values of α ∈ (0, 1), our numerical estimations show that the tail of the
FPT τα of the fractionally integrated BM Xα through the barrier S is heavier than that of
τB (corresponding to the case of α = 0). Precisely, we find that, as α increases in (0, 1], the
tail becomes heavier and heavier; that is, the persistence exponent θ(α) does not increase.
Finally, we confirm that the persistence exponent θ(α) is a non-increasing function of the
fractional order α. Indeed, we are confident that our following conjecture holds:

The persistence exponent for Xα(t) is:

θ = θ(α) =
1

2(α + 1)
, α ∈ (0, 1). (9)

Our conjecture is born from the following reasoning. First, we recall the results for the
Brownian motion and its FPT τB through, e.g., the boundary S = 1 (recall that the persistent
exponent is independent of the boundary), i.e.,

P(τB > t) = P(max
0≤s≤t

B(s) < 1) ∼ t−1/2, for large t (10)

and for the integrated Brownian motion and its FPT τ, i.e.,

P(τ > t) = P
(

max
0≤s≤t

∫ s

0
B(z)dz < 1

)
∼ t−1/4, for large t. (11)

By recalling the following distribution equality (see, for instance, [3]):

P
(

max
0≤s≤t

∫ s

0
B(z)dz < 1

)
= P

(
max
0≤s≤t

∫ s

0
(s− z)dB(z) < 1

)
(12)

we also have that

P(τ > t) = P
(

max
0≤s≤t

∫ s

0
(s− z)dB(z) < 1

)
∼ t−1/4 for large t. (13)

Note that the last approximation can be interpreted in the two following ways:

P
(

max
0≤s≤t

∫ s

0
(s− z)dB(z) < 1

)
∼ (t1/2)−1/2 (14)

or

P
(

max
0≤s≤t

∫ s

0
(s− z)dB(z) < 1

)
∼ (t−1/2)1/2. (15)

From this, we do our conjecture for Xα(t). We consider that

P(τ > t) = P
(

max
0≤s≤t

Xα(s) < 1
)
= P

(
max
0≤s≤t

∫ s

0
(s− z)α−1B(z)dz < 1

)
(16)
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and, by using the following distribution equality

P
(

max
0≤s≤t

∫ s

0
(s− z)α−1B(z)dz < 1

)
= P

(
max
0≤s≤t

1
α

∫ s

0
(s− z)αdB(z) < 1

)
we conjecture that, for large t,

P(τ > t) = P
(

max
0≤s≤t

1
α

∫ s

0
(s− z)αdB(z) < 1

)
∼
(

t
1

α+1

)−1/2
= t−

1
2(α+1) . (17)

The conjecture (17) is equivalent to:

P(τ > t) = P
(

max
0≤s≤t

1
α

∫ s

0
(s− z)αdB(z) < 1

)
∼
(

t−
1

α+1

)1/2
= t−

1
2(α+1) . (18)

In particular, the conjecture, expressed as in (17), can also be explained by means of (2)
and by interpreting the persistence exponent θ for large t as a function of the time t and α;
i.e., θ(t, α), such that:

θ(t, 0) =
1
2
=

1
2 · 1 in case of (t1/(0+1))−1/2 ∼ P

(
max
0≤s≤t

∫ s

0
(z− s)0dB(z) < 1

)

θ(t, 1) =
1
4
=

1
2 · 2 in case of (t1/(1+1))−1/2 ∼ P

(
max
0≤s≤t

∫ s

0
(z− s)1dB(z) < 1

)
and consequently,

θ(t, α) =
1

2(α + 1)
in case of (t1/(α+1))−1/2 ∼ P

(
max
0≤s≤t

1
α

∫ s

0
(z− s)αdB(z) < 1

)
.

Note that in the conjecture we include the case of α = 0 (i.e., that of the BM) with
persistence exponent θ = 1

2(α+1) =
1
2 , and the case of α = 1 (i.e., that of the integrated BM)

with persistence exponent θ = 1
2(α+1) = 1

2(1+1) = 1
4 ; all other cases for α ∈ (0, 1) have a

persistence exponent θ, such that 1
4 ≤ θ ≤ 1

2 with θ non increasing function of α.
Unfortunately, we are not able to show an analytical reason for the conjecture (17); our

heuristic motivation comes by comparing the above equations, and it is confirmed by our
numerical computations.

About the FPT density:
Actually, by taking the derivative in the expression P(τα > t) ∼ t−θ(α), the conjecture

(9) implies that the FPT density of τα behaves as const · t−(θ(α)+1), as t → ∞, where θ(α)
is the persistent exponent of FIBM Xα(t). Then, inspired by Goldman (see [6,15]), we will
suppose that the density of the FPT τα through the boundary S behaves as

cα · S1/6t−(3+2α)/(2α+2), (19)

as t → ∞, where the multiplicative constant cα is also estimated as a suitable constant
multiplied by α. We will validate our conjecture, that is, (19), by means of long trajectories of
the process obtained by computer simulation, samples of their FPT and the approximation
of the respective densities.

About the FPT distribution:
In addition, we will also work with the purpose

(i) to obtain a numerical estimate of the following probability for t “large enough”

P
(

max
0≤s≤t

∫ s

0
(s− z)α−1B(z)dz < 1

)
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(ii) to compare it with the function t−
1

2(α+1) and from their ratio to derive an estimate
of the multiplicative cα such that the asymptotic (in time) tail behavior of the FPT
distribution for S = 1 can be finally characterized as (see Section 3.2 for details)

cα · t
− 1

2(α+1) .

All numerical validations of such a conjecture and approximation results are described
in detail in the next section.

3. The Simulation Algorithm and Numerical Results

In the following, we show and compare graphically the behaviour of the tail of the
density of FPT τα for some samples of simulated paths. The simulation algorithm partially
follows the R script adopted in [1]. Here, the script is specialized in order to investigate
the decaying profile of the FPT densities as the value of the fractional order α varies. The
algorithm requires knowledge of the covariance matrix of Xα(t), whose mathematical
expression can be found here in Section 4.2. After some statistical comparisons taking into
account the execution time of the simulation algorithm, the accuracy of the results and the
theoretical expected number of the sample paths crossing the specified boundary, the time
discretization step h is chosen as h = 0.05 here. Moreover, by means of the same sequence
of pseudo-random Gaussian numbers, we perform several cases corresponding to different
α values.

Specifically, and referring to the methods for generation of pseudo-random numbers
(see also [16]), we give the scheme of our R-algorithm:

STEP1. IN INPUT: we specify the size of the sample of paths we want to simulate, the
boundary, the fractional order, the time step, the seed for the random generation
routine, and the maximum time length of each path, i.e., the maximum number N
of time steps for each path;

STEP2. we calculate the covariance matrix C(ti, tj) with dimension N × N in h−equi-
spaced times ti, tj, i, j = 1, . . . , N;

STEP3. we construct the lower triangular matrix L(i, j) such that C = LLT by applying the
Cholesky decomposition algorithm to the covariance matrix C;

STEP4. by the ad hoc R-function (rnorm), for each path, we generate an N-dimensional
array z of standard pseudo-Gaussian numbers;

STEP5. we construct the simulated path with the specified correlation matrix C as the array
x = Lz;

STEP6. at each step of the path, we check if crossing of the boundary occurs, and if this is
the case, the corresponding FPT is recorded;

STEP7. we repeat STEPS 4-6 for each path in order to simulate the specified number
of paths;

STEP8. we provide the array of simulated FPTs of dimension equal to the size of the
total number of simulated paths (note that if a simulated path does not cross the
boundary in the specified (in input) maximum number of steps, a zero value is
recorded as its FPT).

STEP9. IN OUTPUT: the array of FPT is cleaned from zero values and it is used for
histograms and kernel density approximations for visualizations and comparisons
in figures.

3.1. Graphical and Approximation Results

On the left of Figure 1, we plotted the empirical FPT densities of Xα(t) (on the hor-
izontal axes time t) through the threshold S = 0.1 for values of α specified in the figure.
The empirical density has been obtained by means of 5000 simulated trajectories with a
time step equal to 0.05; to obtain it, we have counted only the trajectories which have
crossed the threshold within the time bound of 300 time steps h = 0.05, i.e., until time 15.
The simulated paths are obtained by applying the algorithm described at the beginning of
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this section, and their first passage times have been recorded. The plotted curves in the
figure are the results of the plot R-function of the density R-function applied to the array of
the FPT values of the simulated paths. We underline that the function density computes
(Gaussian) kernel density estimates with values for bandwidth “adjust ”parameter between
4 and 12, in such a way that greater values determine smoother curves. The plots of such
approximations are provided in the same figure to show how the fractional order α affects
the profiles of the FPT densities, and to allow comparisons.
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Figure 1. Left: Comparisons of FPT densities of Xα(t) through the boundary S = 0.1 for several
values of α. The samples are until 5000 simulation paths and the time discretization step is 0.05.
Right: Zoom on tails of densities (shown on the left) for several values of α.

Finally, on the right of Figure 1, we give an enlarged visualization of the tail of the
densities on the left of the same figure. We note that as α increases, the tails become heavier,
determining smaller values for the corresponding persistence exponents.

First, we show our simulation results for the well-known case of α = 1 in order to
validate our investigation approach. In Figure 2, (left) we show the simulated FPT density
(in red) of X1(t) through the threshold S = 0.1. The black curve is the plot of the function
we denote as

a(t) = S1/6 · t−(3+2α)/(2α+2) = S1/6t−5/4

with S = 0.1. Then, we estimated the value of the constant cα as the ratio between the
simulated density and the black curve a(t) at times ≥ 12 obtaining cα = 0.177. Actually, if
we denote the simulated density by d(t), we estimate:

cα =
d(t)
a(t)

in values of t ≥ t̄, t̄ being the starting time at which we observe a quite constant difference
between d(t) and a(t) values. The choice of times “large enough”depends on the value of
α. In this case, we apply this strategy in order to validate it, because we already know the
value of the constant c1, is, as previously specified, 0.1795595.

Moreover, the blue curve is obtained as the product of the black curve and the constant
cα, i.e., by denoting as b(t) the blue curve, we plot, in blue color, the function

b(t) = cα · a(t) = cα · S1/6 · t−(3+2α)/(2α+2).

that, for α = 1, S = 0.1 and cα = 0.17, specifically is

b(t) = 0.17 · (0.1)1/6 · t−5/4.
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Figure 2. Case α = 1. Simulation details as in Figure 1. On the left: the red curve is simulated.
The black curve is the plot of S1/6 · t−(3+2α)/(2α+2) = S1/6t−5/4 with S = 0.1. The blue curve
is then obtained as the product of the black curve and the constant cα, whose estimated value is
cα = 0.177. On the right is a zoom of the simulated density (red) and the approximation curve (blue)
corresponding to those on the left.

Ultimately, the matching between the two curves (visible in the enlarged visualization
on the right of Figure 2) is very good for large enough t. This means that our simulation
results are in according to well-known behavior of the FPT tail distribution, i.e., const · t−1/4,
corresponding to the persistence exponent θ(1) = 1/4.

In Figures 3–5, we show the results of the corresponding investigations, as performed
to provide the results shown in Figure 2 for the specified cases of α = 0.75, 0.5, 0.25,
respectively.
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Figure 3. Case α = 0.75. Simulation details as in Figure 1. On the left, the red curve is simulated. The
black curve is the plot of a(t) = S1/6 · t−(3+2α)/(2α+2) with S = 0.1. The blue curve is then obtained
as b(t) = cα · a(t), with an estimated value of cα = 0.15. On the right, a zoom of the simulated density
(red) and the approximation curve (blue), corresponding to those on the left.
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Figure 4. Case α = 0.5. Simulation details as in Figure 1. On the left, the red curve is simulated. The
black curve is the plot of a(t) = S1/6 · t−(3+2α)/(2α+2) with S = 0.1. Blue curve is then obtained as
b(t) = cα · a(t), with estimated value of cα = 0.1. On the right, zoom of the simulated density (red)
and the approximation curve (blue), corresponding to those on the left.
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Figure 5. Case α = 0.25. Simulation details as in Figure 1. On the left, the red curve is simulated. The
black curve is the plot of a(t) = S1/6 · t−(3+2α)/(2α+2) with S = 0.1. The blue curve is then obtained
as b(t) = cα · a(t), with estimated value of cα = 0.075. On the right, a zoom of the simulated density
(red) and the approximation curve (blue), corresponding to those on the left.

In these figures, the simulated FPT densities d(t) are plotted in red for processes Xα(t)
through the same threshold S = 0.1. The black curves are the plot of the function

a(t) = S1/6 · t−(3+2α)/(2α+2) (20)

with the specific value of α = 0.75, 0.5, 0.25, respectively. The estimates of cα are obtained
as cα = d(t)

a(t) for t ≥ t̄α, whose values are specified in Table 1. From the presented study,
we hypothesize that cα is approximately equal to the product α · c1 ≈ α · 0.177, even if we
believe further investigations needed to validate this. Finally, our approximation curves,
i.e., the blue curves, are obtained as

b(t) = cα · a(t) = cα · S1/6 · t−(3+2α)/(2α+2) (21)

for the values of α = 0.75, 0.5, 0.25, respectively.
Furthermore, the values of the persistence exponents for the considered cases are

reported in Table 1.
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Table 1. For the specified values of fractional order α, the persistence exponent θ, the estimates
of cα, the power decaying function a(t) · S−1/6, the value t̄α and the value of the adjust parameter
are reported. Note that here, S = 0.1, and the value of cα is evaluated as d(t̄α)/a(t̄α), with d(t) the
simulated density and a(t) is as in (20). The values of adjust are used in the evaluation of the density
R-function to obtain the smoothed simulated density d(t).

Numerical Approximations for FPT Density

α θ cα a(t) · S−1/6 t̄α adjust

1.0 1/4 0.17 t−5/4 14 4

0.75 2/7 0.15 t−9/7 13.5 4

0.5 1/3 0.10 t−4/3 13.9 8

0.25 2/5 0.075 t−7/5 14.5 4

We also recall that our approximation function (the blue curve in Figures 3–5) for the
specified values of α = 0.75, 0.5, 0.25 is finally obtained as b(t) in (21) by means of values of
Table 1, respectively.

Ultimately, for the considered cases, the obtained numerical results, the visible good
agreement between the simulated densities (red) and the proposed approximation curves
(blue) present in the figures support the proposed conjecture.

3.2. A Further Numerical Approximation

Now, specifically for the tail of the FPT distribution, we aim to give an additional
validation of our conjecture, but also a verification tool for previous results inherent to
the FPT density. We have already explained the idea of such numerical verification at the
end of Section 2. To this end, we realized a specific algorithm in an ad hoc R-script that is
implemented with the following steps:

• For a fixed value of t̂ and for a given integer n, we consider the equispaced times
0 < t1 < · · · < tk < · · · < tn = t̂, and we generate the pseudo-random values:

Etk =

{∫ tk

0
(tk − z)α−1B(z)dz

}
for k = 1, . . . , n

by means of the following approximation procedure (with m is specified in input):

Êtk =
tk
m

m−1

∑
i=1

(tk − ϑi)
α−1z(

√
ϑi) (22)

where 0 < θ1 < · · · < θm = tk are equispaced times and z(
√

ϑi), with i = 1, . . . , m− 1,
are pseudo-random numbers generated with Gaussian distribution, having zero mean
and
√

ϑi standard deviation.
• We record the value

Mn(t̂) = max
k=1,...,n

Êtk . (23)

• We repeat the previous steps for N times in order to obtain a sample of N pseudo-
random values

M(j)
n (t̂) = max

k=1,...,n
Ê(j)

tk
, j = 1, . . . , N;

we count how many M(j)
n (t̂) are such that

M(j)
n (t̂) < 1, j = 1, . . . , N,

and we denote such number as Mn(t̂).
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• Hence, we approximate the following probability as

P
(

max
0≤s≤t̂

∫ s

0
(s− z)α−1B(z)dz < 1

)
≈ Mn(t̂)

N

and we denote such estimated probability as p(t̂) = Mn(t̂)
N .

• Under the conjecture θ = − 1
2(α+1) , we compute the value ĉα as follows

ĉα =
p(t̂)

t̂−
1

2(α+1)

=
p(t̂)
t̂−θ

. (24)

We did many executions of such algorithm with different t̂ in order to find the value
of t̂ for which we can obtain the agreement between the estimated probability p(t̂)
and the expected value,i.e.,

p(t̂) ≈ αc1 · t̂−θ with c1 = 0.179.

Indeed, from the previous investigation by means of simulations, we already knew
that the approximation cα ≈ αc1 can be adopted for the considered cases.

Note that the value of ĉα in (24) depends on the value of t̂. This numerical strategy
also provides the value of the time t̂ at which a quite satisfactory agreement of the above
approximations is obtained.

The above algorithm has been implemented many times in order to also find the
optimal parameters n, m, N to guarantee a sufficient accuracy of the results (we limit
ourselves to the second digital digit) and not too long execution times. The results are
reported in Table 2 for specified values of α.

We remark that the above probability approximation p(t̂) is a punctual estimation;
indeed, it is computed in the time instant t̂ for which we found some results in agreement.
We also note that the values of t̂ in Table 2 are different from those of t̄ in Table 1, even if
these times are those for which we obtain the validation of our conjecture. This depends on
the two different numerical strategies used; however, we can say that both times, t̄ and t̂,
provide information about the starting time of the power decaying of the FPT probability
laws (density and distribution, respectively) whose order has been conjectured here.

Table 2. For the specified values of fractional order α, we report the following: the conjectured
persistence exponent θ, the number N of trials, the number n for the evaluation of the maximum
as in (23), the number m of nodes of the quadrature as in (22), the product αc1, the estimate ĉα as in
(24), the time value t̂ in which the probability is computed, the approximate probability p(t̂) and the
expected (conjectured) value αc1 t̂−θ .

Numerical Approximations for FPT Distribution

α θ N n m αc1 ĉα t̂ p(t̂) αc1 t̂−θ

1.0 1/4 100 75 30 0.179 0.177 15 0.09 0.0909

0.75 2/7 100 70 20 0.13425 0.1275 14 0.06 0.0631

0.5 1/3 500 60 20 0.0895 0.0732 12 0.032 0.0390

0.25 2/5 2000 20 20 0.0425 0.0425 8 0.0185 0.01849

4. Some Further Properties of the Process Xα(t)
4.1. On the Self-Similarity Property of Xα(t)

Let c be a positive constant; from the definition of the FIBM Xα(t), it follows:

Xα(ct) =
1

Γ(α)

∫ ct

0
(ct− s)α−1B(s)ds
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=
1

Γ(α)

∫ ct

0

(
ct− c

s
c

)α−1
B(s)ds;

by the variable change u = s/c, and by using the self-similarity property of Brownian
motion (B(ct) =

√
cB(t)), one finds the following equality in distribution:

Xα(ct) =
cα

Γ(α)

∫ t

0
(t− u)α−1√c B(u)du =

cα+1/2

Γ(α)

∫ t

0
(t− u)α−1B(u)du = cα+1/2Xα(t).

Thus, for c > 0 we obtain the self-similarity property of the FIBM:

Xα(ct) = cα+1/2Xα(t),

or
Xα(t) = c−(α+1/2)Xα(ct), (25)

where equality is meant in distribution.
From the self-similarity property (25), we obtain:

Xα(τS) = S ⇒ c−(α+1/2)Xα(cτS) = S,

and so Xα(cτS) = cα+1/2S.
Therefore, if S′ = cα+1/2S, it holds τS′ = cτS, namely

τS =
1
c

τS′ , (26)

where equality is meant in distribution.
Equation (26) provides a relation between the FPT-distribution of the FIBM Xα(t)

through the boundary S and the FPT-distribution through the boundary S′ = cα+1/2S; note
that, if c > 1, one finds that S′ > S.

Now, setting a = S′ = cα+1/2S, namely

c =
( a

S

) 1
α+1/2 ,

we obtain:

τa = cτS =
( a

S

) 1
α+1/2

τS. (27)

Thus, without loss of generality, one can study, e.g., the distribution of τ1, that is, the FPT
of the FIBM through the barrier S = 1. In fact, from (27), it follows:

τa = a
1

α+1/2 τ1. (28)

This fact can be useful during the numerical procedure to obtain the FPT of Xα(t) through
the barrier a.

4.2. On the Covariance Function of Xα(t)

Let Cα(u, t) = cov(Xα(u), Xα(t)) be the covariance function of Xα(t), u, t ≥ 0; we aim
to obtain an upper bound for Cα(u, t) for 0 ≤ u ≤ t.

We recall the following explicit expressions of Cα(u, t) and of Var(Xα(t)) (see Equa-
tions (10) and (13) of [1]):

Cα(u, t) =
1

Γ2(α)

[
tα+1uα

α2(α + 1)
− tHα(u, t)

α(α + 1)
+

Jα(u, t)
α(α + 1)

]
, (29)

Var(Xα(t)) =
t2α+1

(2α + 1)Γ2(α + 1)
, (30)
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where

Jα(u, t) =
∫ u

0
s(u− s)α−1(t− s)αds and Hα(u, t) =

∫ u

0
(u− s)α−1(t− s)αds. (31)

Let us suppose that 0 ≤ u ≤ t; then, we obtain:

0 ≤ Hα(u, t) ≤
∫ u

0
(t− s)2α−1ds; (32)

moreover:
0 ≤ Jα(u, t) ≤

∫ u

0
s(t− s)2α−1ds ≤ u

∫ u

0
(t− s)2α−1ds

=
u
2α

[
t2α − (t− u)2α

]
≤ ut2α

2α
≤ t2α+1

2α
. (33)

From (29), by using (33) and the fact that Hα(u, t) ≥ 0, we get:

Cα(u, t) ≤ 1
Γ2(α)

[
t2α+1

α2(α + 1)
+

t2α+1

2α2(α + 1)

]
,

namely:

Cα(u, t) ≤ 3t2α+1

2Γ2(α)α2(α + 1)
, 0 ≤ u ≤ t. (34)

Thus, for fixed u and t ≥ u, the covariance function of Xα(t) increases as t increases, but for
t→ +∞ it grows at most as a constant × the power t2α+1, as the variance does.

5. Some Details on Gauss–Markov Process Fractionally Integrated

Remark 2. In principle, one could use the previous arguments to study the tail behavior of the FPT
of a fractionally integrated Gauss–Markov process Y(t). We recall that a continuous GM process
(see [1]) is in the form:

Y(t) = m(t) + h2(t)B(ρ(t)), (35)

where m(t), h1(t), h2(t) are continuous functions of t ≥ 0, which are C1 in (0,+∞), such that
h2(t) 6= 0, and ρ(t) = h1(t)/h2(t) is differentiable non-negative, with ρ(0) = 0 and ρ′(t) > 0 for
t > 0. The process Y(t) has mean m(t) and covariance c(s, t) = cov(Y(s), Y(t)) = h1(s)h2(t),
for 0 ≤ s ≤ t. Besides BM itself, a noteworthy case of the GM process is the Ornstein–Uhlenbeck
(OU) process; in fact, any continuous GM process can be represented in terms of an OU process
(see, e.g., [17]).

Then, the fractional integral of a GM process Y(t) is defined by:

Xα(t) =
1

Γ(α)

∫ t

0
(t− s)α−1Y(s)ds. (36)

However, the covariance and variance function of Xα(t) are far more complicated than in the case of
FIBM (see [1])).

We conclude with a remark concerning the FPT of OU process.

Remark 3. Let Z(t) be OU process, starting from Z(0) = z > 0, driven by the SDE

dZ(t) = −µZ(t)dt + σdB(t),

for some µ, σ > 0. One has
Z(t) = e−µt(z + B(ρ(t))),

where

ρ(t) =
σ2

2µ

(
e2µt − 1

)
.
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Set now τZ(z) = inf{t > 0 : Z(t) = 0}, then τZ(z) = inf{t > 0 : B(ρ(t)) = z}, where equality
is meant in distribution, so ρ(τZ(z)) ≡ τB(z) = inf{s > 0 : B(s) = z}. Then, from (5), one gets

P(τZ(z) ≤ t) = 2(1−Φ(z/
√

ρ(t)), and limt→+∞ P(τZ(z) > t)
√

ρ(t) = z
√

2
π . From this, it

follows that the first passage time of Z(t) through zero has a much lighter tail than that of BM;
in particular,

d
dt

P(τ(z) ≤ t) =
z√

2πρ3/2(t)
e−z2/2ρ(t)ρ′(t) ∼ const · e−µt, as t→ +∞.

Therefore, E(τ(z)) < +∞, unlike the case of BM, for which E(τB) = +∞.

6. Conclusions and Final Remarks

In this paper, we have considered fractionally integrated Brownian motion (FIBM) of
order α ∈ (0, 1], that is, Xα(t) = 1

Γ(α)

∫ t
0 (t− s)α−1B(s)ds. The FIBM is an interesting process,

since it appears, e.g., in the framework of diffusion models for neuronal activity (see [1]),
where one expects that the inter-spike instants will have a heavy tail distribution, i.e., a
power-law decaying rate.

The goal of this paper was to perform a qualitative study of the decaying rate of the
tail distribution of τα

S , where τα
S = inf{t > 0 : Xα(t) ≥ S} is the first-passage time (FPT)

of Xα(t) through the barrier S > 0. Precisely, we have studied the so-called persistent
exponent θ = θ(α) of the FPT tail, such that P(τα

S > t) = t−θ+o(1), as t → +∞. This
study has been carried out by numerical simulation of long enough trajectories of the
process Xα(t). In fact, we have estimated θ(α), as the order α of fractional integration
varies in (0, 1], and we have showed that it is a non-increasing function of α ∈ (0, 1], with
1/4 ≤ θ(α) ≤ 1/2. This means that the tail of the distribution of τα

S becomes heavier and
heavier as α ∈ (0, 1] increases. Note that, to our knowledge, none of the known results
in the literature regard the theoretical computation of the persistence exponent for FIBM
Xα(t), except for α = 0 (in the case of BM) and α = 1 (in the case of integrated BM ). Our
numerical estimations confirm that for α = 0, one has θ(α) = 1/2, while for α = 1, one has
θ(α) = 1/4 (see [6,7]).

In particular, we have numerically validated a new conjecture about the analytical
expression of the function θ = θ(α), α ∈ (0, 1], namely θ(α) = 1

2(α+1) , α ∈ (0, 1]. Such a
numerical validation has been carried out by simulation of long enough trajectories of the
process Xα(t) in two ways. In the first one, we have estimated the persistent exponent
θ(α) by using the simulated FPT density obtained for any α. In the second one, we
have estimated the persistent exponent by directly calculating P

(
max0≤s≤t

∫ s
0 B(z)dz < 1

)
,

which is nothing but P(τα
1 > t). Both ways confirm our conclusions within the limits of

numerical approximation.
In the final part of the paper, we have investigated the self-similarity characteristics of

Xα(t) and we have found an upper bound to its covariance function; moreover, we have
given some details on the fractionally integrated Gauss–Markov process .

The arguments of this paper allow us, in principle, to also study the decaying rate of
the tail distribution (and therefore of the corresponding persistent exponent) of the FPT of
the fractional integral of order α of a Gauss–Markov process.
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