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Abstract: This paper presents a novel control strategy based on an uncertainty estimator for a class
of fractional-order nonlinear systems characterized by a polynomial input. The proposed strategy
allows the system to be controlled without resorting to transformations or approximate linearization.
This is accomplished by using a fractional-order sliding-mode observer, whose task is to estimate
certain portions of the state of the nonlinear system of a non-integer order, thus allowing the control
law to counteract these elements to steer the system towards a desired behavior. To validate the
performance of the proposed strategy, it was implemented, both in simulation and experimentally,
to regulate the temperature of the cold side of a thermoelectric module fed by a DC/DC electronic
power converter of the step-down type, a system that is known to have a nonlinear polynomial-type
control input.

Keywords: fractional-order; observer-based control; thermoelectric module

1. Introduction

Dynamical systems are commonly modeled using differential equations, which de-
scribe the system’s behavior in terms of its states and their respective time derivatives.
These derivatives are typically of an integer order; for example, the first derivative is of
order 1, the second derivative is of order 2, and so forth.

An extension of the concept of derivatives and integrals allows for the consideration
of orders that are not necessarily integer values. This extension involves fractional-order
derivatives and integrals, which are studied within the field of fractional calculus. These
extensions are known as fractional-order derivatives and integrals. When applied to the
modeling of dynamical systems, they enhance the precision of the model by offering the
flexibility to adjust the derivative order freely.

Fractional calculus has attracted interest due to the numerous potential applications in
many disciplines such as finance [1], physics [2], medicine [3], biology [4], and control [5].
By applying fractional derivatives to known models and control laws, the model can
better match the real-world dynamics of the system, whereas the fractional-order controller
can find added benefits, similar to the Fractional Order Proportional Integral Derivative
control (FOPID), which obtains two new values that can be adjusted for a better system
response [6].

There have been recent advances on the control for fractional-order non-linear systems
with non-linear control inputs: in [7], a sliding-mode control scheme with a fractional-order
sliding surface is presented; in [8], a neural network controller for a fractional-order system
with a non-linear control input is given, and in [9], a fractional-order control system is
employed for a non-linear control input.
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Fractional-order control applied to temperature regulation via thermoelectric modules
(TEM) remains an area with limited exploration. In [10], a heating process is characterized
by a fractional-order transfer function and subsequently regulated employing a fractional-
order PID (FOPID) controller. Ref. [11] introduces an auto-tuning algorithm for FOPID
controllers, based on particle swarm optimization techniques, and its performance is
demonstrated through testing on a thermoelectric module. In a similar vein, ref. [12]
tests the performance of a FOPID controller on a thermoelectric module, taking into
consideration the process time delay. Meanwhile, ref. [13] advances the field by modeling
an array of Peltier cells as a group of fractional-order transfer functions, where control
is achieved using a set of PI controllers. Ref. [14] offers a similar approach, presenting a
thermoelectric module modeled with an integer-order transfer function of the first order
with a time delay and demonstrates a successful control implementation via the discrete
approximation of a FOPID controller.

In addition to temperature regulation, thermoelectric modules find extensive appli-
cation as thermoelectric generators. In this context, control is not directly applied on the
thermoelectric module itself, but rather on the DC-DC power converter responsible for
supplying energy to an energy storage device. The purpose of the controller is the opti-
mization of the energy extraction process, a popular approach concerning the utilization of
a Maximum Power Point Tracking (MPPT). Notably, a number of studies have explored the
use of fractional-order controllers within the MPPT, with noteworthy contributions from
works such as those presented in [15–18].

Thermoelectric modules have the capability of both heating and cooling, depending
on the supplied current. This characteristic lends itself to various industrial applications,
including thermal cycling in biomedical settings. In optics-based telecommunications,
thermoelectric modules are employed for the cooling of lasers and other optical elements.
Additionally, in spectroscopy, thermoelectric modules play a crucial role in the temperature
regulation of deep-cooling CCD cameras. Thermoelectric generation stands as another
important application of these modules. Moreover, certain consumer electronics rely on
thermoelectric modules for cooling; for example, there exists a wide range of solutions
based on these modules for cooling computer processors and graphics cards.

Given this diverse array of applications, the control of thermoelectric modules holds
significant importance in engineering applications. Fractional-order models offer a superior
adjustment for representing the dynamic behavior of real-world thermoelectric modules,
allowing for the design of controllers with a more comprehensive understanding of the
system and, consequently, yielding improved results. Despite the wide range of applica-
tions, there is a shortage of existing literature providing control methodologies beyond
FOPID for fractional-order models of thermoelectric modules. This paper introduces a
novel observer-based control strategy for commensurate fractional-order non-linear sys-
tems featuring non-linear polynomial control inputs. The proposed control law uses a
state observer to mitigate the influence of the non-linear control inputs, thus inducing the
desired response in the output of the TEM. By doing so, this new approach addresses a gap
in current research and showcases its potential for enhancing the control performance of
the fractional-order TEM model.

The rest of the paper is organized as follows: In Section 2, preliminaries about fractional
calculus are given; Section 3 presents the observer-based control law; Section 4 is about the
thermoelectric module; Section 5 contains numerical simulations; and Section 5 gives some
concluding remarks.

2. Main Result
Preliminaries

The following definitions and lemmas constitute the mathematical basis of this work,
as they allow us to establish the formal theoretical support of our proposal.
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Definition 1. The Caputo fractional derivative of order α of a function f (t) is

C
0 Dα

t f (t) =
1

Γ(n− α)

∫ t

0
f (n)(τ)(t− τ)n−α−1dτ (1)

where f (n)(τ) is the n-th order derivative and n is a positive integer number. Γ(·) is Euler’s gamma
function given by

Γ(α) =
∫ ∞

0
tα−1e−tdt. (2)

Definition 2. The Riemann–Liouville fractional integral of a function f (t) is

0 Iα
t f (t) =

1
Γ(α)

∫ t

0
f (τ)(t− τ)α−1dτ (3)

with n− 1 < α < n. This function converges to the right half of the complex plane.

Lemma 1 ([19]). If a system has the equilibrium point x = 0, is contained within the domain
D ⊂ R, and there is a continuously differentiable function such that V[t, x(t)] : [0, ∞)×D→ R,
the following conditions hold

α1‖x‖a ≤ V[t, x(t)] ≤ α2‖x‖ab (4)

C
0 Dβ

t V[t, x(t)] ≤ −α3‖x‖ab

with real numbers α1, α2, α3, β, a, b > 0, t ≥ 0, x ∈ D and the order of the fractional derivative
0 ≤ β ≤ 1, the equilibrium point x = 0 is said to be stable in the Mittag-Leffler sense, and therefore,
asymptotically stable.

Lemma 2 ([20]). The vector of differential functions x(t) ∈ Rn for a given time t ≥ 0 fulfills

C
0 Dα

t

(
xT(t)Px(t)

)
≤ 2xT(t)PC

0 Dα
t x(t) (5)

with the constant, positive definite and the symmetric matrix P ∈ Rn×n.

3. Uncertainty Estimation Observer and Controller

The proposed control law employs a sliding-mode uncertainty observer to estimate
the desired part of the system dynamics. This estimate is then employed via a sliding-mode
controller to counteract the effects of the non-linear control input and to provide robustness
to the closed-loop system.

Consider the fractional-order non-linear system with polynomial non-affine control inputs

C
0 Dα

t x = f (x) +
I

∑
i=2

g(x)ui + Bu (6)

with x, u ∈ Rn. The system can be separated in its power stage given by xl ∈ R m, m < n:

C
0 Dα

t xl = Al xl + Blu + Dl(x) (7)

having xl ∈ R m, m < n and the process with states containing the non-linear polynomial
control inputs:

C
0 Dα

t xnl = fnl(x) +
I

∑
i=2

g(x)xi
ul + Bnl xul (8)
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where xnl ∈ Ro, o < n and xul ∈ xl , notice that the input of the non-linear function is one
of the states of the power stage. The system can then be written as:

C
0 Dα

t xl = Al xl + Blu + Dl(x)

C
0 Dα

t xnl = fnl(x) +
N

∑
n=2

gn(x)xn
ul + Bnl xul (9)

y = Cnl xnl

where Al , Bl , Cnl , Dl and Bnl are matrices of the appropriate dimension, x = (xl , xnl)
T , fnl

gives the non-linear dynamic of the system, and gn are the coefficients of the non-linear
polynomial control input. The output is the state to be controlled y = Cnl xnl = xd with the
fractional-order derivative

C
0 Dα

t xd = fd(x) +
N

∑
n=2

gdn(x)xn
ul + Bnldxul (10)

where fd(x), gdn(x), Bnld are the parts corresponding to the output of the system dynamics.
The fractional-order derivative of xd can be expressed as a two-state system by making the
change in variable xd = χ1

C
0 Dα

t χ1 = χ2

C
0 Dα

t χ2 = C
0 Dα

t Cnl xd = fd(x) +
N

∑
n=2

gdn(x)xn
ul + Bnldxul (11)

yz = χ1

In the interest of simplicity

f (χ) = fd(x) +
N

∑
n=2

gdn(x)xn
ul + Bnldxul (12)

then

C
0 Dα

t χ = Aχ + f (χ)D (13)

yχ = Cχ

with A =

[
0 1
0 0

]
, D =

[
0
1

]
, C =

[
1 0

]
. The following sliding-mode state observer

produces an estimate of the fractional-order derivative of the state xd:

C
0 Dα

t χ̂1 = χ̂2 + kl1(χ1 − χ̂1) + k1sign(χ1 − χ̂1) (14)
C
0 Dα

t χ̂2 = kl2(χ1 − χ̂1) + k2sign(χ1 − χ̂1)

The synchronization error and its derivative of order α are then:

e =

[
χ1 − χ̂1
χ2 − χ̂2

]
=

[
e1
e2

]
(15)

C
0 Dα

t e =

[
e2

f (χ)− kl2(e1) + k2sign(e1)

]
The following assumptions are needed for the proof of convergence for the observer.

Assumption 1. There is a solution P = PT > 0 for a Q = QT > 0 to the linear matrix inequality

(A− KL1C)T P + P(A− KL1C) + Q ≤ 0 (16)
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Assumption 2. The unknown dynamic is Lipschitz with L1 > 0, L1 ∈ R

‖ f (x1)− f (x2)‖ ≤ L1‖x1 − x2‖ (17)

Assumption 3. For a number Λ > 0, Λ ∈ R, the norm of the solution of the Lyapunov equation
fulfills the inequality

‖x1 − x2‖‖P‖L1 ≤ Λ (18)

Assumption 4. There is a solution Pl = PT
l > 0 with Ql = QT

l > 0 to the Lyapunov equation

AT
l Pl + PT

l Al = −Ql (19)

Assumption 5. The states of the linear driving system are bounded via a real non-negative number
δ > 0

xT
l Pl Dx ≤ δ‖xl‖ (20)

The observer equation is rewritten to match (13)

C
0 Dα

t χ̂ = Aχ̂ + KLCe + Ksign(Ce) (21)

ŷχ = Cχ̂

where KL = [ kl1 kl2 ]T and K = [ k1 k2 ]T . The error dynamic is

C
0 Dα

t e = Aχ + f (χ)− Aχ̂− KLCe− Ksign(Ce) (22)

= A(χ− χ̂) + f (χ)D− KLCe− Ksign(Ce)
= Ae + f (χ)D− KLCe− Ksign(Ce)

Consider the Lyapunov candidate function

V1 = eT Pe (23)

From Lemma 2 and based on the Caputo derivative, the αth order derivative of the
Lyapunov candidate function has the upper bound

C
0 Dα

t V1 ≤ 2eT PC
0 Dα

t e (24)

By substituting the error dynamic into the fractional-order derivative of the Lyapunov
candidate function

C
0 Dα

t V1 ≤ 2[Ae + f (χ)D− KLCe− Ksign(Ce)]T Pe (25)

+2eT P[Ae + f (χ)D− KLCe− Ksign(Ce)]

The terms of the derivative are rearranged

C
0 Dα

t V1 ≤ 2eT
[(

AT − KLC
)

P + P(A− KLC)
]
e (26)

+2eT P[ f (χ)D− Ksign(Ce)]

From Assumption 1
C
0 Dα

t V1 ≤ 2eT P[ f (χ)D− Ksign(Ce)]− eTQe (27)

Using the Rayleigh–Ritz inequality λmin(Q)‖e‖2 ≤ eTQe ≤ λmax(Q)‖e‖2, then
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C
0 Dα

t V1 ≤ 2eT P[ f (χ)D− Ksign(Ce)]− λmax(Q)‖e‖2 (28)

≤ 2eT P[ f (χ)D− Ksign(Ce)]

Assumption 2 leads to

C
0 Dα

t V1 ≤ 2eT P f (χ)D− 2eT PKsign(Ce) (29)

≤ 2
∥∥∥eT
∥∥∥‖P‖L1‖x− x̂‖‖D‖ − 2eT PKsign(Ce)

From Assumption 3

C
0 Dα

t V1 ≤ 2Λ‖e‖ − 2eT PKsign(Ce)

≤ 2Λ‖e‖ − 2eT PK
Ce
‖Ce‖ (30)

≤ 2Λ‖e‖ − 2eT PKC
e

‖C‖‖e‖

≤ 2Λ‖e‖ − 2√
λmaxCTC

eT PKC
e
‖e‖

Knowing that
√

λmaxCTC = 1

C
0 Dα

t V1 ≤ 2Λ‖e‖2 − 2λmax(PKC)
‖e‖2

‖e‖
≤ 2Λ‖e‖2 − 2λmax(PKC)‖e‖ (31)

≤ 2[Λ− λmax(PKC)]‖e‖

To fulfill Lemma 1, K has to satisfy the inequality λmax(PKC) > Λ, so C
0 Dα

t V1 ≤ 0
and the observer error is Mittag-Leffler stable. In order to estimate the desired part of the
system dynamic, the state of the observer is extended by the equation

C
0 Dα

t ẑ3 = k3sign(r− ẑ3) (32)

With r being a trajectory with the bounded αth-order Caputo derivative∥∥C
0 Dα

t r
∥∥ ≤ φ, φ > 0. The tracking error and its αorder derivative are

et = r− ẑ3 (33)
C
0 Dα

t et = C
0 Dα

t (r− ẑ3) (34)

Let a Lyapunov candidate function for the error be

V2 = eT
t et ≥ 0 (35)

From Lemma 2, the αth-order derivative is bounded

C
0 Dα

t V2 ≤ 2et
C
0 Dα

t et

≤ 2et

(
C
0 Dα

t et − C
0 Dα

t ẑ3

)
(36)

≤ 2et

[
C
0 Dα

t r− k3sign(r− ẑ3)
]

≤ 2et
C
0 Dα

t r− 2etk3sign(et)

Since the derivative of the reference is bounded
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C
0 Dα

t V2 ≤ 2Φet − 2etk3sign(et)

≤ 2Φet − 2etk3
et

‖et‖
(37)

≤ 2Φ‖et‖ − 2k3
‖et‖2

‖et‖
≤ 2(Φ− k3)‖et‖

having k3 > Φ makes the derivative of the Lyapunov candidate function be C
0 Dα

t V2 ≤ 0;
therefore, the additional observer satisfies Lemma 1, and thus, the additional state con-
verges to the desired reference r. Choosing r = ẑ2 − Bnl xul leads to

lim
t→∞

ẑ2 − u− ẑ3 = 0 (38)

lim
t→∞

ẑ2 = fd(x) +
N

∑
n=2

gdn(x)xn
ul + Bnldxul

lim
t→∞

(ẑ2 − u− ẑ3) = lim
t→∞

[
fd(x) +

N

∑
n=2

gdn(x)xn
ul + Bnldxul − Bnldxul − ẑ3

]

lim
t→∞

[(
fd(x) +

N

∑
n=2

gdn(x)xn
ul

)
− ẑ3

]
= 0 (39)

The value ẑ3 converges to the uncertain part of the dynamic containing the state and
the non-linear part of the input fd(x) + ∑N

n=2 gdn(x)xn
ul ; thus, the extended dynamic for the

observer is C
0 Dα

t z3 = k3sign(ẑ2 − u− ẑ3).
A strategy similar to active disturbance rejection is proposed by using ẑ3 to mitigate

the effects of the non-linear control input, of which the input for the non-lineal system is
xul = −z3 + ud, where ud denotes the desired system-output dynamics. These dynamic are
necessary to counteract the effects of any possible estimation errors by introducing a robust
control law.

In order to attain the desired trajectory for xul , the linear part of the system is then
expressed as

C
0 Dα

t xl = Al xl + Dl + Blu (40)

yl = Cl x

Let a differentiable desired reference signal for the linear system rl with the bounded
derivative

∥∥xl Pl
C
0 Dα

t rl
∥∥ ≤ R‖xl‖, R ≥ 0 and its tracking error el , with the fractional-order

derivative, be

el = rl − xl (41)
C
0 Dα

t el = C
0 Dα

t rl − (Al xl + Dl + Blu)

Choosing u = Kssign(Clel) as both the control input and a Lyapunov candidate
function for the linear system

V3 = e T
l Plel (42)

According to Lemma 1

C
0 Dα

t V3 ≤ 2eT
l Pl

C
0 Dα

t el (43)
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C
0 Dα

t V3 ≤ 2eT
l Pl

[
C
0 Dα

t rl − (Alel + Dl(x) + Blu)
]

≤ 2eT
l Pl

[
C
0 Dα

t rl − (Alel + Dl(x) + Blu)
]

(44)

≤ 2eT
l Pl

C
0 Dα

t rl − e T
l

(
AT

l Pl + PT
l Al

)
el − 2eT

l Pl Dl(x)− 2eT
l Pl Blu

from Assumption 4

C
0 Dα

t V3 ≤ 2eT
l Pl

C
0 Dα

t rl − e T
l Qel − 2eT

l Pl Dl(x)− 2eT
l Pl Blu (45)

≤ 2eT
l Pl

C
0 Dα

t rl − 2eT
l Pl Dl(x)− 2eT

l Pl Blu

by Assumption 5

C
0 Dα

t V3 ≤ 2e T
l Pl

[
C
0 Dα

t rl + δ− Kssign(Clel)
]

≤ 2‖el‖(R + δ)− 2e T
l PlKs

el
‖el‖

(46)

≤ 2‖el‖(R + δ)− 2λmax(PlKsCl)‖el‖
≤ 2[R + δ− 2λmax(PlKsCl)]‖el‖

making k3 so that δ + R < λmax(PlKsCl) leads to C
0 Dα

t V3 ≤ 0; therefore, the input state for
the non-linear states converges to the desired control law −ẑ3 + ud, making the overall
system Mittag-Leffler stable with u = Kssign(−z3 + ud − Cl x).

4. The Thermoelectric Module and Numerical Results

Thermoelectric Modules (TEM) are solid-state temperature control devices composed
of n- and p-type semiconductors linked to ceramic plates. Depending on the direction of
the current provided to the semi-conductor elements of the module, heat is transferred
from one of its ceramic plates to the other. The TEM is a non-linear system with a non-linear
control input. An equivalent circuit model of the TEM is introduced in [21,22], which is
especially practical for this application. In [23], an integer-order mathematical model for
the TEM is obtained from the results of Lineykin. If the TEM is powered via a DC/DC
Buck converter, the equations describing the TEM’s state trajectories driven by the buck
converter are similar to those in (9). Then, a fractional-order mathematical model for this
system is given by

C
0 Dα

t iL =
Eu − vc

L
C
0 Dα

t vc =
iL
C
− vc − γs(Tc − Th)

CRm
− vc

CR

CC
C
0 Dα

t Tc =
Tamb

kc
+

Th − Tc

σ
− Tc

kc

+
v2

c
2Rm

+
ksγsTcvc

Rmσ
− γs(ks + θm)Thvc

Rmσ
(47)

+

(
γ2

s θm

2Rmσ

)(
T2

h − T2
c

)
Ch

C
0 Dα

t Th =
Tamb

kc
+

Th − Tc

σ
− Tc

kc

+
v2

c
2Rm

+
ksγsTcvc

Rmσ
− γs(ks + θm)Thvc

Rmσ

+

(
γ2

s θm

2Rmσ

)(
T2

h − T2
c

)
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where the output voltage is vc, the electrical resistance parameter is R, the input PWM
signal is u, the current of the converter is iL, and the capacitance and inductance are denoted
by C and L, respectively. The temperature in the cold side is Tc and the temperature in the
hot plate is Th; γsis the Seebeck coefficient; Km is the thermal conductivity; Rm is the electric
resistance; and4T is the temperature difference between the hot and cold plates; Ch and
Cc are the thermal capacitance for the hot and cold plate, respectively; ks is the thermal
paste’s thermal resistance; and θm is the thermal resistance of the system.

The linear part of the system is formed by the first two states and the remaining two
are the non-linear dynamics of the TEM. The non-linear polynomial input for the TEM is
the output voltage vc. This input forms a second-degree polynomial with coefficients de-
pendent on the parameters of the Buck and TEM, but it also depends on the TEM state. The
order of the derivative α is obtained via system identification: first, the system parameters
are identified using an integer-order mathematical model, and then a second parametric
identification is conducted to estimate the value of the fractional derivative. The control
law is tested in a TEC-12706 thermoelectric module; to make parameter identification easier,
Equation (9) is simplified via a change in the variable:

C
0 Dα

t x1 = A1u− A2x2
C
0 Dα

t x2 = B1x1 − B2x2 + B3(x3 − x4)− B4x2
C
0 Dα

t x3 = C1 + C2(x4 − x3)− C3x3 + C4x2
2

+C5x2x3 − C6x2x4 + C7

(
x2

4 − x2
3

)
(48)

C
0 Dα

t x4 = D1 + D2(x3 − x4)− D3x4 + D4x2
2

+D5x2x3 − D6x2x4 + D7

(
x2

3 − x2
4

)
y = x3 = xd

The parameter identification process yields the following results (Table 1):

Table 1. System parameters

New Variable Numerical Value New Variable Numerical Value

A1 0.002733 C6 0.00227

A2 0.000564 C7 3.2930× 10−8

B1 41.389 D1 109.8051

B2 41.38907 D2 0.001649

B3 1.3545 D3 0.012514

B4 0.003419 D4 0.012039

C1 243.79 D5 0.00497

C2 0.05489 D6 0.00453

C3 0.00392 D7 5.82857

C4 0.01242 α 0.912634

C5 0.00314

The observer-based proposed controller is then implemented using the CRONE ap-
proximation of the fractional-order integral
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C
0 Dα

t ẑ1 = ẑ1 + kl1(xd − ẑ1) + k1sign(xd − ẑ1)
C
0 Dα

t ẑ2 = kl2(xd − ẑ1) + k2sign(xd − ẑ1)
C
0 Dα

t ẑ3 = k3sign(r− ẑ3) (49)

r = ẑ2 − Bnl xul

u = Kssign(−z3 + ud − Cl x)

the gains for the controller are kl1 = 3, kl2 = 4, k1 = 200, k2 = 200, k3 = 20, Ks = 0.0011,
and ud = −12sign(273 + Tdes − x3), with Tdes being a desired temperature in ◦C. Figure 1
shows the time evolution of the temperature on the cold side of the TEM at the desired
temperatures of 20 ◦C, 18◦C, and 16◦C. Figure 2 shows the error signals for these desired
temperatures, Figure 3 shows the behavior of the perturbation estimation, and Figure 4
shows the perturbation estimation error.

As shown in the figures, the simulation results obtained for the performance of the
proposed controller were satisfactory. It is necessary to clarify that care must be taken in
the way in which the gains are chosen so that the linear system obtains achievable values.
It is important to note that the observer is compatible with other control techniques, such
as FOPID and its variants.

Figure 1. Temperature of the cold plate.

Figure 2. Temperature tracking error for the cold plate.
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Figure 3. Estimated disturbance by the observer.

Figure 4. Disturbance estimation error.

Notice the observer consistently generates identical error trajectories across all exper-
iments; as depicted in Figure 4, each trajectory is consistently replicated. To confirm the
validity of the simulation, the experiments were conducted on an experimental platform.
The control law is implemented using an Arduino board for control and data acquisition.
The next figures (Figures 5–8) show the results of the experiment.

Figure 5. Measured temperature of the cold plate.
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Figure 6. Measured temperature error.

Figure 7. Estimated disturbance by the observer during experiment.

Figure 8. Control input.

The experiment shows that the control law is effective in a real-life scenario and
behaves very similarly to the simulation results. It is worth mentioning that the initial
conditions cannot be the same for each experiment because they were conducted at different
times of the day or even on different days; thus, room temperature is different, making each
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initial condition different. To make the experiment have the same initial condition each
time would require equipment to accurately regulate room temperature, and the authors
have no access to said equipment. Next, an experiment to test disturbance rejection is made
in which a fan is used to raise the temperature of the TEM (Figure 9):

Figure 9. Disturbance rejection.

The controller effectively corrects the offset in temperature caused by the air stream,
showing its capability to reject disturbances. Finally, it is compared to a FOPID con-
troller similar to the one proposed on [24], of which the desired temperature is 20 °C
(Figures 9 and 10):

Figure 10. Comparison of the proposed observer-based controller to a PI controller.

The observer-based controller exhibits a notably shorter settling time when contrasted
with the FOPID controller. Furthermore, the FOPID controller displays a minor steady-state
error, caused by its tendency to overreact to the sluggish response of the thermal system
when the temperature error becomes positive. Additionally, it is worth mentioning that
the implementation of the FOPID controller poses an increased computational cost on the
microcontroller. This arises from the distinct orders of the integral and derivative gains.

5. Conclusions

In this paper, a fractional-order, observer-based, sliding-mode control law is proposed
to regulate a non-linear system with non-linear control inputs. The control law is validated
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through testing on a Thermoelectric Module powered via a buck converter, a system known
for its non-linear control inputs. The simulation results validate that the control law can
guide the system to a desired value. The uncertainty observer achieves its purpose of
making an estimate of the desired part of the state and, consequently, this estimate can
be used to mitigate the effects of the non-linear control input and give the system output
the desired dynamic. The simulation results are corroborated via implementation in an
experimental platform, which gives similar results.

As highlighted in the introduction, there is a scarcity of research focusing on TEM
control utilizing diverse fractional-order control laws. In future work, the authors intend to
expand on the applications for the temperature-based control of the TEM by employing
consensus control to synchronize an array of thermoelectric modules for cooling appli-
cations. In this setting, it is also desirable to introduce optimal control techniques for
lowering the power consumption and make the cooling system more cost effective; as it
is widely known, TEM are not efficient cooling devices. This next work also intends on
applying other definitions of the fractional-order derivative, such as Caputo–Fabrizio and
Atangana–Baleanu.
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